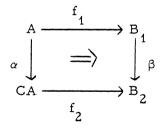
ON THE EXACTNESS OF THE ECKMANN-HILTON HOMOTOPY SEQUENCE

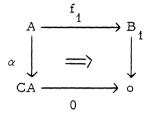
A.R. Pears

The theorem that the homotopy sequence is exact splits into six statements. Scherk ([4]) obviates the use of homotopy extension in the proof of one of these statements. The purpose of this note is to show that the method can be adapted to give a direct proof of the corresponding statement in the theorem that the Eckmann-Hilton homotopy sequence ([1]) is exact. The note is based on Eckmann's exposition ([2]). We are concerned with the proof of <u>b2</u>, pp. 34-35. Eckmann's notation is used; in particular all base-points are denoted by the symbol o, all constant maps by the symbol 0

Suppose we have a mapping of pairs



where $\alpha: A \rightarrow CA$ is the natural injection of A into CA. And suppose that the mapping of pairs



is homotopic to 0.

Let
$$F: A \times I \rightarrow B_1$$
 be a homotopy between f_1 and 0, and 1

671

let $\gamma : A \times I \rightarrow CA$ be the identification mapping. We consider $G : A \times I \times I \rightarrow B_2$ defined by

$$G(a,s,t) = \begin{cases} f_2 \gamma(a,-\phi) & \text{if } \phi \leq 0\\\\ \beta F(a,\phi) & \text{if } \phi \geq 0 \end{cases}$$

where $\phi = t - s - st$.

G is well defined and continuous for

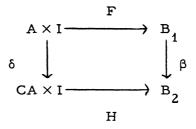
$$f_{2Y}(a,0) = f_{2}\alpha(a) = \beta f_{1}(a) = \beta F(a,0)$$
.

And

$$G(o, s, t) = o$$
, $G(a, 1, t) = f_2 \gamma(a, 1) = f_2(o) = o$.

Hence ([3], Lemma 3.4, p. 109) there is a continuous function $H: CA \times I \rightarrow B_2$ such that $G(a, s, t) = H(\gamma(a, s), t)$. Let $g: CA \rightarrow B_2$ be given by g(c) = H(c, 1). (F, H) is a homotopy between (f_1, f_2) and (0, g).

For consider the diagram



where $\delta(a,t) = (\alpha(a),t)$.

If $(a,t) \in A \times I$, $H\delta(a,t) = G(a,0,t) = \beta F(a,t)$

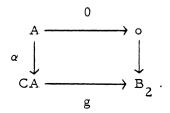
and so the diagram is commutative.

F is a homotopy between $f_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ and 0 ; and if $c\in CA$,

$$H(c, 0) = G(a, s, 0) = f_2\gamma(a, s) = f_2(c)$$
, $H(c, 1) = g(c)$

so that H is a homotopy between f_2 and g.

Finally consider



$$g\alpha(a) = G(a, 0, 1) = \beta F(a, 1) = \beta(o) = o$$

Thus the homotopy class of (0, g) is an element of $\Pi_1(A, B_2)$. Hence the class of (f_1, f_2) belongs to the image in $\Pi_1(A, \beta)$ of $\Pi_1(A, B_2)$ by J.

REFERENCES

- B. Eckmann and P. J. Hilton, Groupes d'homotopie et dualité. C. R. Acad. Sci. Paris 246 (1958) 2444-2446, 2555-2558.
- B. Eckmann, Homotopie et Cohomologie. Séminaire de Mathématiques Supérieures - Été 1964. Les Presses de l'Université de Montréal.
- P. J. Hilton, An Introduction to Homotopy Theory. Cambridge Tracts in Mathematics No. 43. Cambridge University Press.
- P. Scherk, On the exactness of the homotopy sequence. Canad. Math. Bull. 7 (1964), 617-618.

Queen Elizabeth College, University of London