The multiplicator of a regular product of groups

William Haebich

It is shown that if G is an arbitrary regular product of its subgroups $A_{\lambda}, \lambda \in I$, then the multiplicator, $M(G)$, of G is the direct product of the $M\left(A_{\lambda}\right)$ together with a certain other group. This extends a calculation of $M\left(A_{1} \times A_{2}\right)$ due to Schur. As an application, we find the multiplicator of a verbal wreath product $A \mathrm{wr}_{V} B$ where A is abelian. A representing group for a finite regular product is also constructed.

1. Regular products

In this section we define regular products and list some of their properties needed in Section 2. Properties (1.7) and (1.8) are of particular importance. Everything here can be found in Golovin [2].

DEFINITION 1.1. G is a regular product of $i t s$ subgroups A_{λ}, $\lambda \in I$, where I is an ordered set, if they generate G and $A_{\lambda} \cap \hat{A}_{\lambda}=E$ where $\hat{A}_{\lambda}=\operatorname{sgp}\left(A_{\mu}^{G} \mid \mu \in I, \mu \neq \lambda\right)$. The A_{λ} are called regular factors of G.

As usual A_{μ}^{G} denotes the normal closure of A_{μ} in G and E is the trivial group. From now on in this note we consider G to be a fixed group generated by its subgroups $A_{\lambda}, \lambda \in I$. The statement " G is a regular product of its subgroups A_{λ} "will be abbreviated to " G is a

[^0]regular product".
If X_{λ} is an arbitrary subgroup of $G(\lambda \in I)$ then the notation $\left[X_{\lambda}\right]$ will be used for the subgroup, $\operatorname{sgp}\left(\left[x_{\lambda}, x_{\mu}\right] \mid x_{\lambda} \in X_{\lambda} ; x_{\mu} \in X_{\mu} ; \lambda, \mu \in I ; \lambda \neq \mu\right)$, called the cartesion of the X_{λ}.

The product $\prod_{\lambda \in I} x_{\lambda}$ will mean the set, in G, of all elements of the form $x_{\lambda_{1}} x_{\lambda_{2}} \cdots x_{\lambda_{n}}$ where $\lambda_{j} \in I$ and $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. If each X_{λ} is normal in G then $\prod_{\lambda \in I} X_{\lambda}$ becomes the normal subgroup of G generated by the X_{λ} and any two orderings of I will yield the same product.
(1.2). $\left[A_{\lambda}^{G}\right]$ is normal in G.
(1.3). If G is generated by its subgroups A_{λ} then
$G=\left(\prod_{\lambda \in I} A_{\lambda}\right)\left[\begin{array}{c}A_{\lambda}^{G}\end{array}\right]$. Furthermore G is a regular product if and only if each of $i t s$ elements can be written uniquely as a product $a_{\lambda_{1}} a_{\lambda_{2}} \cdots a_{\lambda_{n}}{ }^{u}$ where $a_{\lambda_{i}} \in A_{\lambda_{i}}, \lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$ and $u \in\left[A_{\lambda}^{G}\right]$.
(1.4). If G is a regular product and X_{λ} is a subgroup of A_{λ} for each $\lambda \in I$, then the subgroup of G generated by the X_{λ} is a regutar product of the X_{λ}.
(1.5). If G is a regular product then $G^{\prime}=\left(\prod_{\lambda \in I} A_{\lambda}^{\prime}\right)\left[A_{\lambda}^{G}\right]$.

DEFINITION 1.6. If G is a regular product, a homomorphism ϕ of G to a group \bar{G} is a regular homomorphism if ker ϕ is a subgroup of $\left[A_{\lambda}^{G}\right]$: hence the terms regular homomorphic image and regular quotient group.
(1.7). If G is a regular product and $\phi: G \rightarrow \bar{G}$ is a regular
homomorphism then ϕ restricted to A_{λ} is an isomorphism for each $\lambda \in I$ and $G \phi$ is a regular product of the $A_{\lambda} \phi$.
(1.8). If $\psi: \prod_{\lambda \in I}^{*} A_{\lambda} \rightarrow G$ where $\prod_{\lambda \in I}^{*} A_{\lambda}$ denotes the free product of the A_{λ}) is the natural homomorphism induced by the identity map on each A_{λ}, then G is a regular product if and only if ψ is regular.

This last result shows that the free product of a set of groups can be interpreted as the largest regular product of those groups. In the same way, their direct product is the smallest such product. For, if G is a regular product of the A_{λ}, then the quotient $G /\left[A_{\lambda}^{G}\right]$ is a direct product of copies of the A_{λ}.

2. Calculation of the multiplicator

We define the multiplicator of G to be $R \cap F^{\prime} /[R, F]$ where F / R is a presentation for G. The most direct way of approaching $M(G)$, when G is a regular product, is to try to express $R \cap F^{\prime} /[R, F]$ in terms of the groups $R \cap F_{\lambda}^{\prime} /\left[\left(R \cap F_{\lambda}\right), F_{\lambda}\right]$ where F_{λ} is the group of elements in F which map onto $A_{\lambda} .\left(F_{\lambda} / R \cap F_{\lambda}\right.$ is a presentation for $\left.A_{\lambda}.\right)$ This is the sort of method previously applied to $M\left(A_{1} \times A_{2}\right)$ (see [8]). The difficulty here lies in not knowing how the F_{λ} generate F. It can be avoided by taking a presentation, $F_{\lambda} / R_{\lambda}$, for each A_{λ} and constructing a presentation for G from the free product $\prod_{\lambda \in I}^{*} F_{\lambda}$.

In fact we begin with greater generality and let B_{λ} be a fixed group which maps epimorphically onto A_{λ} under v_{λ}. This will allow us to construct a representing group for G when it is finite.

