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The multiplicator of a regular
product of groups

William Haebich

It is shown that if G 1is an arbitrary regular product of its
subgroups 4, , A € I , then the multiplicator, M(G) , of G

is the direct product of the M(AA) together with a certain
other group. This extends a calculation of M[Al x A2) due to
Schur. As an application, we find the multiplicator of a verbal

wreath product A erB where A is abelian. A representing

group for a finite regular product is also constructed.

1. Regular products

In this section we define regular products and list some of their
properties needed in Section 2. Properties (1.7) and (1.8) are of
particular importance. Everything here can be found in Golovin [2].

DEFINITION 1.1. G <s a regular product of its subgrowps A4, ,

X €I, where I 1is an ordered set, if they generate G and Ay 0 2}‘ =E

where ‘ZA = sgp(Ag | mer, pe A] . The A, are called regular factors

of G.
As usual Ag denotes the normal closure of Au in G and F is the

trivial group. From now on in this note we consider G to be a fixed

group generated by its subgroups A)\ , A €I . The statement "G is a

regular product of its subgroups 4, " will be abbreviated to "G is a
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regular product".

if Xy is an arbitrary subgroup of G (A € I) then the notation
[X)‘] will be used for the subgroup,
sgp[[xx, xl;l | z, € X)‘; x, € Xll; A, W €TI; A # u) , called the cartesian of

the XA .

The product l I XA will mean the set, in G , of all elements of the
el

form xxlxxz .'z:An where AJ. €I and >‘1 < A2 < ... < )‘n . If each X>\

is normal in G then | | XA becomes the normal subgroup of G generated
Ael

by the X, and any two orderings of I will yield the same product.
A

(1.2). [Ai’] 18 normal in G .
(1.3). If G 4is gemerated by its subgroups A, then

G = (-[_r A)‘] [Ai] . Purthermore G i8 a regular product if and only if
Ael

each of its elements can be written uniquely as a product ay ay ee.oayu
1 2 n

G
A1<)\2<...<A and ue[AJ.

where a, . € A)\ " A

7 i

(1.4). If G 1is a regular product and X, isa subgroup of Ay for
each X €I , then the subgroup of G generated by the X, 18 a regular
product of the X, -

(1.5). If G 1is a regular product then G' = (T_r A;‘] [Ag] .

Ael

DEFINITION 1.6. If G <is a regular product, a homomorphism ¢ of
G to a growp G is a regular hommorphism 1f ker¢ is a subgroup of

[A(;] : hence the terms regular homomorphic image and regular quotient

growp.
(1.7). If G is a regular product and ¢ : G + G 1is a regular

https://doi.org/10.1017/50004972700045020 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045020

The multiplicator of a product 281

homomorphism then ¢ restricted to A, is an isomorphism for each A €I
and G$ is a regular product of the A)\d) .
*
(1.8). 17 ¢ : T] 4 * G [where T A, denotes the free product
heT Ael

of the A4, ] is the natural homomorphism induced by the identity map on
each Ay s then G is a.regular product if and only if Y <is regular.

This last result shows that the free product of a set of groups can be

interpreted as the largest regular product of those groups. In the same

way, their direct product is the smallest such product. For, if G is a
regular product of the A)‘ , then the gquotient G/[Ai] is a direct product

of copies of the A)\ .

2. Calculation of the multiplicator

We define the multiplicator of G to be RnF'/{R, F] where F/R is
a presentation for G . The most direct way of approaching M(G) , when G
is a regular product, is to try to express RnF'/{R, F] in terms of the

groups RnF;\/[(RnFA], F}‘] where F, 1is the group of elements in F which

A
map onto A)\ . (F)\/RQF)‘ is a presentation for A)‘ ) This is the sort of
method previously applied to M[Al x A2) (see [§]). The difficulty here

lies in not knowing how the F}\ generate F . It can be avoided by taking

a presentation, FA/RA , for each AA and constructing a presentation for

G from the free product T_r* F)\ .
el
In fact we begin with greater generality and let B)\ be a fixed group
which maps epimorphically onto A)\ under \))\ . This will allow us to
construct a representing group for G when it is finite.

Suppose that C,\ is the kernel of \)A and that Vv is the natural

.epimorphism from the free product B = l | B)‘ onto A = l | A)\ induced
Ael Ael
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by the \))\ . Purther, if Y is the natural homomorphism from A onto G

induced by the identity on each A)\ , let H be the kernel of ¥ and Ho

the group in B which maps onto A wnder Vv . We have that

H=Hn [A‘ﬂ since H= [A‘Z;\] by (1.8)
B\)
= n [ J since {Bﬁ]\) = [BA\) :| by definition of the cartesian
= ( { )\:H since kerv = HO by definition
= Kv where K = HO n [Bﬁ] is normal in B .

LEMMA 2.1. B/C 1is isomorphic to G where C = (T_]— C‘B]
Ael

Proof. (i) We first show that kerv = C'i . (This is almost
Ael

certainly well known but I cannot find it in the literature.) The kernel

of Vv contains I CB since, by construction of v , C)\V is trivial
Ael

for each A € I . On the other hand,

B n T—r C'B Bu n DuCﬁ where DU T_]- C'i

L}
"

Ael Ael
A#u
= (Bur\Du[Cu, B])cu since €, =B

=C

u

by Definition 1.1 and the fact that B]J n DU[CU’ B] = B]_1 n ﬁu . Thus, if

p 1is the canonical homomorphism from B onto B / l C'i , then B)\p is
Ael

isomorphic to BA/C)\ , and hence to A)\ .

