# PROOF OF A CONJECTURE OF RAMANUJAN 

by A. O. L. ATKIN

(Received 11 February, 1966)

1. Introduction. We write
and

$$
\begin{aligned}
f(x) & =(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \ldots \\
\sum_{n=0}^{\infty} p(n) x^{n} & =1 / f(x)
\end{aligned}
$$

so that $p(n)$ is the number of unrestricted partitions of $n$. Ramanujan [1] conjectured in 1919 that if $q=5,7$, or 11 , and $24 m \equiv 1\left(\bmod q^{n}\right)$, then $p(m) \equiv 0\left(\bmod q^{n}\right)$. He proved his conecture for $n=1$ and $2 \dagger$, but it was not until 1938 that Watson [4] proved the conjecture for $q=5$ and all $n$, and a suitably modified form for $q=7$ and all $n$. (Chowla [5] had previously observed that the conjecture failed for $q=7$ and $n=3$.) Watson's method of modular equations, while theoretically available for the case $q=11$, does not seem to be so in practice even with the help of present-day computers. Lehner [6,7] has developed an essentially different method, which, while not as powerful as Watson's in the cases where $\Gamma_{0}(q)$ has genus zero, is applicable in principle to all primes $q$ without prohibitive calculation. In particular he proved the conjecture for $q=11$ and $n=3$ in [7]. Here I shall prove the conjecture for $q=11$ and all $n$, following Lehner's approach rather than Watson's. I also prove the analogous and essentially simpler result for $c(m)$, the Fourier coefficient $\ddagger$ of Klein’s modular invariant $j(\tau)$ as

THEOREM 1. If $m \equiv 0\left(\bmod 11^{n}\right)$, then $c(m) \equiv 0\left(\bmod 11^{n}\right)$.
The full truth with regard to Ramanujan's original conjecture is thus now known to be: If $24 m \equiv 1\left(\bmod 5^{a} 7^{b} 11^{c}\right)$, then $p(m) \equiv 0\left(\bmod 5^{a} 7^{\beta} 11^{c}\right)$, where $\beta=[(b+2) / 2]$.
In view of Watson's result we need only prove here
Theorem 2. If $24 m \equiv 1\left(\bmod 11^{n}\right)$, then $p(m) \equiv 0\left(\bmod 11^{n}\right)$.
The general plan of the paper is as follows. In $\S 2$ we describe the notation and general theory required for the proof of Theorem 1. In $\S 3$ we carry through sufficient detailed calculation to prove Theorem 1. In $\S 4$ the additional theory required for the proof of Theorem 2 is given, and in $\S 5$ Theorem 2 is proved. Necessary calculations which would unduly interrupt the main argument are given in Appendices.

## 2. Functions on $\Gamma_{0}(11)$.

2.1. We consider the subgroup $\Gamma_{0}(11)$ of the full modular group $\Gamma(1)$, defined by those transformations

$$
\tau \rightarrow V \tau=\frac{a \tau+b}{c \tau+d} \quad(a, b, c, d, \text { integral with } a d-b c=1)
$$

[^0]of $\Gamma(1)$ that satisfy $c \equiv 0(\bmod 11) . \quad \Gamma_{0}(11)$ is of genus 1 , and its fundamental region has two cusps $\tau=i \infty$ and $\tau=0$, with local variables $x=e^{2 \pi i \tau}, x=e^{-2 \pi i / 11 \tau}$, respectively. By " an entire modular function on $\Gamma_{0}(11)$ " we understand a function $F(\tau)$, regular in $\operatorname{Im} \tau>0$, that satisfies $F(V \tau)=F(\tau)$ for $V \in \Gamma_{0}(11)$, and has at most polar singularities in the local variables at the two cusps of $\Gamma_{0}(11)$. For such $F(\tau)$ we shall write $F \in S$. If in addition $F(\tau)$ is zero at $\tau=i \infty 0$ we write $F \in S^{\infty}$. Finally, if $F(\tau)$ is zero at $\tau=0$ we write $F \in S^{0}$.

We refer to the expansion of $F(\tau)$ in powers of $x=e^{2 \pi i \tau}$ at $\tau=i \infty$ as its Fourier series (FS).

We have:
Lemma 1. If $F(\tau) \in S$, then $F^{*}(\tau)=F(-1 / 11 \tau) \in S$.
A simple proof is given by Newman [9, Lemma 1]. It is clear that the expansion of $F(\tau)$ at $\tau=0$ is the FS of $F^{*}(\tau)$, and that $F \in S^{\infty}, S^{0} \Leftrightarrow F^{*} \in S^{0}, S^{\infty}$.

We now introduce a linear operator $U$ defined by

$$
\left.\begin{array}{rl}
11 U F(\tau) & =\sum_{r=0}^{10} F\left(\frac{\tau+r}{11}\right)  \tag{1}\\
U^{n+1} F(\tau) & =U\left(U^{n} F(\tau)\right) \quad(n \geqq 1)
\end{array}\right\}
$$

Clearly

$$
U\left(a_{1} F_{1}+a_{2} F_{2}\right)=a_{1} U F_{1}+a_{2} U F_{2},
$$

if $a_{1}, a_{2}$ are constants. If the FS of $F(\tau)$ is

$$
\sum_{r=r_{0}}^{\infty} \alpha_{r} x^{r}
$$

then the FS of $U F(\tau)$ is

$$
\sum_{11 r \geq r_{0}} \alpha_{11 r} x^{r}
$$

By $U F(-1 / 11 \tau)$ we shall understand the effect of replacing $\tau$ by $-1 / 11 \tau$ in $U F(\tau)$ and not " $U G(\tau)$ where $G(\tau)=F(-1 / 11 \tau)$ ".

We also write

$$
\begin{equation*}
F_{1}(\tau) \equiv F_{2}(\tau)(\bmod m) \tag{2}
\end{equation*}
$$

if all the respective coefficients in the FS of $F_{1}(\tau)$ and $F_{2}(\tau)$ are congruent modulo $m$. Thus nothing is asserted by (2) as to the expansions at $\tau=0$.

It will be convenient in the sequel to assess divisibility by powers of 11 by using an exponential valuation. Accordingly, for integral $a$, we define $\pi(a)$ by

$$
11^{\pi(a)} \mid a, \quad 11^{\pi(a)+1} \nmid a
$$

and for rational $a=b / c$ we define

$$
\pi(a)=\pi(b)-\pi(c)
$$

We write conventionally $\pi(0)=\infty$, and regard any inequality $\pi(0) \geqq k$ as valid.

We have

$$
\begin{align*}
\pi(a b) & =\pi(a)+\pi(b) \\
\pi(a+b) & \geqq \min (\pi(a), \pi(b)), \tag{3}
\end{align*}
$$

with equality if $\pi(a) \neq \pi(b)$.
The crucial results on $U F(\tau)$ are given by Lehner (Theorem 8 and (8.81) of [6]), and are as follows.

Lemma 2. If $F(\tau) \in S$, then

$$
\text { (i) } U F(\tau) \in S, \text { (ii) } 11 U F(-1 / 11 \tau)-11 U F(11 \tau)=F(-1 / 121 \tau)-F(\tau)
$$

Note that in (ii) $U F(11 \tau)$ and $F(-1 / 121 \tau)$ are not themselves in $S$. It is also immediate that

$$
\begin{equation*}
F(\tau) \in S^{\infty} \Rightarrow U F(\tau) \in S^{\infty} \tag{4}
\end{equation*}
$$

((4) is not valid for $S_{0}$.)
Reverting now to the proof of Theorem 1, we see that, since $j(\tau) \in S$, then $U^{n} j(\tau) \in S^{\infty}$ for $n \geqq 1$. Theorem 1 is then equivalent to proving that the FS of $11^{-n} U^{n} j(\tau)$ has integral coefficients. To establish this, we obtain first a standard basis for the functions of $S^{\infty}$, and then use Lemma 2 to obtain detailed information as to the effect of the operator $U$ on these functions.
2.2. A linear basis for functions on $\Gamma_{0}(11)$. The following lemma is proved in Appendix A.

