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1. Introduction. We write

and £ p(n)xn

n = 0

so that p{ri) is the number of unrestricted partitions of n. Ramanujan [1] conjectured in 1919
that if q = 5, 7, or 11, and 24m = 1 (mod^"), then/?(m)s 0 (mod*?"). He proved his con-
ecture for n = 1 and 2f, but it was not until 1938 that Watson [4] proved the conjecture for

q = 5 and all n, and a suitably modified form for q = 7 and all n. (Chowla [5] had previously
observed that the conjecture failed for q = 7 and n = 3.) Watson's method of modular
equations, while theoretically available for the case q = 11, does not seem to be so in practice
even with the help of present-day computers. Lehner [6, 7] has developed an essentially
different method, which, while not as powerful as Watson's in the cases where T0(q) has genus
zero, is applicable in principle to all primes q without prohibitive calculation. In particular
he proved the conjecture for q = 11 and n = 3 in [7]. Here I shall prove the conjecture for
#=11 and all n, following Lehner's approach rather than Watson's. I also prove the
analogous and essentially simpler result for c(m), the Fourier coefficient̂  of Klein's modular
invariant j(r) as

THEOREM 1. Ifm = 0 (mod 11"), then c(m) = 0 (mod 11").
The full truth with regard to Ramanujan's original conjecture is thus now known to be:
If 24m = 1 (mod 5a76llc), thenp{m) s 0 (mod 5"7^11C), where p = [(b + 2)[2].
In view of Watson's result we need only prove here

THEOREM 2. If 24m = 1 (mod 11"), then p(m) = 0 (mod 11").
The general plan of the paper is as follows. In §2 we describe the notation and general

theory required for the proof of Theorem 1. In § 3 we carry through sufficient detailed calcu-
lation to prove Theorem 1. In §4 the additional theory required for the proof of Theorem 2
is given, and in § 5 Theorem 2 is proved. Necessary calculations which would unduly inter-
rupt the main argument are given in Appendices.

2. Functions on ro(l l) .

2.1. We consider the subgroup F0(ll) of the full modular group F(l), defined by those
transformations

T -> Vz = (a, b, c, d, integral with ad — bc = 1)
cx + d

t Ramanujan [1, 2]. See also Rushforth [3].
I We take the Fourier series of j(r) with leading coefficient unity and constant term zero. Thus./(T)~

x-1 + 196884A: + . . . with x =e**".
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PROOF OF A CONJECTURE OF RAMANUJAN 15

of F(l) that satisfy c = 0 (mod 11). F0(l 1) is of genus 1, and its fundamental region has two
cusps T = IOO and i = 0, with local variables x = e2n", x = e~2l t l / l l t , respectively. By " an
entire modular function on F0(ll) " we understand a function F(x), regular in Imr > 0, that
satisfies F(Vx) = F(x) for Ker o ( l l ) , and has at most polar singularities in the local variables
at the two cusps of T0(l 1). For such F(x) we shall write Fe S. If in addition F(x) is zero at
T = zoo we write Fe S". Finally, if F(T) is zero at T = 0 we write Fe S°.

We refer to the expansion of F(r) in powers of x = e2<t" at T = JOO as its Fourier series
(FS).

We have:

LEMMA 1. IfF(x)eS, then F*(x) = F(-
A simple proof is given by Newman [9, Lemma 1]. It is clear that the expansion of

F(x) at T = 0 is the FS of F*(x), and that Fe S00, S° ~ F* e S°, S00.
We now introduce a linear operator U defined by

(1)

Un+1F(x) = U(UnF(r)) (n ^ 1).

Clearly U{aYFl + a2F2) = a^UF^ + a^Fj,

if au a2 are constants. If the FS of F(T) is

then the FS of UF(T) is

By UF(—1/1 IT) we shall understand the effect of replacing T by —1/1 IT in UF(?) and not
" UG(T) where G(T) = F(-1/1 IT) ".

We also write

FX(T) E= F2(T) (mod m) (2)

if all the respective coefficients in the FS of F^x) and F2{x) are congruent modulo m. Thus
nothing is asserted by (2) as to the expansions at T = 0.

It will be convenient in the sequel to assess divisibility by powers of 11 by using an expon-
ential valuation. Accordingly, for integral a, we define n{a) by

irw|o, ir
and for rational a = bjc we define

We write conventionally rc(0) = oo, and regard any inequality n(0) ^ k as valid.
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16 A. O. L. ATKIN

We have

n(ab) = n(a) + n(b),
n{a + b) ^ min (n(a), n(b)), (3)

with equality if n{a) ^ n(b).
The crucial results on UF(x) are given by Lehner (Theorem 8 and (8.81) of [6]), and are as

follows.

