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The multiplicator of a regular

product of groups

William Haebich

It is shewn that if G is an arbitrary regular product of its

subgroups A^ , X € I , then the multiplicator, M(G) , of G

is the direct product of the M[A,) together with a certain

other group. This extends a calculation of M[A~ X A^) due to

Schur. As an application, we find the multiplicator of a verbal

wreath product A wr,, B where A is abelian. A representing

group for a finite regular product is also constructed.

1. Regular products

In this section we define regular products and list some of their

properties needed in Section 2. Properties (1.7) and (1.8) are of

particular importance. Everything here can be found in Golovin [2].

DEFINITION 1.1. G is a regular product of its subgroups A^ ,

X € I s where I is an ordered set, if they generate G and A. n A^ = E

[ c ]
where A* = sgp\A I y € I, v t X\ . The A, are called regular factors

of G .

As usual A denotes the normal closure of A in G and E i s the

t r i v i a l group. From now on in th i s note we consider G to be a fixed

group generated by i t s subgroups A^ , X € I . The statement "G i s a

regular product of i t s subgroups A-. " wi l l be abbreviated to "G i s a
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280 W i I l i am Haebich

regular product".

If X^ is an arbitrary subgroup of G (X € X) then the notation

[Xjj will be used for the subgroup,

sgp([x^, x j | x^ € X^, x € X ; X, y € J; X * u) , called the cartesian of

the Xx .

The product "]""[" X, w i l l mean the s e t , in G , of a l l elements of the
XeX A

form x. a:, — x, where X. 6 X and X. < X- < . . . < X . If each X,
1 2 n ^ n

i s normal in G then | f X-. becomes the normal subgroup of G generated
XeX A

by the X, and any two orderings of X will yield the same product.

(1.2). \A^\ is normal in G.

(1.3). If G is generated by its subgroups A-^ then

G = 1 f A A \AA . Furthermore G is a regular product if and only if

each of its elements can be written uniquely as a product a, a-, ... a, u

1 2 n

where a, € <4 X < X < . . . < X and u € \A \ .

(1.4). If G is a regular product and X-. is a subgroup of 4, for

each X € X , then the subgroup of G generated by the X^ is a regular

product of the X-. .

(1.5). If G is a regular product then G1 = ~| | A[ \\AA .

W AJ L AJ

DEFINITION 1.6. If G is a regular product, a homomorphism <f> of

G to a group G is a regular honomorphism if ker<j> is a subgroup of

\AA : hence the terms regular homomorphia image and regular quotient

group.

(1 .7) . If G is a regular product and <$> : G •*• G is a regular
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The mul t ip I ica tor of a product 281

homomorphism then <J> restricted to A, is an isomorphism for each A € I

and Of) i s a regular product of the A,$ .

(1.8). if \p : ] |" 4 -»• G [where ] | A. denotes the free product
Xej A <• Xej A

of the A-. is the natural homomorphism induced by the identity map on

each A, , then G is a regular product if and only if \p is regular.

This last result shows that the free product of a set of groups can be

interpreted as the largest regular product of those groups. In the same

way, their direct product is the smallest such product. For, if G is a

regular product of the 4, , then the quotient G/ 4, is a direct product

of copies of the A. .

2. Calculation of the multi pi "icator

We define the multiplicator of G to be RnF'/[R, F] where F/R is

a presentation for G . The most direct way of approaching MiG) , when G

is a regular product, is to try to express RnF'/[/?, F] in terms of the

groups RnFl/[[RnFy) , F,] where F. is the group of elements in F which

map onto A, . [F./ROF-, is a presentation for A, •) This is the sort of
A A A A

method previously applied to #(4, x A2) (see [S]). The difficulty here

lies in not knowing how the F. generate F • It can be avoided by taking
A

a presentation, F,/i?, , for each 4, and constructing a presentation for

G from the free product ] | F. .
A d

In fact we begin with greater generality and let B, be a fixed group

A

which maps epimorphically onto A, under V. . This will allow us to
construct a representing group for G when it is finite.