Lemma 3. For all integral $n \geqq 2$, there exist functions $G_{n}(\tau), g_{n}(\tau), h_{n}(\tau)$ with the following properties:

$$
\begin{equation*}
G_{n}(\tau) \in S^{0}, g_{n}(\tau) \in S^{\infty}, h_{n}(\tau) \in S^{\infty} \tag{i}
\end{equation*}
$$

(ii)

$$
G_{n}(-1 / 11 \tau)=h_{n}(\tau)=11^{\theta(n)} g_{n}(\tau)
$$

where

$$
\begin{aligned}
\theta(n) & =6 k+2,3,4,6,6 \\
n & =5 k+2,3,4,5,6 \quad(k \geqq 0) .
\end{aligned}
$$

(iii) The FS of $G_{n}(\tau)$ has integral coefficients with leading term $x^{-n}$.
(iv) The FS of $g_{n}(\tau)$ has integral coefficients with leading term $x^{\psi(n)}$,
where
according as

$$
\begin{aligned}
\psi(n) & =5 k+1,2,3,5,4 \\
n & =5 k+2,3,4,5,6 \quad(k \geqq 0)
\end{aligned}
$$

Further, there exists a function $B(\tau) \in S$ with simple poles at $\tau=0$ and $\tau=i \infty$, such that $B(-1 / 11 \tau)=B(\tau)$. The $F S$ of $B(\tau)$ has integral coefficients, with leading term $x^{-1}$.

Since the Riemann surface of $\Gamma_{0}(11)$ cannot support a univalent function, we have the immediate corollary:

Lemma 4. Suppose that $F(\tau) \in S$ has a pole of order $M$ at $\tau=0$ and a pole of order $N$ at $\tau=i \infty 0$. Then

$$
F(\tau)=\sum_{r=2}^{N} \lambda_{-r} G_{r}(\tau)+\lambda_{-1} B(\tau)+\lambda_{0}+\sum_{r=2}^{M} \lambda_{r} h_{r}(\tau)
$$

where the $\lambda_{r}(-N \leqq r \leqq M)$ are constants.
Finally we restate Lemma 4 in the case of greatest interest to us.
Lemma 5. Suppose that $F(\tau) \in S^{\infty}$ has a pole of order $M$ at $\tau=0$. Then

$$
F(\tau)=\sum_{r=2}^{M} \lambda_{r} h_{r}(\tau), \quad F(-1 / 11 \tau)=\sum_{r=2}^{M} \lambda_{r} G_{r}(\tau)
$$

For a given $F(\tau) \in S^{\infty}$, the constants $\lambda_{r}$ in Lemma 5 can be determined from the FS of either $F(-1 / 11 \tau)$ or $F(\tau)$. We are mainly concerned not with the exact value of $\lambda_{r}$, but with $\pi\left(\lambda_{r}\right)$. In $\S 3$ below we obtain suitable lower bounds for $\pi\left(\lambda_{r}\right)$ in the case when $F(\tau)=$ $U g_{n}(\tau)$. The calculations take a simpler form when we consider $F(\tau)=U h_{n}(\tau)$; the transition to $U g_{n}(\tau)$ is immediate from Lemma 3(ii).
3.1. Since $h_{n}(\tau) \in S^{\infty}$, we have

$$
\begin{equation*}
11 U h_{n}(\tau)=\sum c_{n r} h_{r}(\tau) \tag{5}
\end{equation*}
$$

where the $c_{n r}$ are constants, by Lemma 5. It is convenient to regard the sum in (5) as one from $r=2$ to $\infty$, although all but a finite number of the $c_{n r}$ are zero. We have also

$$
\begin{equation*}
11 U h_{n}(-1 / 11 \tau)=\sum c_{n r} G_{r}(\tau) \tag{6}
\end{equation*}
$$

and, by Lemma 2(ii),

$$
\begin{equation*}
11 U h_{n}(-1 / 11 \tau)-11 U h_{n}(11 \tau)=-h_{n}(\tau)+h_{n}(-1 / 121 \tau) \tag{7}
\end{equation*}
$$

It follows from (7) that the principal part of the FS of $11 U h_{n}(-1 / 11 \tau)$ is the same as that of $h_{n}(-1 / 121 \tau)=G_{n}(11 \tau)$, since $U h_{n}(11 \tau)$ and $h_{n}(\tau)$ are zero at $\tau=i \infty$. Hence the coefficients $c_{n r}$ may be uniquely determined by the fact that the FS of

$$
G_{n}(11 \tau)-\sum c_{n r} G_{r}(\tau)
$$

has no terms in $x^{-11 n}, \ldots, x^{-3}, x^{-2}$. It will then necessarily have no term in $x^{-1}$, which provides a check in numerical work. It follows that the $c_{n r}$ are integers (since each $G_{r}$ has leading term $x^{-r}$, and the FS of $G_{n}(11 \tau)$ has integral coefficients) and also that

$$
\begin{equation*}
c_{n r}=0 \quad \text { if } \quad r>11 n \tag{8}
\end{equation*}
$$

Considering next the determination of the $c_{n r}$ from (5) we observe that for different $r$ the FS of $h_{r}(\tau)$ commence with different powers $\dagger$ of $x$, by Lemma 3(iv).
$\dagger$ The linear basis used by Lehner $[6,7]$ does not have this property.

Thus, since every coefficient in the FS of $11 U h_{n}(\tau)$ is divisible by $11^{\theta(n)+1}$, and the leading term in the FS of $h_{r}(\tau)$ is $11^{\theta(r)} x^{\psi(r)}$, we have

$$
\begin{equation*}
\pi\left(c_{n r}\right) \geqq \theta(n)-\theta(r)+1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n r}=0 \text { if } 11 \psi(r)<\psi(n) \tag{10}
\end{equation*}
$$

We now establish certain conditions under which $\pi\left(c_{n r}\right) \geqq 3$.
3.2. The values of $c_{n r}\left(\bmod 11^{3}\right)$. All congruences in this section are to the modulus $11^{3}$. It follows from (6) and (7) that

$$
\begin{equation*}
G_{2}(11 \tau)-11^{2} g_{2}(\tau) \equiv \sum c_{2 r} G_{r}(\tau), \quad G_{n}(11 \tau) \equiv \sum c_{n r} G_{r}(\tau) \quad(n \geqq 3) \tag{11}
\end{equation*}
$$

We shall use the symbol $(k, l, m)$ to denote an expression of the form

$$
11^{2} \sum_{i=k}^{l-1} \lambda_{i} G_{i}(\tau)+11 \sum_{i=i}^{m-1} \lambda_{i} G_{i}(\tau)+\sum_{i=m}^{N} \lambda_{i} G_{i}(\tau)
$$

where $k<l<m \leqq N$ and the $\lambda_{i}$ are integral constants. Then by direct calculation $\dagger$ we find

$$
\begin{equation*}
G_{2}(11 \tau)-11^{2} g_{2}(\tau) \equiv(2,9,19), \quad G_{3}(11 \tau) \equiv(8,18,28) \tag{12}
\end{equation*}
$$

Now Table 5 in Appendix B shows that

$$
G_{i}(\tau) G_{j}(\tau)=\sum_{r=-3}^{0} \mu_{r} G_{i+j+r}(\tau)
$$

where the $\mu_{r}$ are integral, and $\mu_{-3}, \mu_{-2} \equiv 0(\bmod 11)$, for all $i$ and $j$. It follows that

$$
\begin{aligned}
& \left(k_{1}, l_{1}, m_{1}\right)\left(k_{2}, l_{2}, m_{2}\right) \equiv\left(k_{3}, l_{3}, m_{3}\right), \\
k_{3}= & \min \left(k_{1}+m_{2}-1, k_{2}+m_{1}-1, l_{1}+l_{2}-1\right), \\
l_{3}= & \min \left(l_{1}+m_{2}-1, l_{2}+m_{1}-1\right) \\
m_{3}= & m_{1}+m_{2}-1
\end{aligned}
$$

where

Further, from Table 6 we have, for $m \geqq 4$,

$$
11^{2} g_{2}(\tau) \cdot(k, l, m) \equiv(m-2, \infty, \infty)
$$

Thus

$$
\left.\begin{array}{l}
G_{4}(11 \tau)=G_{2}^{2}(11 \tau)-11 G_{3}(11 \tau) \equiv(17,27,37),  \tag{13}\\
G_{5}(11 \tau)=G_{2}(11 \tau) G_{3}(11 \tau)-11 G_{4}(11 \tau) \equiv(26,36,46), \\
G_{6}(11 \tau)=G_{2}(11 \tau) G_{4}(11 \tau) \equiv(35,45,55), \\
G_{7}(11 \tau)=G_{2}(11 \tau) G_{5}(11 \tau) \equiv(44,54,64) .
\end{array}\right\}
$$

$\dagger$ This was done in three different ways on three different machines: firstly using Lemma 9 on a Diehl desk calculator at Durham University; next using (5) on an Elliott 803 computer at Durham University; and finally using ( 6 ) on the I.C.T. Atlas 1 computer at Chilton. The computing times were respectively one week, one hour, and ten seconds.

