Bull. Austral. Math. Soc. Vol. 55 (1997) [503-512]

THE MOD 2 HOMOLOGY OF Sp(n) INSTANTONS AND THE CLASSIFYING SPACE OF THE GAUGE GROUP

Younggi Choi

We study the mod 2 homology of the moduli space of instantons associated with the principal Sp(n) bundle over the four-sphere and the classifying space of the gauge group using the Serre spectral sequence and the homology operations.

1. INTRODUCTION

Let G be a compact, connected simple Lie group. The fact that $\pi_3(G) = \pi_4(BG) = Z$ leads to the classification of principal G bundles P_k over S^4 by the integer k in Z. For a given P_k , the orbit spaces of connections up to based gauge equivalence is homotopy equivalent to the triple loop space of G [2]. That is, $C_k = \mathcal{A}_k/\mathcal{G}^b(P_k) \simeq \Omega_k^3 G$ where \mathcal{A}_k is the space of all connections in P_k and $\mathcal{G}^b(P_k)$ is the based gauge group which consists of all base point preserving automorphisms on P_k . Let \mathcal{M}_k be the space of based gauge equivalence classes of all connections in P_k satisfying the Yang-Mills self-duality equations, which we call the moduli space of G instantons. Then there is a natural inclusion map $i : \mathcal{M}_k \to \mathcal{C}_k \simeq \Omega_k^3 G$ and the inclusion map $i : \mathcal{M}_\infty \to \mathcal{C}_\infty$ induces a homotopy equivalence [6] where \mathcal{M}_∞ and \mathcal{C}_∞ are the direct limits under the inclusions.

While $\Omega_k^3 G$ is infinite dimensional and each $\Omega_k^3 G$ is homotopy equivalent to $\Omega_0^3 G$ for any component k, \mathcal{M}_k is finite dimensional and the dimension of \mathcal{M}_k increases as k increases. Hence whenever k increases, more elements of the homology of $\Omega_0^3 G$ are contained in the homology of \mathcal{M}_k . So it is reasonable to study the homology of $\Omega_0^3 G$ to get information about the homology of the instanton space.

Let Sp(n) denote the symplectic group, that is, the group of $n \times n$ quaternionic unitary matrices. Much work has been done on the moduli space of $Sp(1) \cong SU(2)$ $\cong Spin(3)$ instantons [2, 3, 4]. In this paper we first study the mod 2 homology of the moduli space of Sp(2) instantons exploiting the inclusion map into the triple loop space of Sp(2) with the aid of the Dyer-Lashof operations. Then we study the rational type of the classifying space of the gauge group and we compute the mod 2 homology

Received 9th July, 1996

Supported by the Basic Science Research Institute Program, Ministry of Education, 1995. Project No. BSRI 95-1419.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

of the classifying space of the gauge group via the Serre spectral sequence. Finally we study the general Sp(n) case by the same method.

Since the computations are 2-primary, all coefficients of homology are assumed to be Z/(2) unless otherwise mentioned.

2. The Sp(2) case

Let E(x) be the exterior algebra on x and P(x) be the polynomial algebra on x and $\Gamma(x)$ be the divided power Hopf algebra on x which is free over $\gamma_i(x)$ as a Z/(2) module with the product $\gamma_i(x)\gamma_j(x) = {i+j \choose j}\gamma_{i+j}(x)$ and with the the coproduct $\Delta(\gamma_n(x)) = \sum_{i=0}^n \gamma_{n-i}(x) \otimes \gamma_i(x)$.

For an (n + 1)-fold loop space, there are homology operations, called the Dyer-Lashof operations,

$$Q_i: H_q(\Omega^{n+1}X) \longrightarrow H_{2q+i}(\Omega^{n+1}X)$$

defined for $0 \leq i \leq n$ which are natural for an (n+1) fold loop space. Let Q_i^a be the iterated operation $Q_i \ldots Q_i$ (α times). Since S^3 and Sp(2) are Lie groups, $\Omega^3 S^3 \simeq \Omega^4 B S^3$ and $\Omega^3 Sp(2) \simeq \Omega^4 B Sp(2)$ where \simeq means homotopy equivalence. So we can define Q_i for $0 \leq i \leq 3$. In particular the moduli space of instantons behaves like C_4 -space up to homotopy, so we can define the homology operations Q_i for $0 \leq i \leq 3$ [4]. Throughout this paper, the subscript of an element always means the degree, for example the degree of the element x_i is i.