Suppose that C, is the kernel of v. and that V is the natural

epimorphism from the free product B = 1 \ B. onto A = 1 \ A. induced
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by the V^ . Further, i f ty is the natural homomorphism from A onto G

induced by the ident i ty on each 4, , l e t H be the kernel of ^ and H.
A 0

the group in B which maps onto H under v . We have that

f A~\ Y A~\
H = H n U J since H £ U\M by (1.8)

L A J L A J
= HQv n \B^\V since S^ V = B̂ V V by definition of the cartesian

= [H n BT V since kerv J S by definition
1 v I AI ) U

= XV where X = H n BT i s normal i n B .

LEMMA 2 . 1 . B/C is isomorphie to G where C = T~T cf -X .

Proof. ( i ) We f i r s t show that kerv = ] [ (ft . (This i s almost

certainly well known but I cannot find i t in the l i t e r a t u r e . ) The kernel

of V contains ] |" (ft s ince , by construction of v , C,V i s t r i v i a l

for each X € I . On the other hand,

= [B nD [C , B~\)C s ince C £ B

= C
V

by Definition 1.1 and the fact that B n D [C , S] 5 B n B . Thus, i f

p i s the canonical homomorphism from B onto B / 1 T C\ , then B-.Q is
A -r A A

isomorphie to B-./C-. , and hence to 4 ,

Now Bp is generated by the S,p , X € I . Let n be the natural

epimorphism from A onto B induced by the isomorphism from each A. to

P A

B,p . The following diagram commutes
A
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A

The kernel of V is therefore contained in kerp = "| [ C\ and hence

kerv =

( i i ) The product, vty , of mappings is an epimorphism from B onto
G . Now,

b € kerviji «=» fcv^i = 1 in G

«=» bv € 5 since fi = ker*
<=* fc € kerV.X since K\> = H .

But

kerv.tf = T T <%\K f r ° m

l i e r A->

Thus C = kervifi from ( i) and ( i i ) .

We aim to find the structure of CoB1 /[C, B] which is isomorphic to

M(G) when S is free by Lemma 2 .1 .

LEMMA 2 . 2 . J T cf = ( T T C,l .1? ,»« B w^ere D = T T C ^ . B , , ] 8 .
AeJ A i X e l AJ "• - X,u<0- A M

Proof. We prove that c^ is in CyD for a l l c^ € C^ and i € B

by induction on the length of the normal form for b . This is t r i v i a l

b bx

when b i s of length one, for c ^ = e^[e , b j , X + u , and e^ € C.

since C\ i s normal in B . Suppose that c, € C.D for a l l elements i>

of length m and that bb i s a reduced word in B . Then
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bb ( b
e. = \p\d) where o\ £ C, , d £ D by the inductive hypothesis

A A A A

b
= °'x[p'x, b^\d V £ CXD since [c'x, b ] £ D for X * p ,

and i f X = p , then [c! , bS\ E C, .

Thus c j i s a subgroup of Ĉ O . I t follows that ~]~T Ĉ  i s a

subgroup of I I \C-.D) . By definit ion, every element of | | l^i^J c

be wri t ten in the form e, d-.o-.d-. . . . c, d-. where e, £ C, ,
1122 n n i i

dx £ D and \± < \ 2 < .. . < Xn . But
i

CKXK\K2X2^" \ \

\a\ a\ •••°\ \°\ •••°\
, 1 I A2 A3 \> l A3 \

= K °\ ••• °\ \d\ d\ ••• d\
K 1 2 n> 1 2 H

I f C. \D . Hence | f C is a subgroup of
XeJ J Xej

1 f ^x ' D ' T h e r e v e r s e inclusion i s t r i v i a l since [c^, B 1 is a

subgroup of C7 .

(2 .3) . CiJ C n B' = ("TT (c,nB;)|.ZJ.X ,
U e l A A J

f i i ; [C, S] = [TT [C,, BJ\D.[K, B] .