Suppose that C_{λ} is the kernel of v_{λ} and that v is the natural epimorphism from the free product $B=\prod_{\lambda \in I}^{*} B_{\lambda}$ onto $A=\prod_{\lambda \in I}^{*} A_{\lambda}$ induced
by the v_{λ}. Further, if ψ is the natural homomorphism from A onto G induced by the identity on each A_{λ}, let H be the kernel of ψ and H_{0} the group in B which maps onto H under v. We have that

$$
\begin{array}{rlrlrl}
H & =H \cap\left[A_{\lambda}^{A}\right] & \text { since } & H \leq\left[A_{\lambda}^{A}\right] & & \text { by (1.8) } \\
& =H_{0} \nu \cap\left[B_{\lambda}^{B}\right] \nu & \text { since } & {\left[B_{\lambda}^{B}\right] \nu=\left[B \nu^{B} \nu\right.} \\
& =\left(H_{0} \cap\left[B_{\lambda}^{B}\right]\right) & & \text { by definition of the cartesian } \\
& =K \nu & & \text { since } & \text { kerv } \leq H_{0} &
\end{array}
$$

LEMMA 2.1. B / C is isomorphic to G where $C=\left(\prod_{\lambda \in I} c_{\lambda}^{B}\right) \cdot K$.

Proof. (i) We first show that kerv $=\prod_{\lambda \in I} c_{\lambda}^{B}$. (This is almost certainly well known but I cannot find it in the literature.) The kernel of ν contains $\prod_{\lambda \in I} C_{\lambda}^{B}$ since, by construction of $\nu, C_{\lambda} \nu$ is trivial for each $\lambda \in I$. On the other hand,

$$
\begin{array}{rlrl}
B_{\mu} \cap \prod_{\lambda \in I} c_{\lambda}^{B} & =B_{\mu} \cap D_{\mu} C_{\mu}^{B} & \text { where } \quad D_{\mu}=\prod_{\substack{\lambda \in I \\
\lambda \neq \mu}} c_{\lambda}^{B} \\
& =\left(B_{\mu} \cap D_{\mu}\left[C_{\mu}, B\right]\right) C_{\mu} \quad \text { since } \quad C_{\mu} \leq B_{\mu} \\
& =C_{\mu}
\end{array}
$$

by Definition 1.1 and the fact that $B_{\mu} \cap D_{\mu}\left[C_{\mu}, B\right] \leq B_{\mu} \cap \hat{B}_{\mu}$. Thus, if ρ is the canonical homomorphism from B onto $B / \prod_{\lambda \in I} C_{\lambda}^{B}$, then $B \lambda_{\lambda}^{\rho}$ is isomorphic to $B_{\lambda} / C_{\lambda}$, and hence to A_{λ}.

Now $B \rho$ is generated by the $B_{\lambda} \rho, \lambda \in I$. Let η be the natural epimorphism from A onto B_{ρ} induced by the isomorphism from each A_{λ} to $B_{\lambda} \rho$. The following diagram commutes

The kernel of v is therefore contained in ker $=\prod_{\lambda \in I} c_{\lambda}^{B}$ and hence $\operatorname{kerv}=\prod_{\lambda \in I} C_{\lambda}^{B}$.
(ii) The product, $\nu \psi$, of mappings is an epimorphism from B onto G. Now,

$$
\begin{array}{rlrl}
b \in \operatorname{ker} v \psi & \Longleftrightarrow b v \psi=1 & & \text { in } G \\
& \Longleftrightarrow b v \in H & & \text { since } H=\operatorname{ker} \psi \\
& \Longleftrightarrow b \in \operatorname{ker} v . K & \text { since } K \nu=H .
\end{array}
$$

But

$$
\begin{aligned}
\operatorname{ker} \nu . K & =\left(\prod_{\lambda \in I} C_{\lambda}^{B}\right) K \quad \text { from }(i) \\
& =C
\end{aligned}
$$

Thus $C=$ kerv ψ from (i) and (ii).
We aim to find the structure of $C \cap B^{\prime} /[C ; B]$ which is isomorphic to $M(G)$ when B is free by Lemma 2.1.

LEMMA 2.2. $\prod_{\lambda \in I} c_{\lambda}^{B}=\left(\prod_{\lambda \in I} C_{\lambda}\right) . D$ inn B where $D=\prod_{\substack{\lambda, \mu \in I \\ \lambda \neq \mu}}\left[C_{\lambda}, B_{\mu}\right]^{B}$.
Proof. We prove that c_{λ}^{b} is in $C_{\lambda} D$ for all $c_{\lambda} \in C_{\lambda}$ and $b \in B$ by induction on the length of the normal form for b. This is trivial when b is of length one, for $c_{\lambda}^{b^{\mu}}=c_{\lambda}\left[c, b_{\mu}\right], \lambda \neq \mu$, and $c_{\lambda}^{b} \in c_{\lambda}$ since C_{λ} is normal in B. Suppose that $c_{\lambda}^{b} \in C_{\lambda} D$ for all elements b of length m and that $b b_{\mu}$ is a reduced word in B. Then

$$
\begin{aligned}
c_{\lambda}^{b b_{\mu}} & =\left(c_{\lambda}^{\prime} d\right)^{b_{\mu}} \text { where } c_{\lambda}^{\prime} \in c_{\lambda}, d \in D \text { by the inductive hypothesis } \\
& =c_{\lambda}^{\prime}\left[c_{\lambda}^{\prime}, b_{\mu}\right] d^{b_{\mu}} \in c_{\lambda} D \text { since }\left[c_{\lambda}^{\prime}, b_{\mu}\right] \in D \text { for } \lambda \neq \mu
\end{aligned}
$$

and if $\lambda=\mu$, then $\left[c_{\lambda}^{\prime}, b_{\lambda}\right] \in C_{\lambda}$.
Thus C_{λ}^{B} is a subgroup of $C_{\lambda} D$. It follows that $\prod_{\lambda \in I} C_{\lambda}^{B}$ is a subgroup of $\prod_{\lambda \in I}\left(C_{\lambda} D\right)$. By definition, every element of $\prod_{\lambda \epsilon I}\left(C_{\lambda} D\right)$ can be written in the form $c_{\lambda_{1}} d_{\lambda_{1}} c_{\lambda_{2}} d_{\lambda_{2}} \cdots c_{\lambda_{n}} d_{\lambda_{n}}$ where $c_{\lambda_{i}} \in c_{\lambda_{i}}$, $d_{\lambda_{i}} \in D$ and $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. But $c_{\lambda_{1}} d_{\lambda_{1}} c_{\lambda_{2}} d_{\lambda_{2}} \check{\check{c}} c_{\lambda_{n}} d_{\lambda_{n}}$