It is well known that

$$H_*(Sp(2)) = E(x_3) \otimes E(x_7).$$

Since $\pi_3(Sp(2)) = Z$, $\pi_0(\Omega^3 Sp(2)) = Z$. Let $\Omega_0^3 Sp(2)$ be the zero component of $\Omega^3 Sp(2)$. We first compute the homology of $\Omega_0^3 Sp(2)$, that is, \mathcal{M}_{∞} , the direct limit of \mathcal{M}_k for Sp(2). Let us recall the following facts.

$$\begin{aligned} H_{\star} \left(\Omega_0^3 S^3 \right) &= P \left(Q_1^a Q_2^b [1] * [-2^{a+b}] : a \ge 0, \ b \ge 0 \right), \\ H_{\star} \left(\Omega^3 S^{2n+1} \right) &= P \left(Q_1^a Q_2^b z_{2n-2} : a \ge 0, \ b \ge 0 \right) \quad \text{for} \quad n > 1 \end{aligned}$$

Here [1] is the image of the generator in $\widetilde{H}_0(S^0)$ for the map: $S^0 \to \Omega^3 S^3$ and * is the loop sum Pontryagin product. If $x \in H_*(\Omega^3_s S^3)$ and $y \in H_*(\Omega^3_t S^3)$, $x * y \in$ $H_*(\Omega^3_{s+t} S^3)$ and $Q_i(x) \in H_*(\Omega^3_{2s} S^3)$ where $\Omega^3_r S^3$ means the r-component of $\Omega^3 S^3$.

THEOREM 2.1.

$$H_*(\Omega_0^3 Sp(2)) = P(Q_1^a Q_2^b[1] * [-2^{a+b}] : a \ge 0, \ b \ge 0)$$

$$\otimes P(Q_1^a Q_2^b z_4 : a \ge 0, \ b \ge 0).$$

505

PROOF: We have the following map of fibrations:

Consider the Serre spectral sequence for the bottom row fibration with

$$E^2 = H_*(\Omega^3 S^7) \otimes H_*(\Omega_0^3 S^3).$$

Since the Dyer-Lashof operation satisfies naturality and commutes with the homology suspension, the differentials for the above spectral sequence are completely determined by the first differential from z_4 where $H_*(\Omega^3 S^7) = P(Q_1^a Q_2^b z_4 : a \ge 0, b \ge 0)$. If this differential is non-trivial, then target of the differential will be $Q_1Q_1[1] * [-4]$ because of the uniqueness of the primitive element in that dimension. Note that the target of the first non-trivial differential is a primitive element in the spectral sequence of a Hopf algebra. Here this element is the image of the lowest-dimensional element in $H_*(\Omega^4 S^7)$ for the first column map which is, in fact, the Hurewicz image of $S^3 \subset \Omega^4 S^7$ into $\Omega_0^3 S^3$. However $Sq_*^1Q_1Q_1[1]*[-4]$ is the non-zero element $(Q_1[1]*[-2])^2$ in $H_*(\Omega_0^3 S^3)$. This is a contradiction to the naturality of the Steenrod actions. So the differential from z_4 is trivial. Hence the above spectral sequence collapses from the E^2 -term.

Note that $(\Omega^3 \iota)_*$ is one to one in the mod 2 homology. We shall use this fact later.

Let $\mathcal{M}_k(G)$ denote the based moduli space of all G instantons with instanton number k. Let $\mathcal{M}'_k(G)$ be the moduli space of all G instantons with instanton number k, that is, the space of all G instantons with instanton number k modulo the full gauge group. Let $C_G(SU(2))$ be the centraliser of SU(2) in G.

THEOREM 2.2. [5, Proposition 3.1] Let G be a compact simple simply connected Lie group. Then the based moduli space $\mathcal{M}_1(G)$ fibers trivially with the fiber $G/C_G(SU(2))$ over $\mathcal{M}'_1(G)$ which is homeomorphic to the five ball. Furthermore, the composition of maps

$$G/C_G(SU(2)) \xrightarrow{j} \mathcal{M}_1(G) \xrightarrow{i_1} \mathcal{C}_1(G) \xrightarrow{\theta} \Omega_1^3 G$$

is given by the map $J = \theta \circ i_1 \circ j$:

$$J(C_G(SU(2))g) = [x \to g^{-1}i(x)g]$$

where j and i_1 are natural inclusions, i is a fixed embedding of SU(2) into G, and θ is the Atiyah-Jones equivalence.