Proof. (i) C consists of all elements of the form

a = e , e , ...c-.dk w h e r e c ^ € C. , d £ D , k £ K , by t h e
12m i i

preceding two lemmas. The fact that OX is in B' means that e belongs

to B' i f and only i f ~c = c, e, • • • cx belongs to S1 . How, by
1 2 m

(1 .5 ) , every element of B' i s of the form bl b[ . . . b[ u where
Al A2 n
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'^ , M € S^ . But both Ĉ  and B^ are subgroups of B^

Therefore a is in B' if and only if a-. is in B^ by (1.2).

i i

Hi)

"TT , Lemma U.3

B, B]B)[K, B]

Now Ĉ 1L» BJ i s generated by the elements Lc\> ^J where c-. Z C-, ,

b (. B . We can prove that [a, , b\ € \P\* ^yjD by induction on the length

of b precisely as in Lemma 2.2. The resul t i s t r i v i a l for b = b .

Suppose that [e, , £>] € [c, , B,] .D for b of length m , then

[e, , Z>] = x,d where x, € [C, , s j and d £ D . If bb i s reduced then

which is an element of [c^, B^.[c^, B ] .D . Thus [c^, BJ is

subgroup of [C^, B^JD . Consequently,

> B1D since cx - Bx

Hence, from ( * ) , [C, B] i s a subgroup of T T (fc\> s j o ) .[X, B]
h e r A A J
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A g a i n , copy ing t h e argument of Lemma 2 . 2 , every e lement of

1 I ilf'-i > ^ I J ^ J i-s a p r o d u c t of t h e form x-. d-.x-.d-. ... x , d-. where
\el A ^ A l \ k2 A2 n n

x , f C, , B. , d. £ D and A. < Xo < . . . < X . This product can be
A • I A . A . I A • 1 c. n

rearranged to show that i t l i e s in ] \ [f-., B-.~\\D . That i s , [C, B] i s

a subgroup of ] f [ î,» Bv] #• [#> B] . The reverse inclusion is t r i v i a l .
W A A •>

To shorten the proof of the main theorem, a technical lemma is

established.

LEMMA 2 .4 . \cx, B 3 1 i s a subgroup of D for all X € J .

Proof. I t s u f f i c e s t o prove t h a t CT, B
u i s a subgroup of D

s i n c e C\ , # i s a subgroup of C7, ^ • The c a r t e s i a n \B~\ i s

genera ted by t h e elements \b , b_] where b € B~ ; fc € B •

p , p € J ; p ^ p . Thus, because CT i s normal i n £ , \^\i u\\ ^-s

n n D

generated by the elements [2>^, b p , c j , b^i B^ ; bp Z Bp ; e^ € C^ ;

)J 5̂  p . Moreover,

, BS 5 |CXD, B5 from Lemma 2.2

S D provided X ̂  y .

The lemma i s t h e r e f o r e proved i f [b , b , c^\ , u ^ p , can be shown t o

l i e i n \ut, B~\ for some a t X .

The fol lowing i d e n t i t y comes from Hall [ 3 ] , ( 1 0 . 2 . 1 . 3 ) , page 150,

y v
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i s normal in S, (X ^ p

Consider the first commutator. There are two cases. If X= y then

[ v \X' bf\ lies in B ' Ĵ since

since y ^ p by hypothesis). If X ̂  y then

-1

- 1

[•*• \X> tf] = [-x. »?

which is in

subgroup

is

The second commutator

l - l

is in the normal

[*••>?}• can be t reated in the same fashion.

The result follows from (••).

THEOREM 2.5. CnB'/[C, B] is isomorphic to the direct product

CxrB'/iCx, flx]j x H/[H, A] . •

Proof. The argument is sp l i t into three pa r t s .