It is now easily seen by induction, since $G_{n+5}(\tau)=G_{n}(\tau) G_{5}(\tau)$, that

$$
\begin{equation*}
G_{n}(11 \tau) \equiv(9 n-19,9 n-9,9 n+1) \quad(n \geqq 3), \tag{14}
\end{equation*}
$$

and thus, by (11),

$$
\begin{equation*}
\pi\left(c_{n r}\right) \geqq 3 \quad \text { if } \quad r \leqq 9 n-20, n \geqq 3 . \tag{15}
\end{equation*}
$$

3.3. The values of $c_{n r}\left(\bmod 11^{4}\right)$. We have $11 U h_{n}(\tau) \equiv 0\left(\bmod 11^{4}\right)$ for $n \geqq 3($ since $\theta(n)+1 \geqq 4)$, and $(5)$ with $\pi\left(c_{21}\right) \geqq 2, \pi\left(c_{22}\right) \geqq 1$ gives $11 U h_{2}(11 \tau) \equiv 0\left(\bmod 11^{4}\right)$.

Then, by (6) and (7),

$$
\left.\begin{array}{rl}
G_{2}(11 \tau)-11^{2} g_{2}(\tau) & \equiv \sum c_{2 r} G_{r}(\tau)  \tag{16}\\
G_{3}(11 \tau)-11^{2} g_{3}(\tau) & \equiv \sum c_{3 r} G_{r}(\tau) \\
G_{n}\left(\bmod 11^{4}\right), \\
G_{n}\left(11^{4}\right), & \equiv \sum c_{n r} G_{r}(\tau) \\
& \left(\bmod 11^{4}\right)(n \geqq 4) .
\end{array}\right\}
$$

Hence, by arguments similar to those of $\S 3.2$, we obtain

$$
c_{5 r} \equiv 0\left(\bmod 11^{4}\right) \text { for } r \leqq 15, \quad c_{7 r} \equiv 0\left(\bmod 11^{4}\right) \text { for } r \leqq 33
$$

A crude induction, using Table 5 and (15), now shows that

$$
\begin{equation*}
c_{5 k+2, r} \equiv 0\left(\bmod 11^{4}\right) \text { for } r \leqq 15 k+18, \quad k \geqq 1 \tag{17}
\end{equation*}
$$

We summarise our results on $c_{n r}$ in the forms actually required later.

## Lemma 6.

$$
\begin{array}{llr}
\pi\left(c_{n r}\right) \geqq 0 & \text { always, } & \text { (from §3.1) } \\
\pi\left(c_{n r}\right) \geqq \theta(n)-\theta(r)+1 & \text { always, } & \text { (from (9)) } \\
\pi\left(c_{n r}\right) \geqq 1 & \text { for } n=2 \text { or } 3,9 \leqq r \leqq 11, & \text { (from (12)) } \\
\pi\left(c_{n r}\right) \geqq 2 & \text { for } n=2 \text { or } 3, r \leqq 8, & \text { (from (12)) } \\
\pi\left(c_{n r}\right) \geqq 3 & \text { for } n=4, r \leqq 16, & \text { (from (15)) } \\
\pi\left(c_{n r}\right) \geqq 3 & \text { for } n \geqq 5, r \leqq n+14, & \text { (from (15)) } \\
\pi\left(c_{n r}\right) \geqq 4 & \text { for } n \leqq 2(\bmod 5), n \geqq 7, r=n-1 \text { or } n-2, & \text { (from (17)) }  \tag{17}\\
\pi\left(c_{22}\right)=2, \pi\left(c_{32}\right)=3, \pi\left(c_{42}\right)=4 . & \text { (from Table 7) }
\end{array}
$$

3.4. We now use the results of $\S 3.3$ to show that, in effect, functions of a suitable form remain of that form under the operation $11^{-1} U$. This is the basis of the proofs of Theorems
$\dagger$ This result is by no means best possible. We can, by consideration of cases (mod 5), establish results with $11 n$ instead of $9 n$ on the right-hand side of (14), but (15) suffices later.

1 and 2. Our Lemma 7 below is needed in $\S 5$, although a weaker form would suffice for Theorem 1.

We define
and
according as

$$
\left.\begin{array}{rl}
\xi(2) & =0, \xi(3)=1  \tag{18}\\
\xi(n) & =5 k+1,3,3,4,5 \\
n & =5 k+4,5,6,7,8 \quad(k \geqq 0) .
\end{array}\right\}
$$

We also define $\eta(2)=0, \eta(3)=1, \eta(n)=\xi(n)+1(n \geqq 4)$. We shall denote by $X$ the class of functions $F(\tau)$ with

$$
\begin{equation*}
F(\tau)=\sum_{n=2}^{N} \lambda_{n} 11^{\xi(n)} g_{n}(\tau), \tag{19}
\end{equation*}
$$

and by $Y$ the class of functions $F(\tau)$ with

$$
\begin{equation*}
F(\tau)=\sum_{n=2}^{M} \mu_{n} 11^{\eta(n)} g_{n}(\tau) \tag{20}
\end{equation*}
$$

where $N, M, \lambda_{n}$, and $\mu_{n}$ are any integral constants.
Lemma 7. If $F(\tau) \in X$, then $11^{-1} U F(\tau) \in Y$.
Proof. We have, by (5),

$$
11^{-1} U \sum \lambda_{n} 11^{\xi(n)} g_{n}(\tau)=\sum \sum \lambda_{n} 11^{\xi(n)-2-\theta(n)+\theta(r)} c_{n r} g_{r}(\tau) .
$$

Thus we have to show that, for all $n$ and $r$,

$$
\begin{equation*}
\xi(n)-2-\theta(n)+\theta(r)+\pi\left(c_{n r}\right) \geqq \eta(r) . \tag{21}
\end{equation*}
$$

The following table is given to clarify the details of the proof $(k \geqq 0)$.

| $n$ | 2 | 3 | $5 k+4$ | $5 k+5$ | $5 k+6$ | $5 k+7$ | $5 k+8$ | $5 k+9$ | $5 k+10$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\xi(n)$ | 0 | 1 | $5 k+1$ | $5 k+3$ | $5 k+3$ | $5 k+4$ | $5 k+5$ | $5 k+6$ | $5 k+8$ |
| $\eta(n)$ | 0 | 1 | $5 k+2$ | $5 k+4$ | $5 k+4$ | $5 k+5$ | $5 k+6$ | $5 k+7$ | $5 k+9$ |
| $\theta(n)$ | 2 | 3 | $6 k+4$ | $6 k+6$ | $6 k+6$ | $6 k+8$ | $6 k+9$ | $6 k+10$ | $6 k+12$ |
| $\theta(n)-\eta(n)$ | 2 | 2 | $k+2$ | $k+2$ | $k+2$ | $k+3$ | $k+3$ | $k+3$ | $k+3$ |
| $\theta(n)-\xi(n)$ | 2 | 2 | $k+3$ | $k+3$ | $k+3$ | $k+4$ | $k+4$ | $k+4$ | $k+4$ |

We quote the results of Lemma 6 without their formula numbers. Since $\pi\left(c_{n r}\right) \geqq 0$, (21) holds if $\theta(r)-\eta(r) \geqq \theta(n)-\xi(n)+2$. This is satisfied in the cases

$$
\begin{equation*}
n \geqq 5, r \geqq n+15 ; \quad n=4, r \geqq 17 ; \quad n=2 \text { or } 3, r \geqq 12 . \tag{22}
\end{equation*}
$$