Now $q \in Sp(1)$ can be imbedded into $\begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \in Sp(2)$. Since the centre of Sp(1) is 1 or -1, $Sp(1)/C(Sp(1)) = RP^3$ and $C_{Sp(2)}(Sp(1)) = Z/2 \times Sp(1)$. Just considering the first column vector (q_1, q_2) which is the same class as $(-q_1, -q_2)$ with the condition $q_1^2 + q_2^2 = 1$, we get that $SP(2)/C_{Sp(2)}(Sp(1)) = RP^7$. Hence $\mathcal{M}_1(Sp(1)) \simeq RP^3 \simeq SO(3)$ and $\mathcal{M}_1(Sp(2)) \simeq RP^7$. We have the following fibration:

$$Sp(1) \xrightarrow{\iota} Sp(2) \xrightarrow{p} S^{2}$$

We know that

$$H_*(SO(3)) = E(x_1, x_2)$$

Moreover we have the following facts (see [5, Corollary 5.17]):

$$\begin{aligned} J_*(x_1) &= Q_1[1] * [-1], \\ J_*(x_2) &= Q_2[1] * [-1], \\ J_*(x_1x_2) &= Q_3[1] * [-1]. \end{aligned}$$

Now we shall calculate the homology of Sp(2)-instantons by the study of the map J. If $J_*(x) \neq 0$ in $H_*(\Omega_1^3 Sp(2))$ for some element x and $Q_i(J_*(x)) \neq 0$ for some i in $H_*(\Omega_k^3 Sp(2))$ for the corresponding component k of $\Omega^3 Sp(2)$, by the naturality of the Dyer-Lashof operation $Q_i(j_*(x))$ is also not zero in $H_*(\mathcal{M}_k(Sp(2)))$. Hence we can get the rich non-trivial homology elements in $H_*(\mathcal{M}_k(Sp(2)))$ by the actions of the Dyer-Lashof operations on the special elements such that the images of J_* for those elements are not zero.

We have the following map:

$$\begin{array}{ccc} H_{*}(\mathcal{M}_{1}(Sp(2))) \xrightarrow{\theta_{*}\circ(i_{1})_{*}} H_{*}(\Omega_{1}^{3}Sp(2)) \\ [1] & \rightarrowtail & [1] \end{array}$$

Then we can apply the Dyer-Lashof operations Q_i for $0 \leq i \leq 3$ on the element [1]. Remember that $Q_i^a[1]$ is the homology element in the 2^a component. By analysing nonzero Dyer-Lashof actions on [1] in $H_*(\Omega_1^3 Sp(2))$, we can get the following non-trivial homology elements.

PROPOSITION 2.3. There are the following non-zero elements in $H_*(\mathcal{M}_k(Sp(2)))$. For any $a, b, c \ge 0$,

$$Q_0^a Q_1^b Q_2^c[1] \in H_{((2^{c+1}-1)2^b-1)2^a}(\mathcal{M}_{2^{a+b+c}}(Sp(2))).$$

We have the following commutative diagram up to homotopy:

$$(2.4) \qquad \begin{array}{c} RP^{3} \simeq Sp(1)/C(Sp(1)) & \stackrel{\iota}{\longrightarrow} & Sp(2)/C_{Sp(2)}(Sp(1)) \simeq RP^{7} \\ J & J & J \\ \Omega_{1}^{3}Sp(1) & \stackrel{\Omega^{3}_{\iota}}{\longrightarrow} & \Omega_{1}^{3}Sp(2) \end{array}$$

Exploiting the fact that $J_*(x_1)$, $J_*(x_2)$ and $J_*(x_1x_2)$ are not zero in $H_*(\Omega_1^3 Sp(1))$, Boyer and Mann got the following theorem. Let z_i be the element in $H_*(\mathcal{M}_1(Sp(1)))$ such that $(\theta_* \circ (i_1)_*(z_i)) * [1] = Q_i([1])$ for i = 1, 2, 3.

THEOREM 2.5. [4, Theorem 9.7] $H_*(\mathcal{M}_k(Sp(1)))$ contains elements of the form

$$z=z(I_1,\cdots,I_n,j_1,\cdots,j_n)=Q_{I_1}(z_{j_1})*\cdots*Q_{I_n}(z_{j_n})$$

for all sequences $(I_1, \dots, I_n, j_1, \dots, j_n)$ such that $\sum_{m=1}^n 2^{l(I_m)} \leq k$. Here each $I_m = (i_1, \dots, i_{l(I_m)})$ is an admissible sequence $0 \leq i_1 \leq \dots \leq i_{l(I_m)} \leq 3$ and $0 \leq j_a \leq 3$ for all $1 \leq a \leq n$.