LEMMA 2. IfF(z)eS, then

(i) UF(x)eS, (ii) 11 W=1(-1/11T)--11[/F(11T) = F(-1/121 T ) - F ( T ) .

Note that in (ii) UF(llx) and F(— 1/121T) are not themselves in S. It is also immediate
that

F(r)eSco^UF(t)eS'tt. (4)

((4) is not valid for So.)
Reverting now to the proof of Theorem 1, we see that, since j{i)eS, then U"j(r)eS°° for

nS: 1. Theorem 1 is then equivalent to proving that the FS of ll~" U"j(x) has integral
coefficients. To establish this, we obtain first a standard basis for the functions of 5°°, and
then use Lemma 2 to obtain detailed information as to the effect of the operator U on these
functions.

2.2. A linear basis for functions on T0(l 1). The following lemma is proved in Appendix A.

LEMMA 3. For all integral n^.2, there exist functions Gn(x), gn{x), hn(x) with the following
properties:

(0 Gn(T)eS°, ^

(ii) Gn(-l/llT) =

where 6(n) = 6fc+2,3,4,6,6

according as n = 5fe+2,3,4,5,6 (fc^O).

(iii) The FS ofGn(t) has integral coefficients with leading term x~".

(iv) The FS ofgn{x) has integral coefficients with leading term x*(n),

where ^i{n) = 5k+\, 2, 3, 5,4

according as n = 5k+2, 3, 4, 5, 6 (fc^O).

Further, there exists a function B(r)eS with simple poles at x = 0 and x = ioo, such that
B(-1/11 T) = B{x). The FS ofB(x) has integral coefficients, with leading term x~l.

Since the Riemann surface of F0(l 1) cannot support a univalent function, we have the
immediate corollary:
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LEMMA 4. Suppose that F(x) e S has a pole of order M at x = 0 and a pole of order N at
x = Zoo. Then

F(x) = £ A_rGf(T)+A_1B(T) + A0+ £ AA(T) ,
r=2 r=2

the Xr(—N ^ r ^ M) are constants.
Finally we restate Lemma 4 in the case of greatest interest to us.

LEMMA 5. Suppose that F(x) e S°° has a pole of order M at x = 0. Then

F(x) =
r=2 r=2

For a given F ( T ) 6 S < O , the constants Ar in Lemma 5 can be determined from the FS
of either F(—1/1 IT) or.F(T). We are mainly concerned not with the exact value of Ar, but
with 7t(Ar). In § 3 below we obtain suitable lower bounds for 7i(Ar) in the case when F(x) =
Ugn(x). The calculations take a simpler form when we consider F(x) = Uhn{x); the tran-
sition to Ugn(x) is immediate from Lemma 3(ii).

3.1. Since h^eS™, we have

UUhJM-ZcMT), (5)

where the cnr are constants, by Lemma 5. It is convenient to regard the sum in (5) as one from
r = 2 to oo, although all but a finite number of the cnr are zero. We have also

(6)

and, by Lemma 2(ii),

. (7)

It follows from (7) that the principal part of the FS of 11 Uhn(—1/1 IT) is the same as that
of hn( — 1 /121 T) = Gn( 11 T), since Uhn( 11 T) and hn(x) are zero at x = IOO. Hence the coefficients
cnr may be uniquely determined by the fact that the FS of

Gn(llT)-£cnrGr(T)

has no terms in x " l l n , . . . ,x~3, x~2. It will then necessarily have no term in x~l, which
provides a check in numerical work. It follows that the cnr are integers (since each Gr has
leading term x~T, and the FS of GH(11T) has integral coefficients) and also that

cnr = 0 if r>lln. (8)

Considering next the determination of the cnr from (5) we observe that for different r the
FS of hr(x) commence with different powersf of x, by Lemma 3(iv).

t The linear basis used by Lehner [6, 7] does not have this property.
B
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18 A. O. L. ATKIN

Thus, since every coefficient in the FS of UUhJx) is divisible by 119(">+1, and the leading
term in the FS of hr(x) is H9 ( lV( r>, we have

7i(cnr)k0(n)-0(r) + l (9)

and cnr = 0 if l l^( r ) < ^(«). (10)

We now establish certain conditions under which n(cnr) ^ 3.

