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THE MOD 2 HOMOLOGY OF Sp(n) INSTANTONS
AND THE CLASSIFYING SPACE OF THE GAUGE GROUP

YOUNGGI CHOI

We study the mod 2 homology of the moduli space of instantons associated with
the principal Sp(n) bundle over the four-sphere and the classifying space of the
gauge group using the Serre spectral sequence and the homology operations.

1. INTRODUCTION

Let G be a compact, connected simple Lie group. The fact that 7r3(G) = n^BG) —
Z leads to the classification of principal G bundles P* over 5 4 by the integer k in
Z. For a given Pk, the orbit spaces of connections up to based gauge equivalence is
homotopy equivalent to the triple loop space of G [2]. That is, C* = Ak/Gb(Pk) — f^G
where Ak is the space of all connections in Pk and Gb{Pk) is the based gauge group
which consists of all base point preserving automorphisms on Pk • Let Mk be the space
of based gauge equivalence classes of all connections in Pk satisfying the Yang-Mills
self-duality equations, which we call the moduli space of G instantons. Then there is
a natural inclusion map i : Mk -> Cfc — ^\G and the inclusion map i : Moo —> Coo
induces a homotopy equivalence [6] where Moo and Coo are the direct limits under the
inclusions.

While Cl^G is infinite dimensional and each fijlG is homotopy equivalent to SIQG

for any component k, Mk is finite dimensional and the dimension of Mk increases as
k increases. Hence whenever k increases, more elements of the homology of CIQG are
contained in the homology of Mk • So it is reasonable to study the homology of ftjjG
to get information about the homology of the instanton space .

Let Sp(n) denote the symplectic group, that is, the group of n x n quaternionic
unitary matrices. Much work has been done on the moduli space of Sp(l) (= SU(2)
= Spin(3)) instantons [2, 3, 4]. In this paper we first study the mod 2 homology of
the moduli space of Sp(2) instantons exploiting the inclusion map into the triple loop
space of Sp(2) with the aid of the Dyer-Lashof operations. Then we study the rational
type of the classifying space of the gauge group and we compute the mod 2 homology
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of the classifying space of the gauge group via the Serre spectral sequence. Finally we
study the general Sp(n) case by the same method.

Since the computations are 2-primary, all coefficients of homology are assumed to
be Z/(2) unless otherwise mentioned.

2. T H E Sp{2) CASE

Let E{x) be the exterior algebra on x and P{x) be the polynomial algebra on
x and F(x) be the divided power Hopf algebra on x which is free over 7J (Z) as a
Z/{2) module with the product 7<(a:)7,-(a;) = ^)li+j{x) and with the the coproduct

A(7n(aO) = £ ln-i(x) <8>7i(*)-
t=0

For an (n + l)-fold loop space, there are homology operations, called the Dyer-
Lashof operations,

Qi : Hq(Q
n+1X) —> H2q+i(Q

n+1X)

defined for 0 ^ i ^ n which are natural for an (n + 1) fold loop space. Let Qf

be the iterated operation Qi-.-Qi (a times). Since S3 and Sp(2) are Lie groups,
C13S3 ~ fl4BS3 and Q3Sp(2) ~ Q,iBSp{2) where ~ means homotopy equivalence. So
we can define Qi for 0 ̂  i < 3. In particular the moduli space of instantons behaves like
C4~space up to homotopy, so we can define the homology operations Qi for 0 ̂  i $$ 3
[4]. Throughout this paper, the subscript of an element always means the degree, for
example the degree of the element Xi is i.

It is well known that

H.(Sp(2))=E(x3)®E(x7).

Since 7r3(5p(2)) = Z, 7ro(fi3Sp(2)) = Z. Let fi^5p(2) be the zero component of
Q3Sp(2). We first compute the homology of QQSP(2) , that is, Moo, the direct limit of

for Sp(2). Let us recall the following facts.

H, (QlS3) = P(Q?Q§[1] * [-2a+b] :a>0,b>0),

H. ( f t 3S2 n + 1) = P(QlQ\z2n-2 : a ̂  0, b ̂  0) for n > 1.

Here [1] is the image of the generator in Ho(S°) for the map:5° —> Q3S3 and * is
the loop sum Pontryagin product. If x € H.(Q3S3) and y € H*(Q3S3), x * y €
H,(Q.3+tS

3) and Q{{x) G H,(n\sS
3) where fl3S3 means the r-component of Q 3 5 3 .

T H E O R E M 2 . 1 .