( i ) Let <(> be the canonical homomorphism from B onto B/D . Then

(J> is a regular homomorphism since kercj) = D and D i s clearly a subgroup

of BT . I t follows from (1.7) that 4> res t r i c ted to B, is an

isomorphism for each X € I and that B(j> is a regular product of the

V-
Consider N = sgp^cf ) | X € l) .X<J> in B(j) . Now

i s a subgroup of D = kercj) , thus

(a) [Cx<f>, C ^ ] = E in BcJ> .

, X ?f u ,

Also
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\jpx, K] < \cx, \B^\] since K S |B 1̂ by construction

- D by Lemma 2 . h.

Thus

(b)

(c )

In addition,

[cx4

cx*n n (Bx<j.) = E

and

(d) ^ n " n CA < fs / * ] n 7 7 CA

= E by (1.3).

Conditions (a) to (d) are sufficient to make N a direct product of

i t s subgroups X<j> and C,<!) .

(ii)

CnB'/[C, B] « C{^'JyD s i nce Z>S [C, B] from (2 .3 ) ( i i )

= (CnB'H/fC, B](j) .

From ( i ) and ( 2 . 3 ) , we have t h a t (CnB' )<f> i s the d i r e c t product of i t s

subgroups K§ and (C,nflx)<[> , X € I , ( s ince £><(> = £ ) and t h a t [C, B]<f>

i s t h e d i r e c t product of i t s subgroups [K, B]4> and [C^, B^] <t> , X € J .

T h i s , t o g e t h e r wi th the f a c t s that [K, B]4> S ^ and

[cx, Bx](|) £ (cxnBx)<)) , imp l i e s t ha t

K4>/[K,

> B](f) >

since 4> is an isomorphism on Bx .

( i i i ) In conclusion, we prove that K$/[K, B]<() is isomorphic to
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H/[H, A] . Now,

(1) « • / [ * , 5 ] * * [K!B]D/D S i n c e D =

= KD/[K, B]D

= K[K, B ) D / [ K , B]D s i n c e X 5 B

n [X, B].Z? .

Similarly

(2) Kv/[K, B]v = £/# n kerv.[# , B] .

| I CT [X, B] s ince kerV = | f CT from Lemma

2.1 ( i ) . Thus

= K n O[X, B] . s ince X, Z?U, B] £

Hence

X<f>/U, B]<}> = Xv / [^ , S]v from ( l ) and (2)

= H/[H, A] s ince Kv = H by co n s t ru c t i o n .

The main r e s u l t i s a c o r o l l a r y t o Theorem 2 . 5 .

THEOREM 2.6. M(G) is isomorphie to the direct product

1 \ M[A,)\ x H/[H, A] when G is a regular product of the A. and
W A > A

A/H - G where A = 7~T* 4 . .
\el A

Proof. If B^ i s a free group then ^\/^\ i s a presentation for A-^

and C,nB'/[c, , B,] equals M[AA . The free product, B , wil l be a free

group and, since B/C i s isomorphie to G , M(G) equals CnB'/[C, B] .

The resul t follows immediately from Theorem 2.5-

Theorem 2.6 reduces the problem of finding M(G) t o that of finding

H/[H, A] . When G = A± x A2 , A = A^ * A2 and

H/[H, A] = [_AV A2] I \\AX, A2], A \ . Wiegold ( [ 9 ] , Lemma 3.9) shows t h a t
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the l a t t e r group i s isomorphic to A. ® A~ • So we have the well known

r e s u l t , f i r s t proved by Schur, that M[A X A ) i s isomorphic to

M[A±) x M[A2) x [Ai ® A2) .

3. Construction of a representing group

There is a useful characterisation of M(G) , when G i s f i n i t e , due

to Schur [7] , Of a l l the pairs of groups (£, M) such that

(i) L i s f i n i t e ,

( i i ) M < L' n Z(£) ,

( i i i ) L/M = G ,

there exists an L of maximal order called a representing group for G .

The M corresponding to such an L is isomorphic to M(G) . We wi l l ca l l

the pair (L, M) a representing pair when £ i s a representing group.