3.2. The values of cnr (mod II3). All congruences in this section are to the modulus 113.
It follows from (6) and (7) that

G / 1 1 *m \ — \ ^ « /"* f~\ /w *S. 1\ t\\\

n(lXTJ = / C-JKJJ^X) \fl ^ JJ . I1X)

We shall use the symbol (k, I, m) to denote an expression of the form

( - 1 m - l N

i = k i = l i = m

where k < I < m ^ N and the Xt are integral constants. Then by direct calculation! we find

G 2 ( 1 1 T ) - 1 1 2 0 2 ( T ) = ( 2 , 9 , 1 9 ) , G3(11T) = (8,18,28). (12)

Now Table 5 in Appendix B shows that

G , ( T ) G / T ) = £ ^G,+ ; + r (T),
r=-3

where the \ir are integral, and /t_3, /x_2 = 0 (mod 11), for all / a n d / It follows that

(fc1( /L Wi)(fc2» ^2, ffi2) = (fe3, /3, m3),
where fe3 = min(fc1 + m2 —1, fc2 +

 m i ~ l . î + ' 2 ~ l ) .
/3 = min(/, + m2 —1, l2 + ml — 1),

Further, from Table 6 we have, for /w ̂  4,

Thus

G4(11T) = G | ( 1 1 T ) - 1 1 G 3 ( 1 1 T ) = (17,27,37),
G5(11T) = G 2 ( 1 1 T ) G 3 ( 1 1 T ) - 1 1 G 4 ( 1 1 T ) = (26,36,46),
G6(11T) = G2(11T)G4(11T) = (35,45,55),
G7(11T) = G2(11T)G5(11T) S (44,54,64).

t This was done in three different ways on three different machines: firstly using Lemma 9 on a Diehl
desk calculator at Durham University; next using (5) on an Elliott 803 computer at Durham University; and
finally using (6) on the I.C.T. Atlas 1 computer at Chilton. The computing times were respectively one week,
one hour, and ten seconds.

https://doi.org/10.1017/S0017089500000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000045


PROOF OF A CONJECTURE OF RAMANUJAN

It is now easily seen by induction, since Gn+5(x) = Gn(x)Gs(x), that

Gn(llT)s(9n-19,9n-9,9n + l) (n £ 3),

and thus, by (11),

;i(cnp)13 if r ^ 9 » - 2 0 , n ^ 3.

19

(14)

(15)f

(16)

3.3. The values of cnr (mod II4). We have UUhn(x) = 0 (mod II4) for n ^ 3 (since
6(n) +1 £ 4), and (5) with n(c2l) ^ 2, TI(C22) ^ 1 gives UUh2(lU)= 0 (mod II4).

Then, by (6) and (7),

G2(llT)-ll202(T) = £c2rGr(T) (mod ll4),

G3(11T)-11203(T) = Ic3rGr(r) (modll4),

Gn(llr) = £cnrGr(t) (mod ll4) (n £ 4).

Hence, by arguments similar to those of § 3.2, we obtain

cSr s 0 (mod ll4) for r ^ 15, clr = 0 (mod ll4) for r ^ 33.

A crude induction, using Table 5 and (15), now shows that

c5*+2,r = 0 (mod ll4) for r ^ 15fe+18, k ^ 1.

We summarise our results on cnr in the forms actually required later.

LEMMA 6.

(17)

7t\Cnr) £. vyl) ~~ t/|

n(cnr) ^ 1

«(O ^ 2

*(O ^ 3
7t(cnr) ^ 4

W+i always,

for n = 2 or 3, 9 ^ r ^ 11,

/or n = 2 or 3, r ^ 8,

/or « = 4, r gj 16,

forties, r g, n+14,

/or «= 2 (mod 5), n ^ 7, r =

7t(c22) = 2, 7i(c32) = 3, 7i(c42) = 4.

(from §3.1)

(from (9))

(from (12))

(from (12))

(from (15))

(from (15))

n-\ orn-2, (from(17))

(from Table 7)

3.4. We now use the results of §3.3 to show that, in effect, functions of a suitable form
remain of that form under the operation \\~lU. This is the basis of the proofs of Theorems

t This result is by no means best possible. We can, by consideration of cases (mod 5), establish results
with 1 In instead of 9n on the right-hand side of (14), but (15) suffices later.
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20 A. O. L. ATKIN

1 and 2. Our Lemma 7 below is needed in §5, although a weaker form would suffice for
Theorem 1.

We define

and

according as

5(2) = 0, «3) = 1

«n) = 5ft+l,3,3,4,5

n = 5fc+4,5,6,7,8 (k ^ 0).

(18)

We also define t\{2) = 0, f/(3) = 1,77(71) = £(«) +1 (n ^ 4). We shall denote by X the class
of functions F(t) with

F(r) = E Anll«"^n(T), (19)
11=2

and by 7 the class of functions F(x) with

F(T) = £
n = 2

where N, M, An, and jzn are any integral constants.