H,(Q3Sp(2)) = P(Q?Q$[1] * [-2a+b] : a 2 0, 6 > 0)
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PROOF: We have the following map of fibrations:

n4s7 > * > Q3S7

Consider the Serre spectral sequence for the bottom row fibration with

Since the Dyer-Lashof operation satisfies naturality and commutes with the homology
suspension, the differentials for the above spectral sequence are completely determined
by the first differential from z4 where H.(Q3S7) = P(Q$Q%z4 : a ^ 0, b ^ 0) . If this
differential is non-trivial, then target of the differential will be QiQi[l] * [—4] because
of the uniqueness of the primitive element in that dimension. Note that the target of
the first non-trivial differential is a primitive element in the spectral sequence of a Hopf
algebra. Here this element is the image of the lowest-dimensional element in H* (Q4S7)

for the first column map which is, in fact, the Hurewicz image of S 3 C Q,4S7 into QQS3 .

However SgjQiQi[l] * [-4] is the non-zero element (Qi[l] * [-2])2 in H,(QlS3) . This
is a contradiction to the naturality of the Steenrod actions. So the differential from 24
is trivial. Hence the above spectral sequence collapses from the J£2-term. D

Note that ( ^ 3 t ) . is one to one in the mod 2 homology. We shall use this fact later.

Let Mk(G) denote the based moduli space of all G instantons with instanton

number k. Let Aik(G) be the moduli space of all G instantons with instanton number

k, that is, the space of all G instantons with instanton number k modulo the full gauge

group. Let CG(51/(2)) be the centraliser of SU{2) in G.

THEOREM 2 . 2 . [5,Proposition 3.1] Let G be a compact simple simply con-

nected Lie group. Then the based moduli space Mi{G) fibers trivially with the fiber

G/CQ{SU(2)) over Aii(G) which is homeomorphic to the five ball. Furthermore, the

composition of maps

G/CG{SU(2)) A MI(G) lh Ci(G) A Q3G

is given by the map J = 6 o ix o j :

J(CG(SU(2))g) = [x -> g-li(x)g]

where j and i\ are natural inclusions, i is a fixed embedding of SU(2) into G, and 6
is the Atiyah-Jones equivalence. U
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Now q € Sp(l) can be imbedded into I J e 5p(2). Since the centre of Sp(l)

is 1 or - 1 , Sp{l)/C(Sp(l)) = RP3 and C5 p ( 2 )(Sp(l)) = Z/2xSp(l). Just considering
the first column vector (qi, q2) which is the same class as (—gi, — g2) with the condition
q\ + q% = 1, we get that SP(2) /C 5 p ( 2 ) (Sp( l ) ) = RP7. Hence Mi(Sp(l)) c- RP3 ~
5O(3) and M\{Sp(2)) ~ RP7. We have the following fibration:

Sp(l) —^-> Sp(2)

We know that

Moreover we have the following facts (see [5, Corollary 5.17]):

Now we shall calculate the homology of 5p(2)-instantons by the study of the map J.

If J«(x) 7̂  0 in H+ (Q3Sp(2)) for some element x and Qi(J*(x)) ^ 0 for some i in
i?*(n^5p(2)) for the corresponding component k of £l3Sp(2), by the naturality of the
Dyer-Lashof operation Qi{j*{x)) is also not zero in Ht(Mk(Sp(2))). Hence we can
get the rich non-trivial homology elements in H,(Mk{Sp(2))) by the actions of the
Dyer-Lashof operations on the special elements such that the images of J» for those
elements are not zero.

We have the following map:

^ ^ h H,(Q3Sp(2))

[1] - [1]

Then we can apply the Dyer-Lashof operations Qi for 0 ^ i ^ 3 on the element [1].
Remember that Qf[l] is the homology element in the 2° component. By analysing non-
zero Dyer-Lashof actions on [1] in H* (£l\Sp(2)), we can get the following non-trivial
homology elements.

PROPOSITION 2 . 3 . There are the following non-zero elements in

Ht(Mk(Sp(2))). For any o, 6, c ^ 0,

Q%Q\Qm € #( ( 2 C + 1_l ) 26_l ) 2a(.M2a+6+c(5p(2))).
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We have the following commutative diagram up to homotopy:

RP3 ~ Sp(l)/C(Sp(l)) —!-> Sp(2)/CSp{2)(SP(l))~RP7

(2.4)

Exploiting the fact that J*(xi), J.(x2) and J»(xix2) are not zero in H, (fif Sp(l)),
Boyer and Mann got the following theorem. Let Zi be the element in H,(Mi(Sp(l)))
such that (0,o(i1)7l(zi))*[l} = Qi([l}) for » = 1,2,3.