$$
=\left(\begin{array}{lll}
c_{\lambda_{1}} c_{\lambda_{2}} & \cdots c_{\lambda_{n}}
\end{array}\right) d_{\lambda_{1}}\left(c_{\lambda_{2}} c_{\lambda_{3}} \cdots c_{\lambda_{n}}\right) \quad\left(c_{\lambda_{3}} \cdots c_{\lambda_{n}}\right)
$$

which belongs to $\left(\prod_{\lambda \in I} C_{\lambda}\right) D$. Hence $\prod_{\lambda \in I} C_{\lambda}^{B}$ is a subgroup of $\left(\prod_{\lambda \in I} C_{\lambda}\right\} . D . \quad$ The reverse inclusion is trivial since $\left[C_{\lambda}, B_{\mu}\right]^{B}$ is a subgroup of C_{λ}^{B}.
(2.3). (i) $C \cap B^{\prime}=\left(\prod_{\lambda \in I}\left(C_{\lambda} \cap B_{\lambda}^{\prime}\right)\right) \cdot D . K$,

$$
\text { (ii) } \quad[C, B]=\left(\prod_{\lambda \in I}\left[C_{\lambda}, B_{\lambda}\right]\right) D .[K, B]
$$

Proof. (i) C consists of all elements of the form $c=c_{\lambda_{1}} c_{\lambda_{2}} \cdots c_{\lambda_{m}} d k$ where $c_{\lambda_{i}} \in c_{\lambda_{i}}, d \in D, k \in K$, by the preceding two lemmas. The fact that $D K$ is in B^{\prime} means that c belongs to B^{\prime} if and only if $\bar{c}=c_{\lambda_{1}} c_{\lambda_{2}} \cdots c_{\lambda_{m}}$ belongs to B^{\prime}. Now, by (1.5), every element of B^{\prime} is of the form $b_{\lambda_{1}^{\prime}}^{\prime} b_{\lambda_{2}}^{\prime} \ldots b_{\lambda_{n}}^{\prime} u$ where
$b_{\lambda}^{\prime} \in B_{\lambda}^{\prime}, \quad u \in\left[B_{\lambda}^{B}\right]$. But both $C_{\lambda_{i}}$ and $B_{\lambda_{i}}^{\prime}$ are subgroups of $B_{\lambda_{i}}$. Therefore \bar{c} is in B^{\prime} if and only if $c_{\lambda_{i}}$ is in $B_{\lambda_{i}}^{\prime}$ by (1.2).
(ii)
(*)

$$
\begin{aligned}
{[C, B] } & =\left[\left(\prod_{\lambda \in I} c_{\lambda}^{B}\right) K, B\right] \\
& =\left(\prod_{\lambda \epsilon I}\left[c_{\lambda}^{B}, B\right]\right)[K, B] \text { by }[2], \text { Lemma } 4.3 \\
& =\left(\prod_{\lambda \in I}\left[C_{\lambda}, B\right]^{B}\right)[K, B]
\end{aligned}
$$

Now $\left[c_{\lambda}, B\right]$ is generated by the elements $\left[c_{\lambda}, b\right]$ where $c_{\lambda} \in c_{\lambda}$, $b \in B$. We can prove that $\left[c_{\lambda}, b\right] \in\left[C_{\lambda}, B_{\lambda}\right] D$ by induction on the length of b precisely as in Lemma 2.2. The result is trivial for $b=b_{\mu}$. Suppose that $\left[c_{\lambda}, b\right] \in\left[C_{\lambda}, B_{\lambda}\right] \cdot D$ for b of length m, then $\left[c_{\lambda}, b\right]=x_{\lambda} d$ where $x_{\lambda} \in\left[C_{\lambda}, B_{\lambda}\right]$ and $d \in D$. If $b b_{\mu}$ is reduced then

$$
\begin{aligned}
{\left[c_{\lambda}, b b_{\mu}\right] } & =\left[c_{\lambda}, b_{\mu}\right]\left[c_{\lambda}, b\right]^{b} \\
& =\left[c_{\lambda}, b_{\mu}\right]_{\lambda}^{b_{\mu}}{ }_{d}^{b} \\
& =\left[c_{\lambda}, b_{\mu}\right] x_{\lambda}\left[x_{\lambda}, b_{\mu}\right] d^{b_{\mu}}
\end{aligned}
$$

which is an element of $\left[C_{\lambda}, B_{\lambda}\right] \cdot\left[C_{\lambda}, B_{\mu}\right] \cdot D$. Thus $\left[C_{\lambda}, B\right]$ is a subgroup of $\left[C_{\lambda}, B_{\lambda}\right] D$. Consequently,

$$
\begin{aligned}
{\left[C_{\lambda}, B\right]^{B} } & \leq\left[C_{\lambda}, B_{\lambda}\right]^{B} \cdot D^{B} \\
& =\left[C_{\lambda}, B_{\lambda}\right]\left[\left[C_{\lambda}, B_{\lambda}\right], B\right] D \\
& \leq\left[C_{\lambda}, B_{\lambda}\right]\left[C_{\lambda}, B\right] D \text { since } C_{\lambda} \leq B_{\lambda} \\
& \leq\left[C_{\lambda}, B_{\lambda}\right] D
\end{aligned}
$$

Hence, from $(*),[C, B]$ is a subgroup of $\left(\prod_{\lambda \in I}\left(\left[C_{\lambda}, B_{\lambda}\right] D\right)\right) \cdot[K, B]$.