LEMMA 7. //"f(T) e A', then I I " 1 t/f(T) e 7.

Proof. We have, by (5),

(20)

Thus we have to show that, for all n and r,

(21)

The following table is given to clarify the details of the proof (k ^ 0).

n

«»)

»?(»)

Q(n)

0(n)-r,(n)

2

0

0

2

2

2

3

1

1

3

2

2

5fc+4

5A:+1

5A:+2

6A;+4

Jk+2

k+3

5k+5

5k+3

5k+4

6k+6

k+2

k+3

5k+6

5k+3

5k + 4

6k+6

k+2

k+3

5k+7

5k+4

5k + 5

6fc+8

k+3

k+A

5A:+8

5A:+5

5fc+6

6k+9

k + 3

k+4

5k+9

5k+6

5k+l

6it+10

k+3

k+4

5Jt+10

5A:+8

5k+9

6k+l2

k+3

k+4

We quote the results of Lemma 6 without their formula numbers. Since 7t(cnr) ^ 0, (21)
holds if 0(r) - q(r) k 0(n) - £(n)+2. This is satisfied in the cases

n ^ 5 , r ^ / t+15 ; n = 4, r ^ l 7 ; n = 2 or 3, r ^ 12. (22)
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Also, since 7i(cnr) £ 0(n) - 0(r) +1, (21) holds if £(n) 1 n(r) +1. This is satisfied in the cases

n ^ 5, n ̂  2 (mod 5), r ^ n-2; n ^ 5, n= 2 (mod 5), r ^ n - 3 . (23)

Now for n ^ 5, « - 1 ^ r ^ n+14, we have 7i(cnr) ^ 3, and so (21) holds if

This is valid unless n= 2 (mod 5), r = n — 1. This gives the cases

« £ 5 , «^2(mod5) , n - 1 ^ r ^ n + 14; n ^ 5, n= 2 (mod 5), r ^ H. (24)

Next, if n ^ 5, «= 2 (mod 5), r = n — 1 or n —2, we have n(cnr) ^ 4. Hence (21) holds if

n ^ 5, n s 2 (mod 5), r = n - l or n - 2 . (25)

Now for n = 4, (21) is n(c^r)^rj(r)-9(r) + 5. For 2 g /• ^ 16, we have 7t(c4r) ^ 3,
»?(r) - 0(r) g - 2. This gives

« = 4, 2 ^ r ^ 16. (26)

Finally if n = 2 or 3, (21) is ji(cnr) ^ »/(r)-0(r)+4, and we have for r ^ 8,7i(cnr) ^ 2 and
f?(r)-0(r) g - 2 ; also for 9 ^ r ^ 11 we have JI(CBP) 1 1 and jj(r)-0(r) g - 3 . This gives

« = 2 or 3, r g 11. (27)

Since (22) to (27) cover all integral«, r with n ^ 2 and r ^2 , Lemma 7 is proved.

COROLLARY. IfF(z) e A', then

(28)

For «n) g IJ(«).
It is desirable in some cases to prove that the congruences obtained by using Lemma 7

are best possible. To this end we define classes of functions X° and Y° as at the beginning of
this section, but with the additional conditions 7t(A2) = 0, n(ji2) = 0. We now prove

LEMMA 8. / / F ( T ) e X°, then I I " 1 UF(x) e Y°.
We have, as in the proof of Lemma 7,

' ™ * 2 ^ - ! ^ , say.

Now 7t(cn2) ^ 6(n)-0(2) +1, so that, for n ^ 5, we have n(pn) ̂  1, since ^(n) k 2. For n = 3,
«(c32> = 3, «3)-fl(3) = - 2 and so n(p3) ^ 1. For « = 4, n(c42) = 4, £(4) -0(4) = - 3 , and
so n(p4) ^ 1. Hence

fi2 = k2n~2c22 (mod 11).

But 7t(c22) = 2, and hence, if n(X2) = 0, then n(ji2) = 0. This proves the lemma.
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22 A. O. L. ATKIN

3.5. Proof of Theorem 1.
We may express Lemma 2 (ii), in the form:

LEMMA 9. IfF(z)eS, then F(-1I11X) + UUF(T) is an entire function on the full modular
group F(l).