COROLLARY 2.6. Every element in Theorem 2.5 is also non-zero in $H_*(\mathcal{M}_k(Sp(2)))$.

PROOF: Since the map ι_* is one to one and $(\Omega^3 \iota)_*$ is also one to one by Theorem 2.1, each element in Theorem 2.5 is also non-zero in $H_*(\Omega^3_k Sp(2))$ and so in $H_*(\mathcal{M}_k(Sp(2)))$.

For the homology information, we shall try to find more elements whose images under J_* are not zero in $H_*(\Omega_1^3 Sp(2))$. It is well known that

$$H^*(RP^7) = P(z_1)/(z_1^8)$$

Then $H_*(RP^7)$ is free on generators x_1, x_2, \ldots, x_7 such that

$$\langle z^i, x_j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$

So we have the following coproduct structure:

$$\Delta(x_i) = \sum_{k=0}^{i} x_k \otimes x_{i-k}.$$

We consider the above diagram (2.4) again. Since $J_*(x_1)$, $J_*(x_2)$ are not zero,

$$\Delta (J_*(x_4)) = J_*(\Delta (x_4))$$
$$= \sum_{k=0}^{k=4} J_*(x_k) \otimes J_*(x_{4-k})$$
$$\neq 0.$$

Hence $J_*(x_4) \neq 0$. So there exists an element, say v_4 , in $H_*(\mathcal{M}_1(Sp(2)))$ such that

$$\begin{array}{ccc} H_*(\mathcal{M}_1(Sp(2))) & \xrightarrow{\theta_* \circ (i_1)_*} & H_*(\Omega_1^3 Sp(2)) \\ & v_4 & \longrightarrow & J_*(x_4) \end{array}$$

Since there does not exist a non-trivial 4-dimensional homology class in $H_*(RP^7; Z/(p))$ for odd prime p, we cannot apply this method for the odd prime case. Note that every element in $H_*(\Omega_0^3 Sp(2))$ becomes a stable element in $H_*(\Omega_0^3 Sp) = H_*(BO)$. From the coproduct structure, $J_*(x_4) = z_4 * [1]$. Now we get

PROPOSITION 2.7. There are the following non-zero elements in $H_*(\mathcal{M}_k(Sp(2)))$. For any $a, b, c \ge 0$,

$$Q_0^a Q_1^o Q_2^c(v_4) \in H_{((3 \cdot 2^{c+1} - 1)2^b - 1)2^a}(\mathcal{M}_{2^a + b + c}(Sp(2))).$$

Now we consider the loop sum product * for the elements in $H_*(\mathcal{M}_k(Sp(2)))$. Remember that if x and y are homology classes in the s and t components, then x * y is the homology class in the s + t component.

THEOREM 2.8. The loop sum products of any elements in Proposition 2.3, Corollary 2.6 and Proposition 2.7 are also non-trivial homology elements of the space $\mathcal{M}_k(Sp(2))$ for the corresponding k.

Now we turn to the computation of the homology for the classifying space of the gauge group. Let \mathcal{G}_k be the gauge group of the principal Sp(2) bundle P_k over S^4 with the instanton number k. From [1, Proposition 2.4] we can get

$$B\mathcal{G}_{k} \simeq Map_{p_{k}}(S^{4}, BSp(2))$$

where the subscript p_k denotes the component of a map of S^4 into BSp(2) which induces P_k . First we shall study the rational type of $B\mathcal{G}_k$. We have the following theorem.

THEOREM 2.9. [1, Theorem 2.6] Suppose that X is any finite complex. Let $\pi_q(Y) = 0$ for $q \neq n$ and $\pi_n(Y) = \pi$, that is, $Y = K(\pi, n)$. Then

$$Map(X,Y) \simeq \prod_{q} K(H^{q}(X;\pi),n-q).$$

PROPOSITION 2.10. Over the rationals,

$$B\mathcal{G}_{k} \simeq_{Q} K(Z,4) \times K(Z,4) \times K(Z,8)$$

PROOF: Since $BSp(2) \simeq_Q K(Z,4) \times K(Z,8)$,

$$Map(S^4, BSp(2)) \simeq_Q Map(S^4, K(Z, 4)) \times Map(S^4, K(Z, 8)).$$

Applying the above Theorem, we get

$$Map(S^4, BSp(2)) \simeq_Q Map(S^4, K(Z, 4)) \times Map(S^4, K(Z, 8))$$
$$\simeq \prod_q K(H^q(S^4; Z), 4-q) \times \prod_q K(H^q(S^4; Z), 8-q)$$
$$\simeq Z \times K(Z, 4) \times K(Z, 4) \times K(Z, 8).$$