Again, copying the argument of Lemma 2.2, every element of
$\prod_{\lambda \in I}\left(\left[C_{\lambda}, B_{\lambda}\right] D\right)$ is a product of the form $x_{\lambda_{1}} d_{\lambda_{1}} x_{\lambda_{2}} d_{\lambda_{2}} \ldots x_{\lambda_{n}} d_{\lambda_{n}}$ where $x_{\lambda_{i}} \in\left[C_{\lambda_{i}}, B_{\lambda_{i}}\right], d_{\lambda_{i}} \in D$ and $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. This product can be rearranged to show that it lies in $\left(\prod_{\lambda \in I}\left[C_{\lambda}, B_{\lambda}\right]\right) D$. That is, $[C, B]$ is a subgroup of $\left(\prod_{\lambda \in I}\left[C_{\lambda}, B_{\lambda}\right]\right) D .[K, B]$. The reverse inclusion is trivial.

To shorten the proof of the main theorem, a technical lemma is established.

LEMMA 2.4. $\left[C_{\lambda},\left[\begin{array}{c}B_{\mu} \\ \mu\end{array}\right]\right]$ is a subgroup of D for all $\lambda \in I$.
Proof. It suffices to prove that $\left[C_{\lambda}^{B},\left[\begin{array}{l}B_{\mu}^{B} \\ \mu\end{array}\right]\right.$ is a subgroup of D since $\left[C_{\lambda},\left[\begin{array}{l}B_{\mu}^{B} \\ \mu\end{array}\right]\right.$ is a subgroup of $\left[C_{\lambda}^{B},\left[\begin{array}{c}B \\ B_{\mu} \\ \mu\end{array}\right]\right]$. The cartesian $\left[\begin{array}{c}B \\ B_{\mu}\end{array}\right]$ is generated by the elements $\left[b_{\mu}, b_{\rho}\right]$ where $b_{\mu} \in B_{\mu}^{B} ; b_{\rho} \in B_{\rho}^{B}$; $\mu, \rho \in I ; \mu \neq \rho$. Thus, because C_{λ}^{B} is normal in $B,\left[C_{\lambda}^{B},\left[B_{\mu}^{B}\right]\right]$ is generated by the elements $\left[b_{\mu}, b_{\rho}, c_{\lambda}\right], b_{\mu} \in B_{\mu}^{B} ; b_{\rho} \in B_{\rho}^{B} ; c_{\lambda} \in c_{\lambda}^{B}$; $\mu \neq \rho$. Moreover,

$$
\begin{array}{rlr}
{\left[C_{\lambda}^{B}, B_{\mu}^{B}\right]} & \leq\left[C_{\lambda} D, B_{\mu}^{B}\right] & \text { from Lemma } 2.2 \\
& =\left[C_{\lambda}, B_{\mu}^{B}\right]\left[D, B_{\mu}^{B}\right] & \\
& \leq D & \text { provided } \lambda \neq \mu .
\end{array}
$$

The lemma is therefore proved if $\left[b_{\mu}, b_{\rho}, c_{\lambda}\right], \mu \neq \rho$, can be shown to lie in $\left[C_{\lambda}^{B}, B_{\sigma}^{B}\right]$ for some $\sigma \neq \lambda$.

The following identity comes from Hall [3], (10.2.1.3), page 150,
(**)

$$
\left[b_{\mu}, b_{\rho}, c_{\lambda}\right]=\left[c_{\lambda}, b_{\mu}^{-1}, b_{\rho}^{-1}\right]^{-b_{\mu}^{b_{\rho}^{-1}}}\left[b_{\rho}^{-1}, c_{\lambda}^{-1}, b_{\mu}^{-1}\right]^{-c_{\lambda}^{-1} b_{1}^{-1}}
$$

Consider the first commutator. There are two cases. If $\lambda=\mu$ then $\left[c_{\lambda}, b_{\mu}^{-1}, b_{\rho}^{-1}\right]$ lies in $\left[C_{\lambda}^{B}, B_{\rho}^{B}\right]$ since C_{λ} is normal in $B_{\lambda}(\lambda \neq \rho$ since $\mu \neq \rho$ by hypothesis). If $\lambda \neq \mu$ then

$$
\begin{aligned}
{\left[c_{\lambda}, b_{\mu}^{-1}, b_{\rho}^{-1}\right] } & =\left[c_{\lambda}, b_{\mu}^{-1}\right]^{-1}\left[c_{\lambda}, b_{\mu}^{-1}\right]^{b_{\rho}^{-1}} \\
& =\left[c_{\lambda}, b_{\mu}^{-1}\right]^{-1}\left[\begin{array}{cc}
b_{\rho}^{-1} & b_{\lambda}^{-b_{\rho}^{-1}},
\end{array}\right]
\end{aligned}
$$

which is in $\left[c_{\lambda}^{B}, B_{\mu}^{B}\right]$. That is $\left[c_{\lambda}, b_{\mu}^{-1}, b_{\rho}^{-1}\right]^{-b_{\mu} b_{\rho}^{-1}}$ is in the normal subgroup $\left[C_{\lambda}^{B}, B_{\mathrm{p}}^{B}\right]$. The second commutator $\left[b_{\rho}^{-1}, c_{\lambda}^{-1}, b_{\mu}\right]=\left[\left[c_{\lambda}^{-1}, b_{\rho}^{-1}\right]^{-1}, b_{\mu}\right]$ can be treated in the same fashion.

The result follows from (**).
THEOREM 2.5. $C \cap B^{\prime} /[C, B]$ is isomorphic to the direct product $\left(\prod_{\lambda \in I}^{\times} C_{\lambda} B^{\prime \prime} /\left[C_{\lambda}, B_{\lambda}\right]\right) \times H /[H, A]$.

Proof. The argument is split into three parts.
(i) Let ϕ be the canonical homomorphism from B onto B / D. Then ϕ is a regular homomorphism since $\operatorname{ker} \phi=D$ and D is clearly a subgroup of $\left[\begin{array}{l}B \\ B_{\lambda}\end{array}\right]$. It follows from (1.7) that ϕ restricted to B_{λ} is an isomorphism for each $\lambda \in I$ and that $B \phi$ is a regular product of the $B_{\lambda}{ }^{\phi}$.