Also, since $\pi\left(c_{n r}\right) \geqq \theta(n)-\theta(r)+1$, (21) holds if $\xi(n) \geqq \eta(r)+1$. This is satisfied in the cases

$$
\begin{equation*}
n \geqq 5, n \neq 2(\bmod 5), \quad r \leqq n-2 ; \quad n \geqq 5, n \equiv 2(\bmod 5), r \leqq n-3 \tag{23}
\end{equation*}
$$

Now for $n \geqq 5, n-1 \leqq r \leqq n+14$, we have $\pi\left(c_{n r}\right) \geqq 3$, and so (21) holds if

$$
\theta(n)-\xi(n) \leqq \theta(r)-\eta(r)+1
$$

This is valid unless $n \equiv 2(\bmod 5), r=n-1$. This gives the cases

$$
\begin{equation*}
n \geqq 5, n \not \equiv 2(\bmod 5), n-1 \leqq r \leqq n+14 ; \quad n \geqq 5, n \equiv 2(\bmod 5), r \geqq n . \tag{24}
\end{equation*}
$$

Next, if $n \geqq 5, n \equiv 2(\bmod 5), r=n-1$ or $n-2$, we have $\pi\left(c_{n r}\right) \geqq 4$. Hence (21) holds if

$$
\begin{equation*}
n \geqq 5, n \equiv 2 \quad(\bmod 5), \quad r=n-1 \text { or } n-2 \tag{25}
\end{equation*}
$$

Now for $n=4$, (21) is $\pi\left(c_{4 r}\right) \geqq \eta(r)-\theta(r)+5$. For $2 \leqq r \leqq 16$, we have $\pi\left(c_{4 r}\right) \geqq 3$, $\eta(r)-\theta(r) \leqq-2$. This gives

$$
\begin{equation*}
n=4, \quad 2 \leqq r \leqq 16 \tag{26}
\end{equation*}
$$

Finally if $n=2$ or 3 , (21) is $\pi\left(c_{n r}\right) \geqq \eta(r)-\theta(r)+4$, and we have for $r \leqq 8, \pi\left(c_{n r}\right) \geqq 2$ and $\eta(r)-\theta(r) \leqq-2$; also for $9 \leqq r \leqq 11$ we have $\pi\left(c_{n r}\right) \geqq 1$ and $\eta(r)-\theta(r) \leqq-3$. This gives

$$
\begin{equation*}
n=2 \text { or } 3, \quad r \leqq 11 . \tag{27}
\end{equation*}
$$

Since (22) to (27) cover all integral $n, r$ with $n \geqq 2$ and $r \geqq 2$, Lemma 7 is proved.
Corollary. If $F(\tau) \in X$, then

$$
\begin{equation*}
11^{-1} U F(\tau) \in X \tag{28}
\end{equation*}
$$

For $\xi(n) \leqq \eta(n)$.
It is desirable in some cases to prove that the congruences obtained by using Lemma 7 are best possible. To this end we define classes of functions $X^{0}$ and $Y^{0}$ as at the beginning of this section, but with the additional conditions $\pi\left(\lambda_{2}\right)=0, \pi\left(\mu_{2}\right)=0$. We now prove

Lemma 8. If $F(\tau) \in X^{0}$, then $11^{-1} U F(\tau) \in Y^{0}$.
We have, as in the proof of Lemma 7,

$$
\mu_{2}=\sum \lambda_{n} 11^{\xi(n)-2-\theta(n)+2} c_{n 2}=\sum \rho_{n}, \quad \text { say }
$$

Now $\pi\left(c_{n 2}\right) \geqq \theta(n)-\theta(2)+1$, so that, for $n \geqq 5$, we have $\pi\left(\rho_{n}\right) \geqq 1$, since $\xi(n) \geqq 2$. For $n=3$, $\pi\left(c_{32}\right)=3, \zeta(3)-\theta(3)=-2$ and so $\pi\left(\rho_{3}\right) \geqq 1$. For $n=4, \pi\left(c_{42}\right)=4, \xi(4)-\theta(4)=-3$, and so $\pi\left(\rho_{4}\right) \geqq 1$. Hence

$$
\mu_{2} \equiv \hat{\lambda}_{2} 11^{-2} c_{22} \quad(\bmod 11)
$$

But $\pi\left(c_{22}\right)=2$, and hence, if $\pi\left(\lambda_{2}\right)=0$, then $\pi\left(\mu_{2}\right)=0$. This proves the lemma.

### 3.5. Proof of Theorem 1.

We may express Lemma 2 (ii), in the form:
Lemma 9. If $F(\tau) \in S$, then $F(-1 / 11 \tau)+11 U F(\tau)$ is an entire function on the full modular group $\Gamma(1)$.

Choosing $F(\tau)=B(\tau)$, we have, since the FS of $B(\tau)$ is $x^{-1}-5+\ldots$,

$$
60+B(\tau)+11 U B(\tau)=j(\tau) .
$$

Now $U\{B(\tau)+5\} \in S^{\infty}$, and $11 U B(-1 / 11 \tau)$ has FS $x^{-11}+O\left(x^{-1}\right)$. Hence

$$
11\{U B(-1 / 11 \tau)+5\}=\sum_{n=2}^{11} \alpha_{n} G_{n}(\tau)
$$

where the $\alpha_{n}$ are integral constants, and so

Thus

$$
11^{-1}\{U B(\tau)+5\}=\sum_{n=2}^{11} \alpha_{n} 11^{\theta(n)-2} g_{n}(\tau) \in X
$$

$$
11^{-1} U j(\tau)=11^{-1} U\{B(\tau)+5\}+U^{2}\{B(\tau)+5\} \in X
$$

by (28). Repeated application of (28) shows that $11^{-n} U^{n} j(\tau) \in X$ for $n \geqq 1$.
Now the FS of any function in $X$ has integral coefficients, while the FS of $U^{n j}(\tau)$ is $\sum_{m=1}^{\infty} c\left(11^{n} m\right) x^{m}$. Hence for all $m \geqq 1, n \geqq 1$ we have that $11^{-n} c\left(11^{n} m\right)$ is an integer, which is Theorem 1.

Theorem 1 is best possible in the sense that $c\left(11^{n}\right) \neq 0\left(\bmod 11^{n+1}\right)$. We have

$$
11^{-1} U j(\tau) \equiv \alpha_{2} g_{2}(\tau) \quad(\bmod 11)
$$

Now $\alpha_{2}=1627$ and so $\pi\left(\alpha_{2}\right)=0$. Hence, by repeated application of Lemma 8, we have (since $Y^{0} \subseteq X^{0}$ )

$$
11^{-n} U^{n} j(\tau) \in X^{0}
$$

and so

$$
11^{-n} U^{n} j(\tau) \equiv k_{n} g_{2}(\tau) \quad(\bmod 11)
$$

where $\pi\left(k_{n}\right)=0$.

Thus
and so

$$
\begin{aligned}
& 11^{-n} c\left(11^{n}\right) \equiv k_{n} \quad(\bmod 11) \\
& c\left(11^{n}\right) \neq 0 \quad\left(\bmod 11^{n+1}\right)
\end{aligned}
$$

4.1. We now define
where

$$
\eta(\tau)=e^{\pi i \tau / 12} f(x) \quad(\operatorname{Im} \tau>0)
$$

and

$$
\begin{equation*}
f(x)=\prod_{r=1}^{\infty}\left(1-x^{r}\right) \quad \text { and } \quad x=e^{2 \pi i z} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\phi(\tau)=\eta(121 \tau) / \eta(\tau)=x^{5} f\left(x^{121}\right) / f(x), \quad \Phi(\tau)=1 / \phi(\tau) \tag{30}
\end{equation*}
$$