Since $Map(S^4, BSp(2)) \simeq Map_{p_k}(S^4, BSp(2)) \times Z$,

$$B\mathcal{G}_{k} \simeq Map_{P_{k}}(S^{4}, BSp(2))$$
$$\simeq_{Q} K(Z, 4) \times K(Z, 4) \times K(Z, 8).$$

Then we also get

COROLLARY 2.11.

$$H_*(B\mathcal{G}_k;Q) = H_*(K(Z,4);Q) \otimes H_*(K(Z,4);Q) \otimes H_*(K(Z,8);Q)$$
$$= P(a_4) \otimes P(b_4) \otimes P(c_8).$$

THEOREM 2.12. As a vector space,

$$H_*(B\mathcal{G}_k) = H_*(\Omega_0^3 Sp(2)) \otimes H_*(BSp(2)).$$

PROOF: There is a fibration:

$$Map^*(S^4, BSp(2)) \longrightarrow Map(S^4, BSp(2)) \longrightarrow BSp(2)$$

where * means the base point preserving maps. Since $Map^*(S^4, BSp(2)) = \Omega_0^3 Sp(2) \times Z$, we get the following fibration:

$$\Omega_0^3 Sp(2) \longrightarrow Map_{P_k}(S^4, BSp(2)) \longrightarrow BSp(2).$$

Note that this fibration is not an *H*-fibration. Consider the Serre spectral sequence converging to $H_*(Map_{P_k}(S^4, BSp(2)))$ with

$$E^2 = H_*(BSp(2)) \otimes H_*(\Omega_0^3 Sp(2)).$$

The possible first non-zero differential is the transgression from some 4n-dimensional element, say, χ_{4n} where $H_*(BSp(2)) = \Gamma(x_4, x_8)$ as a coalgebra. Since the target of the

first non-zero differential is primitive, the target will be a (4n-1) dimensional primitive element. But in $H_*(\Omega_0^3 Sp(2))$, the Sq_*^1 action on every (4n-1) dimensional primitive element is non trivial. In fact every (4n-1) dimensional primitive element, say y_{4n-1} , in $H_*(\Omega_0^3 Sp(2))$ is Q_1y_{2n-1} for some (2n-1) dimensional primitive element, y_{2n-1} . So from the Nishida relation

$$Sq_*^1y_{4n-1} = Sq_*^1Q_1(y_{2n-1}) = (y_{2n-1})^2.$$

Since χ_{4n} is transgressive, $Sq_*^1(\tau(\chi_{4n})) = \tau(Sq_*^1\chi_{4n})$ where τ is the transgression. Since the Sq_*^1 action on every element in $H_*(BSp(2))$ is trivial, this leads a contradiction.

Hence the Serre spectral sequence collapses from the E^2 -term. So $E^2 = E^{\infty}$ and we get the conclusion.

3. The Sp(n) case

In this section we study the mod 2 homology of the moduli space of Sp(n) instantons and the classifying space of the gauge group.

THEOREM 3.1.

$$egin{aligned} H_stig(\Omega_0^3Sp(n)ig) &= Pig(Q_1^aQ_2^b[1]*[-2^{a+b}]:a\geqslant 0,\ b\geqslant 0ig)\ &\otimes Pig(Q_1^aQ_2^bz_{4m}:1\leqslant m\leqslant n-1,\ a\geqslant 0,\ b\geqslant 0ig). \end{aligned}$$

PROOF: We prove this inductively. It is true for n = 2 by Theorem 2.1. Assume that it is true for n = k. There is the following map of fibrations:

$$\Omega^{4}S^{4k+3} \longrightarrow * \longrightarrow \Omega^{3}S^{4k+3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega^{3}_{0}Sp(k) \xrightarrow{\Omega^{3}_{\iota}} \Omega^{3}_{0}Sp(k+1) \xrightarrow{\Omega^{3}p} \Omega^{3}S^{4k+3}$$

Consider the Serre spectral sequence for the bottom row fibration with

$$E^2 = H_*\left(\Omega^3 S^{4k+3}\right) \otimes H_*\left(\Omega_0^3 Sp(k)\right).$$

Like in Theorem 2.1, the differentials for this spectral sequence are completely determined by the first differential from z_{4k} where $H_*(\Omega^3 S^{4k+3}) = P(Q_1^a Q_2^b z_{4k} : a \ge 0, b \ge 0)$. If the differential from z_{4k} is non-trivial, then the target of the differential will be a (4k-1) primitive element. But the Sq_*^1 action of a (4k-1) primitive element is non-trivial in $H_*(\Omega_0^3 Sp(k))$ by the same argument as Theorem 2.12. So the spectral sequence collapses from the E^2 term and we get the conclusion.