Consider $N=\operatorname{sgp}\left(C_{\lambda} \phi \mid \lambda \in I\right) . K \phi \quad$ in $B \phi . \quad$ Now $\left[C_{\lambda}, C_{\mu}\right], \lambda \neq \mu$, is a subgroup of ${ }^{\prime} D=\operatorname{ker} \phi$, thus
(a)

$$
\left[C_{\lambda} \phi, C_{\mu} \phi\right]=E \quad \text { in } \quad B \phi
$$

Also

$$
\begin{aligned}
{\left[C_{\lambda}, K\right] } & \leq\left[C_{\lambda},\left[\begin{array}{l}
B \\
\lambda
\end{array}\right]\right] \\
& \leq D
\end{aligned} \begin{array}{ll}
\text { since } K \leq\left[B_{\lambda}^{B}\right] \text { by construction } \\
& \text { by Lemme } 2.4
\end{array}
$$

Thus
(b)

$$
\left[C_{\lambda}{ }^{\phi}, K \phi\right]=E .
$$

In addition,
(c)

$$
C_{\lambda} \phi \cap\left(\prod_{\substack{\mu \in I \\ \mu \neq \lambda}} c_{\mu} \phi\right), K \phi \leq B_{\lambda} \phi \cap\left(B_{\lambda} \phi\right)=E
$$

and
(d)

$$
\begin{aligned}
K \phi \cap \prod_{\lambda \in I} C_{\lambda} \phi & \leq\left[B_{\mu} \phi^{B \phi}\right] \cap \prod_{\lambda \epsilon I} C_{\lambda} \phi \\
& =E \text { by }(1.3)
\end{aligned}
$$

Conditions (a) to (d) are sufficient to make N a direct product of its subgroups $K \phi$ and $C_{\lambda} \phi$.
(ii)

$$
\begin{aligned}
C \cap B^{\prime} /[C, B] & \simeq \frac{C \cap B^{\prime} / D}{[C, B] / D} \text { since } D \leq[C, B] \text { from (2.3) (ii) } \\
& =\left(C \cap B^{\prime}\right) \phi /[C, B] \phi .
\end{aligned}
$$

From (i) and (2.3), we have that $\left(C \cap B^{\prime}\right) \phi$ is the direct product of its subgroups $K \phi$ and $\left(C_{\lambda} \cap B_{\lambda}^{\prime}\right) \phi, \lambda \in I$, (since $D \phi=E$) and that $[C, B] \phi$ is the direct product of its subgroups $[K, B] \phi$ and $\left[C_{\lambda}, B_{\lambda}\right] \phi, \lambda \in I$. This, together with the facts that $[K, B] \phi \leq K \phi$ and $\left[C_{\lambda}, B_{\lambda}\right] \phi \leq\left(C_{\lambda} \cap B_{\lambda}^{\prime}\right) \phi$, implies that

$$
\begin{aligned}
\left(C \cap B^{\prime}\right) \phi /[C, B] \phi & \simeq\left(\prod_{\lambda \in I}^{x}\left(C_{\lambda} \cap B_{\lambda}^{\prime}\right) \phi /\left[C_{\lambda}, B_{\lambda}\right] \phi\right) \times K \phi /[K, B] \phi \\
& \simeq\left(\prod_{\lambda \epsilon I}\left(C_{\lambda} \cap B_{\lambda}^{\prime}\right) /\left[C_{\lambda}, B\right]\right) \times K \phi /[K, B] \phi
\end{aligned}
$$

since ϕ is an isomorphism on B_{λ}.
(iii) In conclusion, we prove that $K \phi /[K, B] \phi$ is isomorphic to
$H /[H, A]$. Now,

$$
\begin{align*}
K \phi /[K, B] \phi & \simeq \frac{K D / D}{[K, B] D / D} \tag{1}\\
& \simeq K D /[K, B] D \\
& =K[K, B] D /[K, B] D \text { since } D=\operatorname{ker} \phi \\
& \simeq K / K \cap[K, B] \cdot D .
\end{align*}
$$

Similarly

$$
\begin{equation*}
K v /[K, B] v \simeq K / K \cap \operatorname{kerv} \cdot[K, B] . \tag{2}
\end{equation*}
$$

But $K \cap \operatorname{kerv}[K, B]=K \cap\left(\prod_{\lambda \in I} c_{\lambda}^{B}\right)[K, B]$ since $\operatorname{kerv}=\prod_{\lambda \in I} c_{\lambda}^{B}$ from Lemma 2.1 (i). Thus

$$
\begin{aligned}
K \cap \operatorname{kerv} \cdot[K, B] & =K \cap\left(\prod_{\lambda \in I} C_{\lambda}\right) D \cdot[K, B] \\
& =K \cap D[K, B] \quad \text { since } K, D[K, B] \leq\left[B_{\lambda}^{B}\right] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
K \phi /[K, B] \phi & \simeq K v /[K, B] v & \text { from (1) and (2) } \\
& =H /[H, A] & \text { since } K \nu=H \text { by construction. }
\end{aligned}
$$

The main result is a corollary to Theorem 2.5.
THEOREM 2.6. $M(G)$ is isomorphic to the direct product $\left(\prod_{\lambda \in I}^{\times} M\left(A_{\lambda}\right)\right) \times H /[H, A]$ when G is a regular product of the A_{λ} and $A / H \simeq G$ where $A=\prod_{\lambda \in I}^{*} A_{\lambda}$.

Proof. If B_{λ} is a free group then $B_{\lambda} / C_{\lambda}$ is a presentation for A_{λ} and $C_{\lambda} \cap B^{\prime} /\left[C_{\lambda}, B_{\lambda}\right]$ equals $M\left(A_{\lambda}\right)$. The free product, B, will be a free group and, since B / C is isomorphic to $G, M(G)$ equals $C \cap B^{\prime} /[C, B]$. The result follows immediately from Theorem 2.5.