Choosing F(t) = B(j), we have, since the FS of B(z) is JC~ i - 5 +...,

Now U{B(T)+5}eSx, and 11£A8(-1/11T) has FS * - " + 0(jr1) . Hence

} J
n = 2

where the an are integral constants, and so

ir1{VB(x)+5} = £ «nll
eW-2gn(t)eX.

n = 2

Thus l l ' ^ t ) =H"1t/{5(T)+5} + C/2{B(T)+5}eZ,

by (28). Repeated application of (28) shows that U^Vji^eXfoi n ^ 1.
Now the FS of any function in X has integral coefficients, while the FS of U"j(x) is

GO

Y, c(ll"/«)xm. Hence for all m ^ 1, n ^ 1 we have that ll~"c(irm) is an integer, which is
m = l

Theorem 1.
Theorem 1 is best possible in the sense that c(l 1") =ẑ  0 (mod 1 ln+ J). We have

1 ) (mod 11).

Now a2 = 1627 and so 7i(a2) = 0. Hence, by repeated application of Lemma 8, we have
(since Y° £ X°)

and so 11 nU"j{x) = kng2(*) (mod 11),

where n(kn) = 0.

Thus ll~"c(ll") = JfcB (mod 11),

and so c( l l n )^0 (modH"+1).

4.1. We now define

IJ(T) = eni"i2f(x) (IniT>0),

where f(x)= f[(l-xr) and x = e2nft, (29)

and <KT) = IJ(121T)/IJ(T) = X 5 / ( X 1 2 1 ) / / W , O(T) = 1/flt). (30)
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We also let

/2n = (23.112"+l)/24 ( f i ^ l ) , J

so that /„ is the least positive integral solution of 24/n = 1 (mod 11").
Further let

A2n-i(x)=/(xn) £ P(n2-1m+l2n-1)x
m+1,

CO

A2n(x) =/(x) £ p(ll
m = 0

and define a sequence of functions Ln(x) by

(« ^ 1).

L2n(t)=l7L2n_1(T)

We shall prove by induction that, for « ^ 1, An(x) is the FS of Ln(z)- We have

Now the FS of cj)(x) is

x5f(x121)
m = 0

23

(31)

(32)

(33)

so that the FS of U(j>(z) is

Assuming that the FS of L 2 B _ 1 ( T ) is A2n_1(x), we see that the FS of Lln{x) = UL2n-i{x) is

f(x) I p{H2"-1( l lm + 10)+/2 l l_1}xm + 1=L2 l l(x).
m=0

Finally if the FS of L2n{x) is A2n(x), then the FS of L2n+i(x) = U{(p(x)L2n(x)} is

/(x11) J p{H2"(llm + 6)+/2n}xm+1=L2n+1(x).
m = 0

Since the expansions of l//(x) and 1/ZOc11) have integral coefficients with leading terms unity,
Theorem 2 is equivalent to

LEMMA 10. The FSofll nLa(x) has integral coefficients.

https://doi.org/10.1017/S0017089500000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000045


24 A. O. L. ATKIN

4.2. Since </>(T) is not a function on r o ( l l ) , but on ro(121), we cannot apply the methods
of §§2 and 3 immediately. However we do have

LEMMA 11. IfF(x)eSm,then

(i) V{<t>{T)F(x)}eS«,

(ii) the principal part of the expansions of U{<j)(x)F(x)} in powers of x = e"211'/11* at its
pole x = 0 is the same as the principal part of the FS expansion of \\~2<S}(r)F(— 1/121T) in
powers ofx = e2ltir.

Further (i) and (ii) hold in the special case F{x) = 1.
Lemma 11 is proved by Lehner [6, Theorem 8]; there are some misprints corrected in

Lehner [7, page 178].
We now have, by Lemma 5,

U2V{<t>{T)hn{T)} = YJdnrhr{T), (34)

where the dnr are constants, and in fact zero if 11 iZ'(r) < >]/(ri) + 5 or r > l ln + 5. Further the
dnr are uniquely determined by the fact that the FS of

f
r = 2

has no terms in x~lln~s,... ,x~3, x~2. Hence

n(dj Z 0. (35)

We have also, from (34),

and thus n{dnr) ^ 0(n) - 0(r)+2. (36)

We could, by using

0>(T)Gn(llT) = G5(T) {Gn(r)}u (mod 11),

obtain quite easily conditions under which n(dnr) ^ 1. Unfortunately this is not quite enough
to prove Theorem 1, and we require the following

LEMMA 12.

<D(T) S G5(T) + 11{G 4 (T)+2G 3 (T) + G 2 ( T ) - 1 + 2 ^ 2 ( T ) + 3 ^ 3 ( T ) + 5 4 ( T ) + 5 5 5 ( T ) } (modll2).

This is proved in Appendix C.
We use the symbol (/, m) to denote an expression of the form
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where I < m £ N and the A, are integral constants. Then in terms also of the notation of
§ 3.2, we have (using Tables 5 and 6)

O(T)(fc,/,m) = (/„»!!) (mod 112) (m 2̂  7), (37)

where m^ = m + 5, /x = min(/+5, m-5).