We also let

$$
\left.\begin{array}{rlrl}
l_{2 n-1} & =\left(13.11^{2 n-1}+1\right) / 24 & & (n \geqq 1)  \tag{31}\\
l_{2 n} & =\left(23.11^{2 n}+1\right) / 24 & & (n \geqq 1),
\end{array}\right\}
$$

so that $l_{n}$ is the least positive integral solution of $24 l_{n} \equiv 1\left(\bmod 11^{n}\right)$.
Further let

$$
\left.\begin{array}{rl}
\Lambda_{2 n-1}(x) & =f\left(x^{11}\right) \sum_{m=0}^{\infty} p\left(11^{2 n-1} m+l_{2 n-1}\right) x^{m+1}  \tag{32}\\
\Lambda_{2 n}(x) & =f(x) \sum_{m=0}^{\infty} p\left(11^{2 n} m+l_{2 n}\right) x^{m+1}
\end{array}\right\} \quad(n \geqq 1)
$$

and define a sequence of functions $L_{n}(\tau)$ by

$$
\left.\begin{array}{rlrl}
L_{1}(\tau) & =U \phi(\tau), & & \\
L_{2 n}(\tau) & =U L_{2 n-1}(\tau) & & (n \geqq 1),  \tag{33}\\
L_{2 n+1}(\tau) & =\left\{U \phi\left(\tau L_{2 n}(\tau)\right\}\right. & & (n \geqq 1) .
\end{array}\right\}
$$

We shall prove by induction that, for $n \geqq 1, \Lambda_{n}(x)$ is the FS of $L_{n}(\tau)$. We have

$$
U\left\{F_{1}(11 \tau) F_{2}(\tau)\right\}=F_{1}(\tau) U F_{2}(\tau)
$$

Now the FS of $\phi(\tau)$ is

$$
x^{5} f\left(x^{121}\right) \sum_{m=0}^{\infty} p(m) x^{m}
$$

so that the FS of $U \phi(\tau)$ is

$$
f\left(x^{11}\right) \sum_{m=0}^{\infty} p(11 m+6) x^{m+1}=\Lambda_{1}(x)
$$

Assuming that the FS of $L_{2 n-1}(\tau)$ is $\Lambda_{2 n-1}(x)$, we see that the FS of $L_{2 n}(\tau)=U L_{2 n-1}(\tau)$ is

$$
f(x) \sum_{m=0}^{\infty} p\left\{11^{2 n-1}(11 m+10)+l_{2 n-1}\right\} x^{m+1}=L_{2 n}(x)
$$

Finally if the FS of $L_{2 n}(\tau)$ is $\Lambda_{2 n}(x)$, then the FS of $L_{2 n+1}(\tau)=U\left\{\phi(\tau) L_{2 n}(\tau)\right\}$ is

$$
f\left(x^{11}\right) \sum_{m=0}^{\infty} p\left\{11^{2 n}(11 m+6)+l_{2 n}\right\} x^{m+1}=L_{2 n+1}(x)
$$

Since the expansions of $1 / f(x)$ and $1 / f\left(x^{11}\right)$ have integral coefficients with leading terms unity, Theorem 2 is equivalent to

Lemma 10. The FS of $11^{-n} L_{n}(\tau)$ has integral coefficients.
4.2. Since $\phi(\tau)$ is not a function on $\Gamma_{0}(11)$, but on $\Gamma_{0}(121)$, we cannot apply the methods of $\S \S 2$ and 3 immediately. However we do have

Lemma 11. If $F(\tau) \in S^{\infty}$, then
(i) $U\{\phi(\tau) F(\tau)\} \in S^{\infty}$,
(ii) the principal part of the expansions of $U\{\phi(\tau) F(\tau)\}$ in powers of $x=e^{-2 \pi / 11 \tau}$ at its pole $\tau=0$ is the same as the principal part of the FS expansion of $11^{-2} \Phi(\tau) F(-1 / 121 \tau)$ in powers of $x=e^{2 \pi i \tau}$.

Further (i) and (ii) hold in the special case $F(\tau)=1$.
Lemma 11 is proved by Lehner [6, Theorem 8]; there are some misprints corrected in Lehner [7, page 178].

We now have, by Lemma 5,

$$
\begin{equation*}
11^{2} U\left\{\phi(\tau) h_{n}(\tau)\right\}=\sum d_{n r} h_{r}(\tau) \tag{34}
\end{equation*}
$$

where the $d_{n r}$ are constants, and in fact zero if $11 \psi(r)<\psi(n)+5$ or $r>11 n+5$. Further the $d_{n r}$ are uniquely determined by the fact that the FS of

$$
\Phi(\tau) G_{n}(11 \tau)-\sum_{r=2}^{11 n+5} d_{n r} G_{r}(\tau)
$$

has no terms in $x^{-11 n-5}, \ldots, x^{-3}, x^{-2}$. Hence

$$
\begin{equation*}
\pi\left(d_{n r}\right) \geqq 0 \tag{35}
\end{equation*}
$$

We have also, from (34),
and thus

$$
\begin{gather*}
11^{2+\theta(n)} U\left\{\phi(\tau) g_{n}(\tau)\right\}=\sum d_{n r} 11^{\theta(r)} g_{r}(\tau) \\
\pi\left(d_{n r}\right) \geqq \theta(n)-\theta(r)+2 \tag{36}
\end{gather*}
$$

We could, by using

$$
\Phi(\tau) G_{n}(11 \tau) \equiv G_{5}(\tau)\left\{G_{n}(\tau)\right\}^{11}(\bmod 11)
$$

obtain quite easily conditions under which $\pi\left(d_{n r}\right) \geqq 1$. Unfortunately this is not quite enough to prove Theorem 1, and we require the following

Lemma 12.

$$
\Phi(\tau) \equiv G_{5}(\tau)+11\left\{G_{4}(\tau)+2 G_{3}(\tau)+G_{2}(\tau)-1+2 g_{2}(\tau)+3 g_{3}(\tau)+g_{4}(\tau)+5 g_{5}(\tau)\right\} \quad\left(\bmod 11^{2}\right)
$$

This is proved in Appendix C.
We use the symbol $(l, m)$ to denote an expression of the form

$$
11 \sum_{i=l}^{m-1} \lambda_{i} G_{i}(\tau)+\sum_{i=m}^{N} G_{i}(\tau)
$$

where $l<m \leqq N$ and the $\lambda_{i}$ are integral constants. Then in terms also of the notation of §3.2, we have (using Tables 5 and 6 )

$$
\begin{equation*}
\Phi(\tau)(k, l, m) \equiv\left(l_{1}, m_{1}\right) \quad\left(\bmod 11^{2}\right)(m \geqq 7) \tag{37}
\end{equation*}
$$

where $m_{1}=m+5, l_{1}=\min (l+5, m-5)$.
Thus

$$
\begin{aligned}
& \Phi(\tau) G_{2}(11 \tau) \equiv(14,24) \quad\left(\bmod 11^{2}\right) \\
& \Phi(\tau) G_{n}(11 \tau) \equiv(9 n-4,9 n+6) \quad\left(\bmod 11^{2}\right)(n \geqq 3)
\end{aligned}
$$

by (12) and (14). Hence

$$
\begin{equation*}
\pi\left(d_{n r}\right) \geqq 2 \quad \text { if } \quad r \leqq 9 n-5 \tag{38}
\end{equation*}
$$

We can now prove the result complementary to Lemma 7. We have
Lemma 13. If $F(\tau) \in Y$, then $11^{-1} U\{\phi(\tau) F(\tau)\} \in X$.
Proof. We have, by (34),

$$
11^{-1} U \sum \mu_{n} 11^{\eta(n)} \phi(\tau) g_{n}(\tau)=\sum \sum \mu_{n} 11^{\eta(n)-3-\theta(n)+\theta(r)} d_{n r} g_{r}(\tau)
$$

Thus we have to show that, for all $n$ and $r$,

$$
\begin{equation*}
\eta(n)-3-\theta(n)+\theta(r)+\pi\left(d_{n r}\right) \geqq \xi(r) . \tag{39}
\end{equation*}
$$

Since $\pi\left(d_{n r}\right) \geqq 0$, (39) holds if $\theta(r)-\xi(r) \geqq \theta(n)-\eta(n)+3$. This is satisfied in the cases

$$
\begin{equation*}
n \geqq 4, r \geqq n+10 ; \quad n=2 \text { or } 3, r \geqq 12 . \tag{40}
\end{equation*}
$$

Also since $\pi\left(d_{n r}\right) \geqq \theta(n)-\theta(r)+2$, (39) holds if $\eta(n) \geqq \xi(r)+1$. This is satisfied in the cases

$$
\begin{equation*}
n \geqq 4, r \leqq n ; \quad n=3, r=2 . \tag{41}
\end{equation*}
$$