I f G i s f i n i t e then i t must be generated by a f in i te set of

subgroups A^ , 4 O , . . . , A . Let \L., M[H.)\ be a representing pair for
x d n \ i* t- )

A. , i = 1, 2, ..., n . Then these can be used to form a representing

pai r for G when G i s a regular product.

We use the same constructions as before. There is an epimorphism from
n «

L. to A. with kernel AfU.) by hypothesis. Let L = "| | L. and O
*- z- l i=i t

be the natural epimorphism from L onto A induced by these epimorphisms.

Put J = H n \L.\ , where H is the group in L which maps onto H

n L

under a , and l e t N = ~\ f {M[A.) , L.] . Then Jo = H is normal in
i3=l V 3

THEOREM 3 .1 . Suppose G is finite and a regular product of its

subgroups A , A , ..., A . let \L^, M{A^\ be a fixed representing

pair for A. . Then (LT , Mr) is a representing pair for G where
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x : L •* L/N[J, L] and M = fTT^O*-) \-J in L . The groups L, N and

J are as defined above.

Proof. ( i ) Apply Lemma 2 . 1 by p u t t i n g I = ( l , 2 , . . . , n} , B. = L.

and C. = M{A.) . Then L = B , C = M , N = D and J = K . We have

G - B/C from Lemma 2 .1

Bl ~ C from (2-3) t1)-

Thus G = jy/^K'^i = ^T/Aft by definition of T .

Now J is a subgroup of L' immediately from i t s defini t ion, and

MIA.) i s a subgroup of L\ by hypothesis, so that M is a subgroup of

L' . That i s (Mr)' i s a subgroup of ( £ T ) ' .

The kernel of T contains [J, L] as a subgroup which means that Ji

i s central in Lx . Also [W(J4.J, L .] , i # j , i s a subgroup of N

which is in kerT . Thus M[A.)x commutes with L.x for i * j . If

i = j then M[A.) commutes with L- by hypothesis. Hence Mx , as a

product of J T and the M[A^)X , i s central in Lx .

The pair (Lx, Mx) wi l l be a representing pair i f Mx i s isomorphic

to M(G) .

( i i ) Theorem 2.5 gives that

MnL'/[M, L] - ( f T (w(^)nL^] / [tf^) , L/| j x

But M[A_^ < £^ n Z (L Ĵ SO that W ^ ) n £^ = M{A^ and

, 1 ^ ] = ^ . Hence

U £1 =

= M(G) by Theorem 2.6.

Looking at the quotient MnL'/[M, L] , we have from (2.3) (ii), that
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[J, L][M, L] = T J \M{A.) , L.]
[1- , . 7 = 1

= N[J, L] by definition

= kerT .

Thus m = MnL'/[M, L] - M(G) .

Theorem 3.1 has already been established by Wiegold in [70] for the

case where G = A x A .

4. An appl icat ion of Theorem 2.6

Blackburn has calculated the multiplicator of a wreath product A wr B

for arbi t rary groups A and B in [ I ] . I can obtain a more general

r e su l t for a verbal wreath product, A wr., B , using techniques similar to

those of Section 2. However, when A i s abelian, A wr,, B i s

isomorphic t o a regular product of A and B and M{A wr~ B) can be

found direct ly using Theorem 2.6.

Let A, be an isomorphic copy of A for each b i B and denote by

a, the element of A-, mapped to a € A . The F-verbal product

D = I f A, corresponding to a set of words V i s defined to be the
b D

quotient C/Cv where C = J~\* A and C = V(C) n U? (see Moran [5] ) .
" z ° v L DJv where C = J \ A and C" z,€B °

 v

The mapping a, >—*• a,, , for a l l a € A , b £ B and fixed b' € B ,

induces automorphisms of both C and D .

DEFINITION 4 . 1 . The free wreath product of A by B , A wr,, B , is

the splitting extension of C by B under the above action of B on C .

Similarly the V-verbal wreath product A wr^ B 3 is the splitting

extension of D by R under the action of B on D .

Actually A wry B = A wr,, B when V i s the empty word.