THEOREM 2 . 5 . [4, Theorem 9.7] H,(Mk(Sp(l))) contains elements of the form

Z = z ( h , • " , / „ , J l , • • • , j n ) = Q / ! ( Z h ) * • • • * Q I n (Zjn)
n

for all sequences ( A , - - - ,In,ji," >jn) such that £ ) 2'( /m^ < k. Here each Im =
m=l

(h, • • • , ^/(/m)) i S a n admissible sequence 0 ^ i i ^ • • • < ij(/m) ^ 3 and 0 ^ j a ^ 3 for
all 1 ̂  a ^ n .

COROLLARY 2 . 6 . Every eiement in Theorem 2.5 is also non-zero in

H.(Mk(Sp{2))).

PROOF: Since the map «.» is one to one and (fi3t)t is also one to one by The-
orem 2.1, each element in Theorem 2.5 is also non-zero in H, (fi^5p(2)) and so in
H.(Mk{Sp{2))). D

For the homology information, we shall try to find more elements whose images
under J» are not zero in iJ* (fif Sp(2)). It is well known that

H*(RP7)=P(Zl)/{z*).

Then H* (RP7) is free on generators xi, £2 > • • • , £7 such that

f 1, t = j

t o . «7* j •

So we have the following coproduct structure:

fe=0

We consider the above diagram (2.4) again. Since J»(xi), J*(x2) are not zero,

A (J.(s4)) = J,(A (x4))
fc=4

= ^ J . ( x f c ) ® J,(x4_fc)
fc=O
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Hence J*(z4) ^ 0. So there exists an element, say V4, in H,(Mi(Sp(2))) such that

H.(Mi{Sp{2))) ( )

v4 > J , (x4)

Since there does not exist a non-trivial 4-dimensional homology class in i/» (RP7; Z/(p))

for odd prime p, we cannot apply this method for the odd prime case. Note that every
element in H*(QQSP(2)) becomes a stable element in H*(TIQSP) = H+{BO) . Prom
the coproduct structure, J«(x4) = Z4 * [1]. Now we get

PROPOSITION 2 . 7 . There are the following non-zero elements in
Ht(Mk(Sp(2))). For any a,b,c^0,

Q o Q i Q a M e H{{3,2C+1_l)2b_l)2a(M2a+b+c(Sp(2))).

Now we consider the loop sum product * for the elements in H*(Mk(Sp(2))).

Remember that if x and y are homology classes in the s and t components, then x * y

is the homology class in the s + t component.

THEOREM 2 . 8 . The loop sum products of any elements in Proposition 2.3 ,
Corollary 2.6 and Proposition 2.7 are also non-trivial homology elements of the space
A4k(Sp(2)) for the corresponding k.

Now we turn to the computation of the homology for the classifying space of the
gauge group. Let Gk be the gauge group of the principal Sp(2) bundle Pk over S 4

with the instanton number k. From [1, Proposition 2.4] we can get

Bgk~MapPk(S\BSp{2))

where the subscript pk denotes the component of a map of S 4 into BSp(2) which
induces P*. First we shall study the rational type of BQk- We have the following
theorem.

THEOREM 2 . 9 . [1, Theorem 2.6] Suppose that X is any finite complex. Let

Trq(Y) = 0 for q^n and nn(Y) = n, that is, Y = K{n,n). Then

Map(X, Y) ~ l[K(Hi(X; w), n - q).

PROPOSITION 2 . 1 0 . Over the rationals,

^Q K(Z, 4) x K(Z, 4) x K(Z, 8).
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P R O O F : Since BSp(2) ~ 0 K(Z,4) x K(Z,8),

Map(S4,BSp{2)) ~ Q Map(S4,K(Z,4)) x Mop(54, i i r(Z,8)) .

Applying the above Theorem, we get

Map(S4,BSp(2)) ~ Q Map(S4,K(Z,4)) x Map(5 4 ,K(Z,8) )

~ Z x #(£,4) x /r(Z,4) x

Since Map(54,.BSp(2)) ~ MapPk(S
4,BSp{2)) x Z,

, 4) x X(Z, 4) x K(Z, 8).

Then we also get

COROLLARY 2 . 1 1 .

H.{BGk; Q) = H.{K(Z,4);Q) ® H.(K(Z,4); Q) ® H.(K(Z,8); Q)

THEOREM 2 . 1 2 . As a vector space,

H.(Bgk) = H.(Q3
0Sp(2)) ® H.(BSp(2)).