Next, for $n \geqq 3$ and $n+1 \leqq r \leqq n+9$, we have $\pi\left(d_{n r}\right) \geqq 2$ and $\theta(r)-\xi(r) \geqq \theta(n)-\eta(n)+1$, which implies (39) for

$$
\begin{equation*}
n \geqq 3, \quad n+1 \leqq r \leqq n+9 . \tag{42}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
n=2, \quad 4 \leqq r \leqq 11 \tag{43}
\end{equation*}
$$

Finally we have by direct calculation $\pi\left(d_{33}\right)=3, \pi\left(d_{22}\right)=3, \pi\left(d_{23}\right)=4$, which give (39) for

$$
\begin{equation*}
n=2, r=2 \text { and } 3 ; n=3, r=3 \tag{44}
\end{equation*}
$$

Since (40) to (44) cover all integral $n, r$ with $n \geqq 2, r \geqq 2$, Lemma 13 is proved. We have also
Lemma 14. If $F(\tau) \in Y^{0}$, then $11^{-1} U\{\phi(\tau) F(\tau)\} \in X^{0}$.
We have

$$
\lambda_{2}=\sum \mu_{n} 11^{\eta(n)-3-\theta(n)+2} d_{n 2}=\sum \sigma_{n}, \quad \text { say } .
$$

Now $\pi\left(d_{n 2}\right) \geqq \theta(n)-\theta(2)+2$, so that for $n \geqq 4, \eta(n) \geqq 2$, and so $\pi\left(\sigma_{n}\right) \geqq 1$. For $n=3$,
$\pi\left(d_{32}\right)=4$ by direct calculation, and so $\pi\left(\sigma_{3}\right)=1$. Hence

$$
\lambda_{2} \equiv \mu_{2} 11^{-3} d_{22} \quad(\bmod 11)
$$

But $\pi\left(d_{22}\right)=3$, and hence if $\pi\left(\mu_{2}\right)=0$, then $\pi\left(\lambda_{2}\right)=0$. This proves the lemma.

## 5. Proof of Theorem 1.

Using the remark at the end of Lemma 11 we find

$$
L_{1}(\tau)=U \phi(\tau)=11 g_{2}(\tau)+2.11^{2} g_{3}(\tau)+11^{3} g_{4}(\tau)+11^{4} g_{5}(\tau)
$$

Hence $11^{-1} L_{1}(T) \in X^{0}$. It is now easily seen, by using the definition of $L_{n}(\tau)$ in (33) and Lemmas 8 and 14, that

$$
11^{1-2 n} L_{2 n-1}(\tau) \in X^{0}, \quad 11^{-2 n} L_{2 n}(\tau) \in Y^{0}
$$

This proves Lemma 10 and so Theorem 1. In addition we see, as in $\S 3.5$, that Theorem 1 is best possible in the sense that

$$
p\left(l_{n}\right) \not \equiv 0 \quad\left(\bmod 11^{n+1}\right)
$$

It is clear that the inductions used to prove Theorem 2 are dominated by the values of $\pi\left(c_{22}\right)$ and $\pi\left(d_{22}\right)$, in the sense that were either of these greater we could with greater effort establish a congruence modulo $11^{[3 n / 2]}$ or thereabouts. The actual computed values of $\pi\left(c_{n r}\right)$ and $\pi\left(d_{n r}\right)$ are much larger than those given by our inequalities as is shown by Tables 7 and 8 ; the difficult part of the induction, apart from " accidental " low values of $n$ and $r$, is when $r$ is close to $n$, and in fact it seems certain that $\pi\left(c_{n r}\right)$ and $\pi\left(d_{n r}\right)$ are about equal to $n$ in this case, not merely 3 or 4 as we prove. The introduction of a basis $g_{n}(\tau)$ with different orders of zeros at $\tau=i \infty$ is needed to cope with the case when $r<n$; the numbers $\theta(n) \approx 6 n / 5$ which this involves are an inevitable and not wholly desirable complication. For $r \gg n$ Lehner's basis is equally satisfactory. Finally, the actual classes of functions $X, Y$ suffice for the induction, and are not best possible. We could use $\pi\left(d_{n r}\right) \geqq 1$ only, and a more elaborate form of Lemma 6, plus a good deal of actual computation for low values of $n$ and $r$. This would avoid the appeal to Fine's equation, but the present method is shorter.

We may observe finally that, in comparison with $q=5$ and $q=7$, this proof is indeed " langweilig", as Watson suggested. In those cases, we can in effect deal directly with $U g^{n}(\tau)$ at $\tau=i \infty$, using the modular equation. In fact, his actual induction can be reduced $\dagger$ to about 2 pages each for $q=5$ and $q=7$, if it is expressed in terms of $\pi\left(c_{n r}\right)$ rather than fully written out formulae, by using explicit inequalities of the type $\pi\left(c_{n r}\right) \geqq[(5 n-r+1) / 2]$, for $q=5$. I think it likely that in the present case $q=11$ there exists an inequality

$$
\pi\left(c_{n r}\right) \geqq[(11 n-r+\delta) / 10]
$$

where $\delta=\delta(n, r)$ is small and of irregular behaviour, but I can at present see no technique for establishing this.
$\dagger$ See A. O. L. Atkin, Ramanujan congruences for $p_{k}(n)$; to appear in Canadian J. Math.

## APPENDIX A

Proof of Lemma 3. Following Newman [10], we define
where

$$
\begin{align*}
\sum_{n=0}^{\infty} p_{r}(n) x^{n} & =f^{\prime}(x)  \tag{45}\\
f(x) & =\prod_{m=1}^{\infty}\left(1-x^{m}\right)
\end{align*}
$$

We shall in this appendix, where no confusion can arise, write $F(x)$ for the Fourier series of $F(\tau)$, with $x=e^{2 \pi i \tau}$. If now functions $g_{2}(x), g_{3}(x), G_{2}(x), G_{3}(x)$ are defined by

$$
\begin{align*}
10 g_{2}(x) f^{5}(x) & =-\sum_{n=0}^{\infty}\left\{1+\left(\frac{n-3}{11}\right)\right\} p_{5}(n) x^{n}+11^{2} x^{25} f^{5}\left(x^{121}\right), \\
14\left\{g_{3}(x)+g_{2}(x)\right\} f^{7}(x) & =-\sum_{n=0}^{\infty}\left\{1+\left(\frac{2-n}{11}\right)\right\} p_{7}(n) x^{n}+11^{3} x^{35} f^{7}\left(x^{121}\right),  \tag{46}\\
\left\{11^{2}+10 G_{2}(x)\right\} f^{5}\left(x^{11}\right) & =\sum_{n=-2}^{\infty} p_{5}(11 n+25) x^{n}, \\
\left\{11^{3}+14 G_{3}(x)+154 G_{2}(x)\right\} f^{7}\left(x^{11}\right) & =\sum_{n=-3}^{\infty} p_{7}(11 n+35) x^{n},
\end{align*}
$$

it follows from (2.5.2), (2.7), and (2.8) of [10] that $G_{2}(\tau), G_{3}(\tau), g_{2}(\tau), g_{3}(\tau)$ belong to $S$, and that

$$
\begin{equation*}
G_{2}(-1 / 11 \tau)=11^{2} g_{2}(\tau), \quad G_{3}(-1 / 11 \tau)=11^{3} g_{3}(\tau) \tag{47}
\end{equation*}
$$

By examination of the actual expansions in Table 1 we see that in fact $G_{2}(\tau), G_{3}(\tau) \in S^{0}$ and $g_{2}(\tau), g_{3}(\tau) \in S^{\infty}$. We define next

$$
\begin{equation*}
B(\tau)=G_{2}(\tau) g_{2}(\tau)-12 \tag{48}
\end{equation*}
$$

$B(\tau)$ belongs to $S$, has a simple pole residue 1 at $\tau=0$ and $\tau=i \infty$, and satisfies

$$
\begin{equation*}
B(\tau)=B(-1 / 11 \tau) \tag{49}
\end{equation*}
$$

Since $G_{3}(\tau) g_{3}(\tau)$ has the same properties, it follows that

$$
\begin{equation*}
G_{3}(\tau) g_{3}(\tau)=B(\tau)+\text { constant }=B(\tau)+11 \tag{50}
\end{equation*}
$$