Thus O(T)G2(11T) = (14,24) (mod II2),

<D(T)G,,(11T) = (9/1-4, 9n + 6) (mod II2) (n ̂  3),

by (12) and (14). Hence

n(dnr)^2 if rS9n-5. (38)

We can now prove the result complementary to Lemma 7. We have

LEMMA 13. IfF{x) e Y, then I I " 1
 E/{0(T)F(T)} e X

Proo/. We have, by (34),

Thus we have to show that, for all n and r,

,(«)-3-fl(n)+fl(r)+»r(dJ ^ «r). (39)

Since 7t(rfnr) ^ 0, (39) holds if 0(r) - ^(r) ̂  0(n) -tj(n) + 3. This is satisfied in the cases

n ^ 4 , r ^ w + 10; « = 2 or 3, r ^ l 2 . (40)

Also since n(dnr) ^ 0(n) - 0(r)+2, (39) holds if rj(n) ^ (?(/•) +1. This is satisfied in the cases

« ^ 4 , c g K ; n = 3, r = 2. (41)

Next, for n ̂  3 and « + l | r g n + 9 , we have n(dj ^ 2 and 0(r)-£(r) ^ 0(«) ->/(«) + 1,
which implies (39) for

« ^ 3 , n + l ^r ^ n+9. (42)

Similarly we obtain

« = 2, 4 ̂  r g 11. (43)

Finally we have by direct calculation n(d33) = 3, n(d22) = 3, n(d23) = 4, which give (39) for

n = 2, r = 2 and 3; n = 3, r = 3. (44)

Since (40) to (44) cover all integral n, r with n ̂  2, r ^ 2, Lemma 13 is proved. We have also

LEMMA 14. IfF(x) e Y°, then I I " 1
 C/{0(T)F(T)} e X°.

We have

^2 = £/ai"(n)-3-(>(n)+24,2 = !>„, say.

Now 7i(dn2)^0(n)-0(2) + 2, so that for n t 4, ri(ri)t2, and so 7i(<Tn)^l. For n = 3,
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^(^32) = 4 by direct calculation, and so Jt(<x3) == 1. Hence

k2 = n2\r
zd22 (mod 11).

But 71(^2) = 3, and hence if n(p.2) = 0, then 7t(A2) = 0. This proves the lemma.

5. Proof of Theorem 1.
Using the remark at the end of Lemma 11 we find

Hence U~1Li(T)eX°. It is now easily seen, by using the definition of Ln{j) in (33) and
Lemmas 8 and 14, that

n1-2-L2l,_1ct)6Jf0, i i - 2"L2 n(T)ey° .

This proves Lemma 10 and so Theorem 1. In addition we see, as in §3.5, that Theorem 1 is
best possible in the sense that

KU^o (modir+1).

It is clear that the inductions used to prove Theorem 2 are dominated by the values of
7t(c22) and n(d22), in the sense that were either of these greater we could with greater effort
establish a congruence modulo ll [3n /2 : i or thereabouts. The actual computed values of 7t(cnr)
and n(dnr) are much larger than those given by our inequalities as is shown by Tables 7 and 8;
the difficult part of the induction, apart from " accidental" low values of n and r, is when r is
close to n, and in fact it seems certain that 7t(cnr) and n(dnr) are about equal to n in this case,
not merely 3 or 4 as we prove. The introduction of a basis gn(x) with different orders of zeros
at T = zoo is needed to cope with the case when r < n; the numbers 6(ri) = 6n/5 which this
involves are an inevitable and not wholly desirable complication. For r > n Lehner's basis is
equally satisfactory. Finally, the actual classes of functions X, Y suffice for the induction, and
are not best possible. We could use n(dnr) *z 1 only, and a more elaborate form of Lemma 6,
plus a good deal of actual computation for low values of n and r. This would avoid the appeal
to Fine's equation, but the present method is shorter.

We may observe finally that, in comparison with q = 5 and q = 1, this proof is indeed
" langweilig ", as Watson suggested. In those cases, we can in effect deal directly with
Ug"(z) at T = 100, using the modular equation. In fact, his actual induction can be
reducedf to about 2 pages each for q = 5 and q = 7, if it is expressed in terms of 7i(cnr) rather
than fully written out formulae, by using explicit inequalities of the type n(cnr) ^ [(5n—r+1)/2],
for q = 5. I think it likely that in the present case q = 11 there exists an inequality

where 5 = 5(n, r) is small and of irregular behaviour, but I can at present see no technique for
establishing this.

t See A. O. L. Atkin, Ramanujan congruences for pk(ri); to appear in Canadian J. Math.
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APPENDIX A

