Cold Dust and its Heating Sources in M 33

Shinya Komugi1,2, Tomoka Tosaki3, Kotaro Kohno4,5, Takashi Tsukagoshi4, Yoichi Tamura4, Rie Miura6, Sachiko Onodera7, Nario Kuno7, Ryohei Kawabe7, Koichiro Nakashin2, Tsuyoshi Sawada1,2, Hajime Ezawa2, Grant W. Wilson8, Min S. Yun8, Kimberly S. Scott9, David H. Hughes10, Itziar Aretxaga10, Thushara A. Perera11, Jason E. Austermann12, Kunihiko Tanaka13, Kazuyuki Muraoka14 and Fumi Egusa15

1 Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile, email: skomugi@alma.cl
2 National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, Japan
3 Joetsu Univ. of Education, Yamayashiki-machi, Joetsu, Niigata, 943-8512, Japan
4 Institute of Astronomy, School of Science, The University of Tokyo, Osawa, Mitaka, Tokyo, 181-0015, Japan
5 Research Center for Early Universe, School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-033, Japan
6 University of Tokyo, Department of Astronomy, School of Science, Hongo, Bunkyo, Tokyo, 113-033, Japan
7 Nobeyama Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano, 384-1305, Japan
8 Department of Astronomy, University of Massachusetts, Amherst, Massachusetts 01003, USA
9 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
10 Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Aptdo. Postal 51 7216, 72000 Puebla, Mexico
11 Department of Physics, Illinois Wesleyan University, Bloomington, Illinois 6172-2900, USA
12 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309, USA
13 Department of Physics, Keio University, 3-14-1 Yokohama, Kanagawa, Japan
14 Department of Physical Science, Osaka Prefecture University, 1-1 Sakai, Osaka, Japan
15 Institute of Space and Astronautical Science, Japan Space Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, Japan

Abstract. We have mapped the nearby face-on spiral galaxy M 33 in the 1.1 mm dust continuum using AzTEC on Atacama Submillimeter Telescope Experiment (ASTE). The preliminary results are presented here. The observed dust has a characteristic temperature of ∼ 21 K in the central kpc, radially declining down to ∼ 13 K at the edge of the star forming disk. We compare the dust temperatures with Ks band flux and star formation tracers. Our results imply that cold dust heating may be driven by long-lived stars even nearby star forming regions.

Keywords. (ISM:) dust, galaxies: ISM

1. Introduction

Dust in galaxies have a range of temperatures, but are known to be broadly characterizable by two distinct temperatures, namely the warm ∼ 50 K and cold ∼ 20 K
components. The distribution of dust temperature within galaxies, however, is not well known. As such, the heating sources of these components (i.e., which stellar population) is still controversial, especially for the cooler component where large scale, high resolution mapping surveys at far-infrared to submillimeter wavelengths are necessary.

M 33 is the nearest face-on galaxy, and makes it an ideal target for high angular resolution continuum surveys. The Atacama Submillimeter Telescope Experiment (ASTE; Ezawa et al., 2004, Kohno et al., 2005, Ezawa et al., 2008) was used with the AzTEC millimeter camera (Wilson, et al., 2008) in 2007-2008 to observe the whole star forming disk of M 33, attaining an angular resolution of $30'' \sim 120$ parsecs, just enough to resolve giant star forming complexes.

2. Preliminary Results

The left panel of figure 1 shows the obtained 1.1 mm map of M 33 as contours, overlayed on a greyscale H\textalpha\ image (Walterbos & Greenawalt, 1996). The dust continuum is detected out to a radius of 7 kpc, and clearly outlines the spiral structure that is seen in H\textalpha\, and also corresponds to the spiral structures observed in both CO and HI (Onodera et al., 2010, Tosaki et al., 2011). Such spatial correlation with H\textalpha\ has lead previous studies to conclude that the heating source of far-IR dust is heated by massive stars (e.g., Devereux et al., 1997), but spatial correlation alone cannot distinguish whether dust is actually warmer near these star forming regions or there is just more dust mass. We attempt to shed light on this issue by deriving the local temperature distribution within the galaxy.

2.1. Temperature Distribution

The right panel of figure 1 is a color temperature map obtained from a ratio of the 1.1 mm map with a Spitzer MIPS 160 μm image retrieved from the Spitzer Science Center.
data archive, assuming a dust emissivity index of $\beta = 2.0$. Although some temperature enhancements are evident in a few number of intense star forming regions, the dominant scale of temperature fluctuations is global, and not local to the individual star forming regions which are smaller than 1 kpc. Figure 2 is the radial variation of the temperature map. A smooth radial gradient is present. It is important to note that extended structures (typically $> 5'$) have been subtracted out in the 1.1 mm map during the reduction process, which we estimate to be $\sim 50\%$ of the total flux. We have estimated a correction for this by adding in an exponential disk structure to the observed 1.1 mm map. The resulting temperature gradient is shown as the shaded dashed line. The radial temperature gradient persists, declining from ~ 20 K in the central kpc to ~ 14 K in the outer star forming disk. The temperature distribution and radial gradient shows that the driving heating source of dust seen here does not fluctuate at small scales, which should be expected in case massive stars (as traced by the star forming regions) heat the dust.

2.2. Dust Temperature and Stellar Population

In order to directly compare the possible heating sources of cool dust, we have performed aperture photometry on individual HII regions with Oxygen abundance measurements. Dust temperature in each of these regions were compared to K_S band flux and ionizing flux as measured by a combination of $H\alpha$ and 24 μm flux (Calzetti et al., 2007), using a circular aperture with 36$''$ radius. Figure 3 shows the comparison between these measurements. The K_S band, assumed to be dominated by flux from long-lived stars, are found to be correlated with the dust temperature with correlation coefficient $r = 0.71$. The measure of ionizing flux, however, does not show a marked correlation with $r = 0.26$. This is not expected in the case where massive stars heat dust at 1.1 mm, in which case we should see a correlation between the intensity of star formation and the dust temperature.

3. Discussion

We showed that continuum flux at 1.1 mm concentrated near star forming regions are the result of more dust mass in these regions, not necessarily the result of higher dust
Figure 3. Dust temperature on x-axis, K_s (filled circles) or $H\alpha + 24 \mu m$ photometry (open circles) flux on y-axis. The y-axis is arbitrary shifted for comparison.

temperature. This gives important implications on the heating source of submillimeter dust.

Long-lived stars are known to be responsible for dust heating in diffuse regions which are devoid of massive star complexes. Our the smooth radial temperature gradient and the correlation of the dust temperature and K_s flux suggest that heating of dust observed at 1.1 mm, tracing a cooler component, may be driven by long-lived stars even for dust concentrated near star forming regions at scales smaller than 1 kpc. Such dust heating dominated by photons from long-lived stars could result if the dominant dust observed here are large, and absorbs optical photons efficiently in addition to UV (Draine & Lee, 1984, Xu & Helou, 1996, Bianchi et al., 2000).

Although this is a case study of M 33, it poses an important question on how we should interpret submillimeter flux when it becomes possible to detect normal star forming galaxies with upcoming telescopes like ALMA.

References

Kohno, K. 2005, ASP Conf. Ser. 344, 242