We now define

$$
\left.\begin{array}{l}
G_{4}(\tau)=G_{2}^{2}(\tau)-11 G_{3}(\tau), \quad g_{4}(\tau)=g_{2}^{2}(\tau)-g_{3}(\tau)  \tag{51}\\
G_{6}(\tau)=G_{2}(\tau) G_{4}(\tau), \quad g_{6}(\tau)=g_{2}(\tau) g_{4}(\tau) \\
G_{5}(\tau)=\eta^{12}(\tau) / \eta^{12}(11 \tau), \quad g_{5}(\tau)=\eta^{12}(11 \tau) / \eta^{12}(\tau)
\end{array}\right\}
$$

That $G_{5}(\tau) \in S^{0}, g_{5}(\tau) \in S^{\infty}$ follows from Newman $[10,(2,3,3)]$. We have

$$
\left.\begin{array}{l}
G_{4}(-1 / 11 \tau)=11^{4} g_{4}(\tau),  \tag{52}\\
G_{6}(-1 / 11 \tau)=11^{6} g_{6}(\tau), \\
G_{5}(-1 / 11 \tau)=11^{6} g_{5}(\tau) .
\end{array}\right\}
$$

Since $G_{5}(\tau)-G_{2}(\tau) G_{3}(\tau)+11 G_{4}(\tau)$ has a pole of order $m \leqq 1$ at $\tau=i \infty$, and is zero at $\tau=0$, it must be zero, since $\Gamma_{0}(11)$ has genus 1. Hence

$$
\begin{equation*}
G_{5}(\tau)=G_{2}(\tau) G_{3}(\tau)-11 G_{4}(\tau) . \tag{53}
\end{equation*}
$$

We use this technique to derive the multiplication tables in Appendix B.
Next, we define inductively for $n \geqq 7$,

$$
\begin{equation*}
G_{n}(\tau)=G_{n-5}(\tau) G_{5}(\tau), \quad g_{n}(\tau)=g_{n-5}(\tau) g_{5}(\tau) . \tag{54}
\end{equation*}
$$

These results, together with the initial expansions in Table 1, establish the whole of Lemma 3 except for the assertions that the FS of $G_{n}(\tau), g_{n}(\tau)$ have integral coefficients (they clearly have rational coefficients from (46)). These can be proved in various ways, of which we choose the following. The functions $\alpha(\tau), \beta(\tau)$ of Fine [11, (3.20)], clearly have integral coefficients and belong to $S^{0}$. We thus can conclude that

$$
\begin{equation*}
G_{2}(\tau)=\alpha(\tau), \quad G_{3}(\tau)=\beta(\tau)-3 \alpha(\tau), \tag{55}
\end{equation*}
$$

so that $G_{2}(\tau), G_{3}(\tau)$, and hence $G_{4}(\tau), G_{6}(\tau)$, have integral FS. It is also clear that $G_{5}(\tau)$ and $g_{5}(\tau)$ have integral FS. Now

$$
\begin{equation*}
g_{2}(\tau)=g_{5}(\tau) G_{4}(\tau), \quad g_{3}(\tau)=g_{5}(\tau) G_{3}(\tau) \tag{56}
\end{equation*}
$$

so that $g_{2}(\tau), g_{3}(\tau)$, and hence $g_{4}(\tau), g_{6}(\tau)$ have integral FS. The result for all $n$ now follows from the definition (54).

## APPENDIX B

## Fourier Series Expansions

## Table 1

With

$$
x=e^{2 \pi i \tau} \text { and } F(\tau)=\sum_{r=N}^{\infty} \alpha_{r} x^{r},
$$

we write

$$
F(\tau)=x^{N}\left(\alpha_{N}, \alpha_{N+1}, \alpha_{N+2}, \ldots\right)
$$

Then

$$
\begin{aligned}
B(\tau) & =x^{-1}(1,-5,17,46,116,252,533,1034,1961, \ldots), \\
g_{2}(\tau) & =x(1,5,19,63,185,502,1270,3046,6968,15335, \ldots), \\
g_{3}(\tau) & =x^{2}(1,9,49,214,800,2685,8274,23829,64843, \ldots) \\
g_{4}(\tau) & =x^{3}(1,14,102,561,2563,10285,37349,125290, \ldots), \\
g_{5}(\tau) & =x^{5}(1,12,90,520,2535,10908,42614,153960, \ldots), \\
g_{6}(\tau) & =x^{4}(1,19,191,1400,8373,43277,199982,844734, \ldots), \\
G_{2}(\tau) & =x^{-2}(1,2,-12,5,8,1,7,-11,10,-12, \ldots) \\
G_{3}(\tau) & =x^{-3}(1,-3,-5,24,-13,-22,13,-5,51, \ldots) \\
G_{4}(\tau) & =x^{-4}(1,-7,13,17,-84,57,93,-81,-63, \ldots) \\
G_{5}(\tau) & =x^{-5}(1,-12,54,-88,-99,540,-418,-648,594, \ldots), \\
G_{6}(\tau) & =x^{-6}(1,-5,-13,132,-233,-305,1404,-910,-1533, \ldots)
\end{aligned}
$$

Table 2

$$
\begin{aligned}
G_{4} & =G_{2}^{2}-11 G_{3}, & g_{4} & =g_{2}^{2}-g_{3}, \\
G_{5} & =G_{3} G_{2}-11 G_{4}, & 11 g_{5} & =g_{2} g_{3}-g_{4}, \\
G_{6} & =G_{2} G_{4}, & g_{6} & =g_{2} g_{4}, \\
G_{n+5} & =G_{n} G_{5}(n \geqq 2), & g_{n+5} & =g_{n} g_{5}(n \geqq 2) .
\end{aligned}
$$

Table 3

$$
\begin{array}{lll}
G_{2}(-1 / 11 \tau)=11^{2} g_{2}(\tau), & G_{2}(\tau)=x^{-2}+\ldots, & g_{2}(\tau)=x+\ldots, \\
G_{3}(-1 / 11 \tau)=11^{3} g_{3}(\tau), & G_{3}(\tau)=x^{-3}+\ldots, & g_{3}(\tau)=x^{2}+\ldots, \\
G_{4}(-1 / 11 \tau)=11^{4} g_{4}(\tau), & G_{4}(\tau)=x^{-4}+\ldots, & g_{4}(\tau)=x^{3}+\ldots, \\
G_{5}(-1 / 11 \tau)=11^{6} g_{5}(\tau), & G_{5}(\tau)=x^{-5}+\ldots, & g_{5}(\tau)=x^{5}+\ldots, \\
G_{6}(-1 / 11 \tau)=11^{6} g_{6}(\tau), & G_{6}(\tau)=x^{-6}+\ldots, & g_{6}(\tau)=x^{4}+\ldots
\end{array}
$$

Table 4

$$
\begin{array}{ll}
B G_{2}=11^{2}+G_{3}, & B g_{2}=1+11 g_{3}, \\
B G_{3}=11 G_{2}-G_{3}+G_{4}, & B g_{3}=g_{2}-g_{3}+11 g_{4} \\
B G_{4}=11 G_{3}+G_{5}, & B g_{4}=g_{3}+11^{2} g_{5} \\
B G_{5}=-12 G_{5}+G_{6}, & B g_{5}=-12 g_{5}+g_{6} \\
B G_{6}=11^{2} G_{4}+11 G_{5}+G_{7} & B g_{6}=g_{4}+11 g_{5}+11^{2} g_{7}
\end{array}
$$

## Multiplication Table 5

| $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{6}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| $G_{2}$ | $11 G_{3}+G_{4}$ | $11 G_{4}+G_{5}$ | $G_{6}$ | $11^{2} G_{5}+12 G_{7}+G_{8}$ |
| $G_{3}$ |  |  | $-G_{5}+G_{6}$ | $11 G_{5}+G_{7}$ |
| $G_{4}$ |  | $11 G_{7}+11 G_{8}+G_{9}$ |  |  |
| $G_{6}$ |  |  | $G_{7}+G_{8}$ | $11 G_{8}+12 G_{9}+G_{10}$ |
|  |  |  | $11^{2} G_{9}+11 G_{10}+12 G_{11}+G_{12}$ |  |