We can prove the following two Propositions in the same manner as the Sp(2) case.

https://doi.org/10.1017/S0004972700034158 Published online by Cambridge University Press

[9]

PROPOSITION 3.2. There are the following non-zero elements in $H_*(\mathcal{M}_k(Sp(n)))$. For any $a, b, c \ge 0$,

$$Q_0^a Q_1^b Q_2^c[1] \in H_{((2^{c+1}-1)2^{b}-1)2^a}(\mathcal{M}_{2^{a+b+c}}(Sp(n))).$$

PROPOSITION 3.3. There are the following non-zero elements in $H_*(\mathcal{M}_k(Sp(n)))$. For any $a, b, c \ge 0$,

$$Q_0^a Q_1^b Q_2^c(v_{4m}) \in H_{\left(\left((2m+1)2^{c+1}-1\right)2^b-1\right)2^a}(\mathcal{M}_{2^{a+b+c}}(Sp(n))), \quad 1 \le m \le n-1.$$

We now compute the homology of the classifying space of the gauge group. **PROPOSITION 3.4.** Over the rationals,

$$B\mathcal{G}_k \simeq_Q \prod_{m=1}^{n-1} \left(K(Z, 4m) \times K(Z, 4m) \right) \times K(Z, 4n)$$

PROOF: Since $BSp(n) \simeq_Q \prod_{m=1}^n K(Z, 4m)$,

$$Map(S^4, BSp(n)) \simeq_Q \prod_{m=1}^n Map(S^4, K(Z, 4m))$$
$$\simeq Z \times \prod_{m=1}^{n-1} (K(Z, 4m) \times K(Z, 4m)) \times K(Z, 4n).$$

Hence $B\mathcal{G}_k \simeq_Q \prod_{m=1}^{n-1} (K(Z,4m) \times K(Z,4m)) \times K(Z,4n).$

THEOREM 3.5. As a vector space,

 $H_*(B\mathcal{G}_k) = H_*(\Omega_0^3 Sp(n)) \otimes H_*(BSp(n)).$

PROOF: We have the following fibration:

$$\Omega^3_0 Sp(n) \longrightarrow Map_{P_k}(S^4, BSp(n)) \longrightarrow BSp(n).$$

Consider the Serre spectral sequence converging to $H_*(Map_{P_k}(S^4, BSp(n)))$ with

$$E^2 = H_*(BSp(n)) \otimes H_*(\Omega_0^3 Sp(n)).$$

The possible first non-zero differential is the transgression from some 4k-dimensional element where $H_*(BSp(n)) = \Gamma(x_{4m} : 1 \le m \le n)$ as a coalgebra. But by the same reason as in the proof of Theorem 2.12, there is no non-trivial differential. Hence the Serre spectral sequence collapses from the E^2 -term and we obtain the conclusion.

D

Y. Choi

References

- M.F. Atiyah and R. Bott, 'The Yang-Mills equations over Riemann surfaces', *Philos.* Trans. Roy. Soc. London Ser. A 308 (1982), 523-615.
- [2] M.F. Atiyah and J.D.S. Jones, 'Topological aspects of Yang-Mills theory', Comm. Math. Phys. 61 (1978), 97-118.
- [3] C.P. Boyer, J.C. Hurtubise, B.M. Mann and R.J. Milgram, 'Topology of instanton moduli spaces, I: The Atiyah-Jones conjecture', Ann. of Math. 137 (1993), 561-609.
- [4] C.P. Boyer and B.M. Mann, 'Homology operations on instantons', J. Differential. Geom. 28 (1988), 423-465.
- C.P. Boyer, B.M. Mann and D. Waggoner, 'On the homology of SU(n) instantons', Trans. Amer. Math. Soc. 323 (1991), 529-560.
- [6] C.H. Taubes, 'The stable topology of self-dual moduli spaces', J. Differential Geom. 29 (1989), 163-230.

Department of Mathematics Seoul City University Seoul 130-743 Korea e-mail ychoi@garam.kreonet.re.kr