Theorem 2.6 reduces the problem of finding $M(G)$ to that of finding $H /[H, A]$. When $G=A_{1} \times A_{2}, A=A_{1} * A_{2}$ and $H /[H, A]=\left[A_{1}, A_{2}\right] /\left[\left[A_{1}, A_{2}\right], A\right]$. Wiegold ([9], Lemma 3.9) shows that
the latter group is isomorphic to $A_{1} \otimes A_{2}$. So we have the well known result, first proved by Schur, that $M\left(A_{1} \times A_{2}\right)$ is isomorphic to $M\left(A_{1}\right) \times M\left(A_{2}\right) \times\left(A_{1} \otimes A_{2}\right)$.

3. Construction of a representing group

There is a useful characterisation of $M(G)$, when G is finite, due to Schur [7]. Of all the pairs of groups (L, M) such that
(i) L is finite,
(ii) $M \leqslant L^{\prime} \cap Z(L)$,
(iii) $L / M \simeq G$,
there exists an L of maximal order called a representing group for G. The M corresponding to such an L is isomorphic to $M(G)$. We will call the pair (L, M) a representing pair when L is a representing group.

If G is finite then it must be generated by a finite set of subgroups $A_{1}, A_{2}, \ldots, A_{n}$. Let $\left(L_{i}, M\left(H_{i}\right)\right)$ be a representing pair for $A_{i}, i=1,2, \ldots, n$. Then these can be used to form a representing pair for G when G is a regular product.

We use the same constructions as before. There is an epimorphism from L_{i} to A_{i} with kernel $M\left(A_{i}\right)$ by hypothesis. Let $L=\prod_{i=1}^{n} L_{i}$ and σ be the natural epimorphism from L onto A induced by these epimorphisms. Put $J=H_{1} \cap\left[L_{i}^{L}\right]$, where H_{1} is the group in L which maps onto H under σ, and let $N=\prod_{\substack{i, j=1 \\ i \neq j}}^{n}\left[M\left(A_{i}\right), L_{j}\right]^{L}$. Then $J \sigma=H$ is normal in L.

THEOREM 3.1. Suppose G is finite and a regular product of its subgroups $A_{1}, A_{2}, \ldots, A_{n}$. Let $\left(L_{i}, M\left(A_{i}\right)\right)$ be a fixed representing pair for A_{i}. Then $(L \tau, M \tau)$ is a representing pair for G where
$\tau: L \rightarrow L / N[J, L]$ and $M=\left(\prod_{i=1}^{n} M\left(A_{i}\right)\right) \cdot J$ in L. The groups L, N and J are as defined above.

Proof. (i) Apply Lemma 2.1 by putting $I=\{1,2, \ldots, n\}, B_{i}=L_{i}$ and $C_{i}=M\left(A_{i}\right)$. Then $L=B, C=M, N=D$ and $J=K$. We have

$$
\begin{array}{rlrl}
G & \simeq B / C & & \text { from Lemma } 2.1 \\
& \simeq \frac{B / D[K, B]}{C / D[K, B]} & \text { since } \quad D[K, B] \leq C \quad \text { from (2.3) (i). }
\end{array}
$$

Thus $G=\frac{L / N[J, L]}{M / N[J, L]}=L \tau / M \tau$ by definition of τ.
Now J is a subgroup of L^{\prime} immediately from its definition, and $M\left(A_{i}\right)$ is a subgroup of L_{i}^{\prime} by hypothesis, so that M is a subgroup of L^{\prime}. That is $(M \tau)^{\prime}$ is a subgroup of $(L \tau)^{\prime}$.

The kernel of τ contains $[J, L]$ as a subgroup which means that $J \tau$ is central in $L \tau$. Also $\left[M\left(A_{i}\right), L_{j}\right], i \neq j$, is a subgroup of N which is in ker τ. Thus $M\left(A_{i}\right) \tau$ commutes with $L_{j} \tau$ for $i \neq j$. If $i=j$ then $M\left(A_{i}\right)$ commutes with L_{i} by hypothesis. Hence $M \tau$, as a product of $J \tau$ and the $M\left(A_{i}\right) \tau$, is central. in $L \tau$.

The pair $(L \tau, M \tau)$ will be a representing pair if $M \tau$ is isomorphic to $M(G)$.
(ii) Theorem 2.5 gives that

$$
M \cap L^{\prime} /[M, L] \simeq\left(\prod_{i=1}^{n} \times\left(M\left(A_{i}\right) \cap L_{i}^{\prime}\right) /\left[M\left(A_{i}\right), L_{i}\right]\right) \times H /[H, A]
$$

But $M\left(A_{i}\right) \leq L_{i}^{\prime} \cap 2\left(L_{i}\right)$ so that $M\left(A_{i}\right) \cap L_{i}^{\prime}=M\left(A_{i}\right)$ and

$$
\left[M\left(A_{i}\right), L_{i}\right]=E . \quad \text { Hence }
$$

$$
\begin{aligned}
M \cap L^{\prime} /[M, L] & \left.\simeq\left(\prod_{i=1}^{n} \times A_{i}\right)\right\} \times H /[H, A] \\
& \simeq M(G) \quad \text { by Theorem 2.6. }
\end{aligned}
$$

Looking at the quotient $M N L^{\prime} /[M, L]$, we have from (2.3) (ii), that

$$
\begin{array}{rlr}
{[M, L]} & =\left(\prod_{\substack{i, j=1 \\
i \neq j}}^{n}\left[M\left(A_{i}\right), L_{j}\right]\right)[J, L] \\
& =N[J, L] \quad \text { by definition } \\
& =\text { kert } . &
\end{array}
$$

Thus $M \tau=M L^{\prime} /[M, L] \simeq M(G)$.
Theorem 3.1 has already been established by Wiegold in [10] for the case where $G=A_{1} \times A_{2}$.