Multiplication Table 6

| $g_{2}$ | $g_{3}$ |  | $g_{4}$ | $g_{5}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $G_{2}$ | $B+12$ | $1+11 g_{2}$ | $g_{2}+11 g_{3}$ | $g_{4}$ | $g_{3}+12 g_{4}+11^{2} g_{5}$ |
| $G_{3}$ | $G_{2}+11$ | $B+11$ | $1+11 g_{2}$ | $g_{3}$ | $g_{2}+11 g_{3}+11 g_{4}$ |
| $G_{4}$ | $G_{3}+G_{2}$ | $G_{2}+11$ | $B+12$ | $g_{2}$ | $1+12 g_{2}+11 g_{3}$ |
| $G_{5}$ | $G_{4}$ | $G_{3}$ | $G_{2}$ | 1 | $B+12$ |
| $G_{6}$ | $G_{5}+12 G_{4}+11 G_{3}$ | $G_{4}+11 G_{3}+11 G_{2}$ | $G_{3}+12 G_{2}+11^{2}$ | $B+12$ | $(B+12)^{2}$ |

Tables 7 and 8 give the actual computed values of $\pi\left(\gamma_{n r}\right)$ and $\pi\left(\delta_{n r}\right)$ in

$$
U g_{n}(\tau)=\sum \gamma_{n r} g_{r}(\tau), \quad U\left\{\phi(\tau) g_{n}(\tau)\right\}=\sum \delta_{n r} g_{r}(\tau)
$$

The calculations were performed modulo $11^{10}$, and $T$ stands for " $\geqq 10$ ".
Table 7. $\pi\left(\gamma_{n r}\right)$

| $r=2$ |  |  |  |  |  |  | 3 | 4 | 5 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 6

Table 8. $\pi\left(\delta_{n r}\right)$

| $r=2$ |  | 3 | 4 | 5 | 6 | 7 | 8 |  |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n=2$ | 1 | 2 | 2 | 4 | 4 | 7 | 7 |  | 9 | $T$ |
| 3 | 1 | 1 | 2 | 5 | 4 | 6 | 7 |  | 8 | $T$ |
| 4 | 0 | 1 | 2 | 4 | 4 | 6 | 7 |  | 8 | $T$ |
| 5 | 0 | 1 | 2 | 4 | 4 | 6 | 7 |  | 8 | $T$ |
| 6 | 0 | 1 | 3 | 4 | 5 | 6 | 7 |  | 8 | $T$ |
| 7 | 0 | 1 | 2 | 4 | 4 | 6 | 8 |  | 8 | $T$ |
| 8 | - | 1 | 2 | 4 | 4 | 6 | 7 |  | 9 | $T$ |
| 9 | - | 1 | 2 | 4 | 4 | 6 | 7 |  | 8 | $T$ |
| 10 | - | 1 | 2 | 3 | 4 | 6 | 7 |  | 9 | $T$ |

Table 9
This table shows the relation of the notations of Lehner [6, 7], Fine [11], and Atkin and Hussain [12] to that of this paper.

|  | Lehner | Fine | Atkin and Hussian |
| :--- | :--- | :--- | :--- |
| $B(\tau)$ | $A(\tau)-11$ |  |  |
| $g_{2}(\tau)$ | $C(\tau)$ |  |  |
| $g_{3}(\tau)$ | $D(\tau)-C(\tau)$ |  |  |
| $\phi(\tau)$ | $\Phi(\tau)$ | $u^{-1}(11 \tau)$ |  |
| $G_{2}(\tau)$ |  | $\alpha(\tau)$ | $-\lambda-13$ |
| $G_{3}(\tau)$ |  | $\beta(\tau)-3 \alpha(\tau)$ | $-\mu+6 \lambda+16$ |
| $G_{5}(\tau)$ |  | $v(\tau)$ |  |
| $L_{n}(\tau)$ | $L\left(\tau ; 11^{n}\right)$ |  |  |

## APPENDIX C

Proof of Lemma 12. The modular equation of degree 11 in $\Phi(\tau / 11)$ with coefficients in $S$ is given by Fine [11, (3.21)]. If we subject this to the transformation $\tau \rightarrow-1 / 11 \tau$, and observe that $\Phi(-1 / 121 \tau)=11 \phi(\tau)$, we obtain in our notation (the argument $\tau$ being omitted for brevity)

$$
\begin{align*}
g_{5}= & \phi\left(1+11 g_{2}+22 g_{3}+11 g_{4}\right)-\phi^{2}\left(11+99 g_{2}+88 g_{3}-11 g_{4}\right)+\phi^{3}\left(55+4.11^{2} g_{2}+2.11^{2} g_{3}\right) \\
& -\phi^{4}\left(11^{2}+12.11^{2} g_{2}+2.11^{2} g_{3}\right)-\phi^{5}\left(11^{2}-2.11^{3} g_{2}\right)+\phi^{6}\left(11^{3}-2.11^{3} g_{2}\right) \\
& -11^{4} \phi^{7}-11^{4} \phi^{8}+5.11^{4} \phi^{9}-11^{5} \phi^{10}+11^{5} \phi^{11} \tag{57}
\end{align*}
$$

Thus considering FS $\left(\bmod 11^{2}\right)$ we have

$$
\begin{equation*}
g_{5} \equiv \phi\left(1+11 g_{2}+22 g_{3}+11 g_{4}\right)-\phi^{2}\left(11+99 g_{2}+88 g_{3}-11 g_{4}\right)+55 \phi^{3} \quad\left(\bmod 11^{2}\right) \tag{58}
\end{equation*}
$$

Now $\phi \equiv g_{5}(\bmod 11)$ and hence

$$
\begin{align*}
\phi & \equiv g_{5}-11\left(g_{7}+2 g_{8}+g_{9}-g_{10}+2 g_{12}+3 g_{13}+g_{14}+5 g_{15}\right) \quad\left(\bmod 11^{2}\right) \\
& =g_{5}-11 E, \quad \text { say. } \tag{59}
\end{align*}
$$

Hence

$$
\begin{equation*}
\Phi=\phi^{-1} \equiv G_{5}\left(1-11 G_{5} E\right)^{-1} \equiv G_{5}\left(1+11 G_{5} E\right) \quad\left(\bmod 11^{2}\right), \tag{60}
\end{equation*}
$$

so that, by Table 6,

$$
\begin{equation*}
\Phi \equiv G_{5}+11\left(G_{4}+2 G_{3}+G_{2}-1+2 g_{2}+3 g_{3}+g_{4}+5 g_{5}\right)\left(\bmod 11^{2}\right), \tag{61}
\end{equation*}
$$

which is Lemma 12.

## REFERENCES

1. S. Ramanujan, Some properties of $p(n)$, the number of partitions of $n$, Proc. Cambridge Phil. Soc. 19 (1919), 207-210.
2. S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), 147-153.
3. J. M. Rushforth, Congruence properties of the partition function and associated functions, Proc. Cambridge Phil. Soc. 48 (1952), 402-413.
4. G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. 179 (1938), 97-128.
5. S. Chowla, Congruence properties of partitions, J. London Math. Soc. 9 (1934), 247.
6. J. Lehner, Ramanujan identities involving the partition function for the moduli $11^{\alpha}$, Amer.J. Math. 65 (1943), 492-520.
7. J. Lehner, Proof of Ramanujan's partition congruence for the modulus $11^{3}$, Proc. Amer. Math. Soc. 1 (1950), 172-181.
8. J. Lehner, Divisibility properties of the Fourier coefficients of the modular invariant $j(\tau)$, Amer. J. Math. 71 (1949), 136-148.
9. M. Newman, Further identities and congruences for the coefficients of modular forms, Canadian J. Math. 10 (1958), 577-586.
10. M. Newman, Remarks on some modular identities, Trans. Amer. Math. Soc. 73 (1952), 313-320.
11. N. J. Fine, On a system of modular functions connected with the Ramanujan identities, Tohoku Math. J. 8 (1956), 149-164.
12. A. O. L. Atkin and S. M. Hussain, Some properties of partitions (2), Trans. Amer. Math. Soc. 89 (1958), 184-200.

## The Atlas Computer Laboratory Chilton, Didcot


[^0]:    $\dagger$ Ramanujan [1, 2]. See also Rushforth [3].
    $\ddagger$ We take the Fourier series of $j(\tau)$ with leading coefficient unity and constant term zero. Thus $j(\tau)=$ $x^{-1}+196884 x+\ldots$ with $x=e^{2 \pi i \tau}$.