Proof of Lemma 3. Following Newman [10], we define

I
n = O

P,tox" =/'(*),

where /(x) = fj (l-*m)-
l

fj
m = l

We shall in this appendix, where no confusion can arise, write F(x) for the Fourier series
of F(T) , with x = e2n". If now functions g2(x), 9six), G2(x), G3(x) are defined by

\0g2(x)f\x) = - Jp j l + ̂ Z ! ) Jp5(«)x"+llV5/V21)>

K46)
+ 10G2(x)}/5(x11)= |

n=-2

7 ( X U ) = £x) + 154G2(x)}/7(xn)= X
n=-3

it follows from (2.5.2), (2.7), and (2.8) of [10] that G2(T), G3(T), g2[x), gz{x) belong to S, and
that

G 2 ( - 1 / 1 1 T ) = 11 2 0 2 (T) , G 3 ( - 1 / 1 1 T ) = 11 3 0 3 (T) . (47)

By examination of the actual expansions in Table 1 we see that in fact G2(T), G3(x)eS° and
g2(x), # 3 (T) eSm. We define next

B(T) = G2(x)g2(x) -12. (48)

B{x) belongs to S, has a simple pole residue 1 at T = 0 and x = /oo, and satisfies

B(T) = B ( - 1 / 1 1 T ) . (49)

Since G3(T)#3(T) has the same properties, it follows that

G3(T)33(T) = B(T) +constant = J3(T)+11. (50)

We now define

G4(T) = G 2 ( T ) - 1 1 G 3 ( T ) , 04(T) = g2
2(x)-g3(x), ]

G6(x) = G2(t)G4(t), g6(x) = g2(x

G5(x) = ^ 2 ( T ) / ^ 2 ( 1 1 T ) , gs(x) =

(51)
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That G5(T) G 5°, gs(i) e S00 follows from Newman [10, (2,3,3)]. We have

(52)

Since G5(T) — G2(T)G3(T) + 11G4(T) has a pole of order w ^ 1 at T = ico, and is zero at T = 0,
it must be zero, since r o ( l l ) has genus 1. Hence

G5(T) = G 2 ( T ) G 3 ( T ) - 1 1 G 4 ( T ) . (53)

We use this technique to derive the multiplication tables in Appendix B.
Next, we define inductively for n ^ 7,

Gn(r) = Gn_ 5 (T )G 5 (T) , 0B(T) = $ „ - 5 (T )0 5 (T) . (54)

These results, together with the initial expansions in Table 1, establish the whole of Lemma
3 except for the assertions that the FS of Gn(t), gn{x) have integral coefficients (they clearly
have rational coefficients from (46)). These can be proved in various ways, of which we choose
the following. The functions a(i), /?(T) of Fine [11, (3.20)], clearly have integral coefficients
and belong to S°. We thus can conclude that

G2(T) = «(T), G3(T) = J8(T)-3O(T), (55)

so that G2(T), G3(T), and hence G4(T) , G6(T) , have integral FS. It is also clear that G 5 (T)

and gs(x) have integral FS. Now

02(T) = 0S(T)G*(T), 03(T)=03ttG3(T), (56)

so that <72(
T)> 03(T)> a Qd hence ^ 4 ( T ) , g6(t) have integral FS. The result for all n now follows

from the definition (54).

APPENDIX B

Fourier Series Expansions

Table 1

With

x = e2nit and F(x) = £ <xrx
r,

r = N

we write

F ( T ) = xN(aN, <xN + 1 , OCJV+2, . . . ) .
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Then

5(T) = jT^l, -5, 17, 46, 116, 252, 533, 1034, 1961,...),

g2{x) = x(l, 5, 19, 63, 185, 502, 1270, 3046, 6968, 15335,...),

03(T) = x
2(l, 9, 49, 214, 800, 2685, 8274, 23829, 64843,...),

04(t) = *
3(1, 14, 102, 561, 2563, 10285, 37349, 125290,...),

gs(r) = x
5(l, 12, 90, 520, 2535, 10908, 42614, 153960,...),

06(T) = x\\t 19, 191, 1400, 8373, 43277, 199982, 844734,...),

G2(T) = *-
2(l, 2, -12, 5, 8, 1, 7, -11, 10, -12,...),

G3(T) = X-
3(1, -3, -5,24, -13, -22, 13, -5,51,...),

G4(t) = x~\l, - 7 , 13, 17, -84, 57, 93, -81, -63,...),

G5(T) = x~
5(l, -12, 54, -88, -99, 540, -418, -648, 594,...),

(?6(T) = X-
6(1, -5, -13, 132, -233, -305, 1404, -910, -1533,...).