The verbal wreath product is generated by A. and B since
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a, = b" ab for a l l a 6 A , b . € B . I t i s therefore a quotient of

A * B by some group H . Now both U, and V(C) are invariant under

the action of B on C by definition of the cartesian and since verbal

subgroups are character is t ic . That i s Cy = V(C) n \AA i s normal in

A wr,, B . Tt follows from Definition l+.l that A wr^ B i s isomorphic to

A vrA B/Cy . But it is well known that the natural epimorphism from A * B

onto A VTj B induced by the identity on B and the isomorphism

A •* A. , is also an isomorphism (Hal I and Hartley [4]). Hence

H = Cyf1 and,

(4.2) . A wr B is isomorphio to A*B/Cy<f .

By (1.8) A vry B wi l l be a regular product of A and B i f Cyif

is contained in the cartesian [ 4 , 5 ] , or equivalently, i f Cv i s

contained in [A, B]<J> . F i rs t ly

[A, S ] * " 1 = sgp[[a, bW1 | a € A, b € fl)

1 ^ | a € A, b € B

^ a " 1 ^ , \ a I A;b,b' €

Also, by (1 .2) , J4, i s the normal closure in C of the commutators

[ a f c J o £ , ] , a , a ' € X ; b,b' i B . B u t
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for a l l a, a' (.A i f and only if A i s abelian. Thus \AA i s

contained in [A, B]<j> and A wrf B is indeed a regular product of A and

B .

THEOREM 4.3. If A is abelian, the multiplicator of A wr B is

isomorphic to M{A) X M(B) X Cy/\Cy, C\\fv, fl] where Cy = V(C) n w£ ,

_*
C = | I A-, and the quotient is evaluated in A wr* B .

bB

Proof. From Theorem 2.6 the multiplicator of A*B/Cy<f i s

M(A) x M{B) x C]/f
X/\cv$~'L, A*B\ . Also

= CV/\CV, A wr, B]

= Cy/\pv, C.B] since 4 wr* B

is the splitting extension of C by B

= Cy/lCv, C]\CV, B] .

The ordinary wreath product A wr B i s obtained from A wr^ B when

V{C) = C' and D becomes the direct product f T * Au •
b*B b

COROLLARY 4.4. If A is dbelian, M(A wr B) is isomorphic to
„ -I

T T A, ® A, , \/N where "<" is any fixed ordering of the
b<b' b b >

elements of B and N is the subgroup generated by the elements

[ab ® ^ . r 1 ^ . . ® <%,„,) when bb" < b'b"

[ab ® aj3,)~'L[ab,bn ® a^,,)'1 when b'b" < bb"

for all a, a' € A ; b, b' , b" (. B .

Proof. When V(C) = C , denote

canonical homomorphism from A wr* B onto A wr* B/[CX, c\ ; {[Px, Cj is

Proof. When V(C) = C , denote Cy by Cx and l e t a be the
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normal since C i s normal) . The quotient C^/|_C^, Cj [Cy, B] i s

isomorphic to Cx
a/[px>

 Bla •

Now Cx = C' n A = A, , so that 0a is the second nilpotent

product, 1 [ A . of the A, (see [6]). We have the following

elementary facts:

(i) A, a is central in Co. , by construction of a ;

( i i) A, a = 1 T [A. , Ap]a by definition of the cartesian
L -^ b,b «B

and ( i ) ;

( i i i ) [A, , A, , | a = IA, , , Ajla ;

(iv) ^ , Ab^a n sgp^il j , AfcJa | 2»2, fc^ € B;

[b2,b'2] * [bltb'x)t {b'^bj

is trivial by Definition 1.1 and the associativity of

nilpotent products [2];

(v) [A, , A, ,] = A, ® A, , by the remark following Theorem

2.6.

Therefore A, a is isomorphic to 1 [

Finally,

, „ ]

by d e f i n i t i o n o f 4 , and ( i )
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i x i
The quotient Cxa/£cx, s]a is clearly isomorphic to I] f* A-, ® A, , >
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