PROOF: There is a fibration:

Map*(S4,BSp{2)) —>Map(S4,BSp(2)) —> BSp(2)

where * means the base point preserving maps. Since Map*(5 4 ,55p(2)) = QQSP(2)

x Z , w e get the following fibration:

figSp(2) —> MapPk (S4, BSp{2)) —>• B5p(2).

Note that this fibration is not an if-fibration. Consider the Serre spectral sequence
converging to H,(MapPk(S

4,BSp(2))) with

E2 = H,{BSp{2)) ® H.(QlSp{2)).

The possible first non-zero differential is the transgression from some 4n-dimensional

element, say, x*n where H+(BSp(2)) = r ( i 4 ) i 8 ) as a coalgebra. Since the target of the
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first non-zero differential is primitive, the target will be a (4n — 1) dimensional primitive
element. But in H*(QQSP(2)) , the Sql action on every (4n — 1) dimensional primitive
element is non trivial. In fact every (4n - 1) dimensional primitive element, say j /4n_i ,
in H+ (Q3

)Sp(2)) is Qiy^n-i for some (2n — 1) dimensional primitive element, j/2n-i-
So from the Nishida relation

Since xin is transgressive, Sql(T(x4n)) = r(Sqlx4n) where r is the transgression.
Since the Sql action on every element in H, (BSp{2)) is trivial, this leads a contradic-
tion.

Hence the Serre spectral sequence collapses from the .E2-term. So E2 = E°° and
we get the conclusion. D

3. THE Sp(n) CASE

In this section we study the mod 2 homology of the moduli space of Sp(n) instan-
tons and the classifying space of the gauge group.

THEOREM 3 . 1 .

H.(Cl3Sp(n)) = P{QlQb
2[l] * [-2a+b] : a 2 0, b > 0)

®P{QiQ\zAm:\ < m < n - l , a ^ 0, 6 ^ 0 ) .

PROOF: We prove this inductively. It is true for n — 2 by Theorem 2.1 . Assume
that it is true for n — k. There is the following map of fibrations:

+ > Q3S4k+3

fi354fc+3

Consider the Serre spectral sequence for the bottom row fibration with

E2 = Ht (n354 f c + 3) ® H. (Sl3
0Sp(k)).

Like in Theorem 2.1, the differentials for this spectral sequence are completely deter-
mined by the first differential from z4k where Hm (fi3S4fc+3) = P(QlQb,z4k : a ^ 0, b ^ 0).
If the differential from zik is non-trivial, then the target of the differential will be a
(4A; — 1) primitive element. But the Sql action of a (4A; — 1) primitive element is
non-trivial in H, (fi§Sp(&)) by the same argument as Theorem 2.12. So the spectral
sequence collapses from the E2 term and we get the conclusion. u

We can prove the following two Propositions in the same manner as the Sp(2) case.
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PROPOSITION 3 . 2 . There are the following non-zero elements in

H+(Mk(Sp{n))). For any a,b,c^ 0,

PROPOSITION 3 . 3 . There are the following non-zero elements in

H,(Mk(Sp(n))). For any a , 6 , O 0,

QoQlQi^im) € •ff(((2m+l)2c+l-l)2l'-l)2o(-^2<'+*+<:('5p(n)))> 1 < m < Jl — 1.

We now compute the homology of the classifying space of the gauge group.

PROPOSITION 3 . 4 . Over the rationals,

n- l

BQk ~Q Y[ {K(Z,4m) x K{Z,4m)) x K{Z,4n).

PROOF: Since BSp{n) ~Q f[ K(Z,4m),

m=\

n

Map{Si,BSp{n)) ~Q f [ Map(S4, K{Z,4m))
m=l

n - l

~ Z x Yl (K(Z,4m) x K(Z,4m)) x K{Z,4n).
m=l

Hence BQk ~Q "n (K(Z,4m) x K(Z,4m)) x K{Z,4n). D
m=l

THEOREM 3 . 5 . As a vector space,

H,(BGk) = H.(Sl$Sp(n)) ® H,(BSp(n)).

PROOF: We have the following fibration:

QosP(n) —> MapPk(S
4,BSp(n)) —> BSp{n).

Consider the Serre spectral sequence converging to H*(Mappk(S
4,BSp(n))) with

E2 = Ht(BSp(n)) ® H,(nlSp{n)).

The possible first non-zero differential is the transgression from some 4&-dimensional
element where Ht(BSp(n)) = T(a;4m : 1 ^ m ̂  n) as a coalgebra. But by the same
reason as in the proof of Theorem 2.12, there is no non-trivial differential. Hence the
Serre spectral sequence collapses from the _E2-term and we obtain the conclusion. D
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