4. An application of Theorem 2.6

Blackburn has calculated the multiplicator of a wreath product A wr B for arbitrary groups A and B in [1]. I can obtain a more general result for a verbal wreath product, $A w r_{V} B$, using techniques similar to those of Section 2. However, when A is abelian, $A w_{V} B$ is isomorphic to a regular product of A and B and $M\left(A w r V_{V} B\right)$ can be found directly using Theorem 2.6.

Let A_{b} be an isomorphic copy of A for each $b \in B$ and denote by a_{b} the element of A_{b} mapped to $a \in A$. The V-verbal product $D=\prod_{b \in B}^{V} A_{b}$ corresponding to a set of words V is defined to be the quotient C / C_{V} where $C=\prod_{b \in B}^{*} A_{b}$ and $C_{V}=V(C) \cap\left[\begin{array}{c}C \\ b\end{array}\right]$ (see Moran [5]). The mapping $a_{b} \longmapsto a_{b b^{\prime}}$ for all $a \in A, b \in B$ and fixed $b^{\prime} \in B$, induces automorphisms of both C and D.

DEFINITION 4.1. The free wreath product of A by B, A wr B, is the splitting extension of C by B under the above action of B on C. Similarly the V-verbal wreath product $A \mathrm{wr}_{V} B$, is the splitting extension of D by B under the action of B on D.

Actually $A \mathrm{wr}_{V} B=A \mathrm{wr}_{*} B$ when V is the empty word.

The verbal wreath product is generated by A_{1} and B since
$a_{b}=b^{-1} a_{1} b$ for all $a \in A, b \in B$. It is therefore a quotient of $A * B$ by some group H. Now both $\left[A_{b}^{C}\right]$ and $V(C)$ are invariant under the action of B on C by definition of the cartesian and since verbal subgroups are characteristic. That is $C_{V}=V(C) \cap\left[A_{b}^{C}\right]$ is normal in $A \mathrm{wr} * B$. It follows from Definition 4.1 that $A \mathrm{wr}_{V} B$ is isomorphic to $A \mathrm{wr} * B / C_{V}$. But it is well known that the natural epimorphism from $A * B$ onto A wr * B induced by the identity on B and the isomorphism $A \stackrel{\sim}{\rightarrow} A_{1}$, is also an isomorphism (Hall and Hartley [4]). Hence $H=C_{V} \phi^{-1}$ and,
(4.2). $A \mathrm{wr}_{V} B$ is isomorphic to $A \star B / C_{V} \phi^{-1}$.

By (1.8) $A \mathrm{wr}_{V} B$ will be a regular product of A and B if $C_{V} \phi^{-1}$ is contained in the cartesian $[A, B]$, or equivalently, if C_{V} is contained in $[A, B] \phi$. Firstly

$$
\begin{aligned}
{[A, B] \phi^{-1} } & =\operatorname{sgp}\left([a, b] \phi^{-1} \mid a \in A, b \in B\right) \\
& =\operatorname{sgp}\left(a_{1}^{-1} a_{b} \mid a \in A, b \in B\right) \\
& =\operatorname{sgp}\left(a_{b}^{-1} a_{b}, \mid a \in A ; b, b^{\prime} \in B\right)
\end{aligned}
$$

Also, by (1.2), $\left[\begin{array}{l}C \\ b\end{array}\right]$ is the normal closure in C of the commutators $\left[a_{b}, a_{b}^{\prime}\right], a, a^{\prime} \in A ; b, b^{\prime} \in B$. But

$$
\begin{aligned}
{\left[a_{b}, a_{b^{\prime}}^{\prime}\right] } & =a_{b}^{-1} a_{b^{\prime}}^{\prime-1} a_{b} a_{b}^{\prime} \\
& =\left(a_{b}^{-1} a_{b^{\prime}}\right) a_{b}^{-1} a_{b^{\prime}}^{\prime-1} a_{b} a_{b}^{\prime}\left(a_{b}^{\prime-1} a_{b^{\prime}}^{\prime}\right) \\
& =\left(a_{b}^{-1} a_{b^{\prime}}\right)\left[a_{b^{\prime}}, a_{b^{\prime}}^{\prime}\right] a_{b^{\prime}}^{\prime-1} a_{b}^{-1} a_{b} a_{b}^{\prime}\left(a_{b}^{\prime-1} a_{b}^{\prime}\right) \\
& \left.=\left(a_{b}^{-1} a_{b^{\prime}}\right)\left[a, a^{\prime}\right]_{b^{\prime}}\left(\left(a a^{\prime}\right)_{b^{\prime}}\right)^{-1}\left(a a^{\prime}\right)_{b}\left(a_{b}^{\prime-1} a_{b}^{\prime}\right)\right) \\
& =\left(a_{b}^{-1} a_{b^{\prime}}\right)\left(\left(a a^{\prime}\right)_{b^{\prime}}\right)^{-1}\left(a a^{\prime}\right)_{b}\left(a_{b}^{\prime-1} a_{b^{\prime}}^{\prime}\right)
\end{aligned}
$$

for all $a, a^{\prime} \in A$ if and only if A is abelian. Thus $\left[A_{b}^{C}\right]$ is contained in $[A, B] \phi$ and $A w r_{V} B$ is indeed a regular product of A and B.

THEOREM 4.3. If A is abelian, the multiplicator of $A \mathrm{wr}_{V} B$ is isomorphic to $M(A) \times M(B) \times C_{V} /\left[C_{V}, C\right]\left[C_{V}, B\right]$ where $C_{V}=V(C) \cap\left[A_{b}^{C}\right]$, $C=\prod_{b \in B}^{*} A_{b}$ and the quotient is evaluated in A wr $* B$.

Proof. From Theorem 2.6 the multiplicator of $A * B / C_{V} \phi^{-1}$ is $M(A) \times M(B) \times C_{V} \phi^{-1} /\left[C_{V} \phi^{-1}, A * B\right]$. Also $C_{V} \phi^{-1} /\left[C_{V} \phi^{-1}, A * B\right] \simeq C_{V} /\left[C_{V}, A \mathrm{wr}_{*} B\right]$ $=C_{V} /\left[C_{V}, C . B\right]$ since A wr $_{*} B$
is the splitting extension of C by B $=C_{V} /\left[C_{V}, C\right]\left[C_{V}, B\right]$.