Table 2

G5 = G3G2-11G4, 1105=0203-04,

G6 = G2G4, 06 = 0204,

Gn+5 = GnG5 (n ^ 2), 0 n + 5 = 0n05 (« ^ 2).

Table 3

G 2 ( - 1 / 1 1 T ) = 1 1 2 < 7 2 ( T ) , G2(T) = X " 2 + . . . , 0 2 ( T ) = X

= 11 3 0 3 (T) , G3(Z) = X~3 + ..., g3(z) = x

= 11 4 0 4 (T) , G 4 (T) = X " 4 + . . . , 0 4 (T) = X

= 11 6 0 5 (T) , G5(T) = ^ - 5 + . . . , 0 5 (T) = X

= 11 6 0 6 (T) , G 6 (T) = * - 6 + . . . , 0 6 (T) = X

Table 4

BG5 = -12GS + G6, 505 = - 1 2 0 5 + 0 6 ,

BG6 = 112G4 + 11G5 + G7 506 =0 4 +1105 + 1
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Multiplication Table 5

G3 G4 G6

G2

G3

G4

G6

11G3 + G4 11G4+G5

-G5 + G6

G6

11G5 + G7

G7 + G8

112G5 + 12G7 + G8

11G7 + 11G8 + G9

11G8 + 12G9 + G1O

H'Gs + llGio + nGn + Gu

Multiplication Table 6

03 04

G2

G3

G4

G5

G6

5+12

G2 + ll

G3 + G2

G4

G5 + 12G4+11G3

1 + H02

5+11

G2 + ll

G3

G4+11G3 + 11G2

02+H03

1 + 1102

5+12

G2

G3 + 12G2 + 112

04

03

02

1

5+12

03 + 1204+ll2g5

02 + H03 + ll04

l + 1202 + ll03

5+12

(5+12)2

Tables 7 and 8 give the actual computed values of 7i(ynr) and 7i(<5nr) in

The calculations were performed modulo I I 1 0 , and T stands for " ^ 10 ".

Table 7. n(ynr)

r = 2 3 4 5 6 7 8 9 10

: 2

3
4
5
6
7
8
9

10

1
1
1
1
1
1
1
0
0

2
3
2
2
2
2
1
1
1

3
3
3
3
4
2
2
2
2

5
5
5
4
5
4
4
4
4

5
5
6
5
4
4
4
4
6

7
7
6
6
6
6
6
6
6

9
7
7
7
7
8
7
7
7

8
8
8
8
8
8
8
8
8

T
T
T
T
T
T
T
T
T
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Table 8. n(Snr)

r = 2 3 4 5 6 7 8 9 10

31

2
3
4
5
6
7
8
9

10

1 2 2
1 ]
0 1
0 ]
0 1
0 1
— ;
- 1
- 1

2
2
2
3

1 2
2
2

I 2

4
5
4
4
4
4
4
4
3

4
4
4
4
5
4
4
4
4

7
6
6
6
6
6
6
6
6

7
7
7
7
7
8
7
7
7

9
8
8
8
8
8
9
8
9

T
T
T
T
T
T
T
T
T

Table 9

This table shows the relation of the notations of Lehner [6,7], Fine [11], and Atkin and
Hussain [12] to that of this paper.

B{x)

02^)

Lehner

A T ) - 1 1

C(T)

JD(T)-C(T)

£(T; 11")

Fine

a(t)

^)-3«(r)

Atkin and Hussian

-A-13

—// + 6A+16

APPENDIX C

Proof of Lemma 12. The modular equation of degree 11 in O(T/11) with coefficients in
S is given by Fine [11, (3.21)]. If we subject this to the transformation T - > - 1 / 1 1 T , and
observe that O(—1/121 T) = 11#(T) , we obtain in our notation (the argument T being omitted
for brevity)
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1- (57)

Thus considering FS (mod II2) we have

g5 = <j>(l + Ug2+22g3 + Ug4)-<l)\U + 99g2 + Mg3-UgA)+55<l>3 (modll 2 ) . (58)

Now $ = g5 (mod 11) and hence

<l> = g5-U(g7 + 2gs+gg-gi0 + 2gi2 + 3gi3+g14+5gi5) (modl l 2 )

= <75- l l£ , say. (59)

Hence

O = 0 - 1 = G5(1-11G5£)-1 = G5(1 + 11G5£) (modll 2 ) , (60)

so that, by Table 6,

0 = G5 + 11(G4+2G3 + G 2 - 1 + 2 0 2 +303+04+5<75) (modll 2 ) , (61)

which is Lemma 12.
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