The ordinary wreath product A wr B is obtained from A wr V when $V(C)=C^{\prime}$ and D becomes the direct product $\prod_{b \in B}^{x} A_{b}$.

COROLLARY 4.4. If A is abelian, $M(A$ wr $B)$ is isomorphic to $M(A) \times M(B) \times\left(\prod_{b<b^{\prime}} A_{b} \otimes A_{b},\right) / N$ where "<" is any fixed ordering of the elements of B and N is the subgroup generated by the elements

$$
\left.\begin{array}{l}
\left(a_{b} \otimes a_{b^{\prime}}^{\prime}\right)^{-1}\left(a_{b b^{\prime \prime}} \otimes a_{b^{\prime} b^{\prime \prime}}^{\prime}\right) \quad \text { when } \quad b b^{\prime \prime}<b^{\prime} b^{\prime \prime} \\
\left(a_{b} \otimes a_{b^{\prime}}^{\prime}\right)^{-1}\left(a_{b^{\prime} b^{\prime \prime}}^{\prime} \otimes a_{b b^{\prime \prime}}\right)^{-1} \text { when } \quad b^{\prime} b^{\prime \prime}<b b^{\prime \prime}
\end{array}\right\}
$$

for all $a, a^{\prime} \in A ; b, b^{\prime}, b^{\prime \prime} \in B$.
Proof. When $V(C)=C^{\prime}$, denote C_{V} by C_{x} and let α be the canonical homomorphism from A wr $_{*} B$ onto A wr $_{*} B /\left[C_{x}, C\right] ; \quad\left(\left[C_{x}, C\right]\right.$ is
normal since C is normal). The quotient $C_{V} /\left[C_{V}, C\right]\left[C_{V}, B\right]$ is isomorphic to $C_{x} \alpha /\left[C_{x}, B\right] \alpha$.

Now $C_{x}=C^{\prime} \cap\left[A_{b}^{C}\right]=\left[\begin{array}{l}C \\ C\end{array}\right]$, so that $C \alpha$ is the second nilpotent product, $\prod^{(2)} A$, of the A_{b} (see [6]). We have the following elementary facts:
(i) $\left[A_{b}^{C}\right] \alpha$ is central in $C \alpha$, by construction of α;
(ii) $\left[A_{b}^{C}\right] \alpha=\prod_{b, b \in B}\left[A_{b}, A_{b},\right] \alpha$ by definition of the cartesian and (i);
(iii) $\left[A_{b}, A_{b},\right] \alpha=\left[A_{b}, A_{b}\right] \alpha$;
(iv) $\left[A_{b_{1}}, A_{b_{1}^{\prime}}\right] \alpha \cap \operatorname{sgp}\left(\left[A_{b_{2}}, A_{b_{2}^{\prime}}^{\prime}\right] \alpha \mid b_{2}, b_{2}^{\prime} \in B ;\right.$

$$
\left.\left(b_{2}, b_{2}^{\prime}\right) \neq\left(b_{1}, b_{1}^{\prime}\right),\left(b_{1}^{\prime}, b_{1}\right)\right)
$$

is trivial by Definition 1.1 and the associativity of nilpotent products [2];
(v) $\left[A_{b}, A_{b},\right] \simeq A_{b} \otimes A_{b}$, by the remark following Theorem 2.6.

Therefore $\left[A_{b}^{C}\right] \alpha$ is isomorphic to $\prod_{b<b}{ }^{\times} A_{b} \otimes A_{b}$. .
Finally,
$\left[C_{x}, B\right] \alpha=\operatorname{sgp}\left(c^{-1} c^{\prime \prime} \mid c \in\left[A_{b}^{C}\right], b^{\prime \prime} \in B\right) \alpha$
$=\operatorname{sgp}\left(\left(\left[a_{b}, a_{b}^{\prime},\right]^{-1}\left[a_{b}, a_{b}^{\prime}\right]^{b^{\prime \prime}}\right) \alpha \mid a \in A ; b, b^{\prime}, b^{\prime \prime} \in B\right)$ by definition of $\left[A_{b}^{C}\right]$ and (i)

$$
=\operatorname{sgp}\left(\left(\left[a_{b}, a_{b}^{\prime}\right]^{-1}\left[a_{b b^{\prime \prime}}, a_{b}^{\prime} b^{\prime \prime}\right]\right) \alpha \mid a \in A ; b, b^{\prime}, b^{\prime \prime} \in B\right)
$$

The quotient $C_{x} \alpha /\left[c_{x}, B\right] \alpha$ is clearly isomorphic to $\left(\prod_{b<b}^{x}, A_{b} \otimes A_{b^{\prime}}\right) / N$.

References

[1] Norman Blackburn, "Some homology groups of wreathe products", Illinois J. Math. 16 (1972), 116-129.
[2] O.N. Golovin, "Nilpotent products of groups", Amer. Math. Soc. TransZ. (2) 2 (1956), 89-115.
[3] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
[4] P. Hall and B. Hartley, "The stability group of a series of subgroups", Proc. London Math. Soc. (3) 16 (1966), l-39.
[5] S. Moran, "Associative operations on groups. I", Proc. London Math. Soc. (3) 6 (1956), 381-596.
[6] S. Moran, "Associative operations on groups. II", Proc. London Math. Soc. (3) 8 (1958), 548-568.
[7] J. Schur, "Über die Darstellung der endichen Gruppen durch gebrochene lineare Substitutionen", J. reine angew. Math. 127 (1904), 20-50.
[8] J. Schur, "Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen", J. reine angew. Math. 132 (1907), 85-137.
[9] James Wiegold, "Nilpotent products of groups with amalgamations", Pub 2. Math. Debrecen 6 (1959), 131-168.
[10] James Wiegold, "The multiplicator of a direct product", Quart. J. Math. Oxford (2) 22 (1971), 103-105.

Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, ACT.

[^0]: Received 17 May 1972. Communicated by P.J. Cossey.