Now Bp 1is generated by the B)\p , A €I . Let n be the natural
epimorphism from A4 onto Bp induced by the isomorphism from each A}\ to

B)\p . The following diagram commutes
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The kernel of VvV is therefore contained in kerp = | Ci and hence
Ael

kerv=1—r6'B.

Ael A

(ii) The product, VY , of mappings is an epimorphism from B onto

G . Now,
b € kervy = bwp =1 in G
<= pbv €H since H = kervy
< b € kerv.K since Kv = H .
But

kerv.X

fl

h—r C'i]]( from (i)

Ael
=C.

Thus € = kervy from (i) and (ii).

We aim to find the structure of CnB'/[C, B] which is isomorphic to
M(G) when B is free by Lemma 2.1.

LEMMA 2.2, TTE = (‘[‘[ C)‘]'D 4n B where D= T1 [0y, 8%,
el el - A,uel
v

Proof. We prove that GI; is in CAD for all ey € C)\ and b € B

by induction on the length of the normal form for b . This is trivial
b

. uo_ A
when b 1is of length one, for ey -cA[c ’bl-l] s A# Y, and ey ECA

since C)\ is normal in B . Suppose that cz; € C)\D for all elements b

of length m and that bbu is a reduced word in B . Then
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bb b
ey M (c;‘d) M here c;\ € Cy> d € D by the inductive hypothesis

b
ci[c;‘, bu]d N CyD since [05\, bu] €D for A%,
and if A = p , then [c;‘, b)\] €c, .

Thus CB is a subgroup of C)‘D . It follows that l l C§ is a

A AeI
subgroup of I l (C)\D) . By definition, every element of | (C)\D) can
A€l A€l
be written in the form ey d)\ ey d)‘ cee 0y d>\ where ey . € C)\. ,
1’122 n'n 7 1
dxiGD and )\l<>\2<...<>\n. But
e, d, e, d, ~... e, d
)‘l >‘l )\2 )\2" )‘n An
e, ¢ e } [c e }
( ] ( )\2 }\3 )\n A3 >‘n
= le, ey ... e |d d oo d
Al )\2 An Al )\2 )‘n

which belongs to (I | C)‘]D . Hence C'i is a subgroup of
A€l AeT

B
l C,|.D . The reverse inclusion is trivial since [C , B is a
Al A A

subgroup of C‘;\ .

(T—I' [C}‘nB;‘]].D.K ,

A€l

(2.3). (<) ¢ nB'

(<) lc, B]

[TT [, BA]]D. (x, B] .

A€l
Proof. (Z) C consists of all elements of the form
A

12 m
preceding two lemmas. The fact that DK 1is in B' means that ¢ Dbelongs

e=c e ...c dk where c)\iécxi, d €D, k €K, by the

to B' if and only if ¢ = ey & .- Oy belongs to B' . ©Now, by
12 m

(1.5), every element of B' is of the form b;\ b;\ b>'\ u where
1 2 n
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b' €B, , uct [Bﬂ . But both C>‘ and B;‘ are subgroups of B)\ .

A . .
Z i i
Therefore ¢ is in B' if and only if ey, isin B;‘ by (1.2).
i i

(i1)

o e
- (M ]][x 5] by (2], Lemma 4.3
. (rIr (¢, 817 x, 51 .

Now [_C}\, B] is generated by the elements [ck, b] where ¢; € C)‘ ,
b € B. Ve can prove that I:cA, b] ¢ [C)\, BA]D by induction on the length
of b precisely as in Lemma 2.2. The result is trivial for b = bu .
Suppose that [__c}‘, b] € I'_Cx, B)\]‘D for b of length m , then

[cx, b] = x,d wvhere =z, € [C)‘, BA] and d €D . If bbu is reduced then

L1}

[cA, ble] [c)\, bb] [c;\, b

b b
= [ck, bu]x)\ud H

b
[cA, bh]xA[xA’ bu]d "
which is an element of [c,, B,].[C,, Bu].D . Tus [cy, B] isa
subgroup of [C)\, BA]D . Consequently,

[c)s BA]B.DB
[Cx’ BA] [[cx, B)‘] , B]D

[c,» 8][cy, B]D since ¢y =B,

= [y, BlD .

1A

(s 5]°

1}

IA

Hence, from (*), [C, B] is a subgroup of [T_r ([C)‘, )JD]] {k, B] .
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Again, copying the argument of Lemma 2.2, every element of

[T ([c,, B,JD) is a product of the form z, dy, x, d; ... &, d where
Ael A )‘] ALUTALTATA, A,

x)‘i € I:C)‘i’ BAi] . d}‘i € D and )\1 < A2 < ... < )\n . This product can be

rearranged to show that it lies in [I [CA’ B)\]]D . That is, [C, B] is
Ael

a subgroup of (I l [C)\, B)\JID'[K’ B] . The reverse inclusion is trivial.
Ael
To shorten the proof of the main theorem, a technical lemma is

established.

LEMMA 2.4. [C)\’ [Eﬁ]] is a subgroup of D for all X €1I.

B
Proof. It suffices to prove that [C'i, [BU]] is a subgroup of D

since [CA, [Bﬁ]} is a subgroup of [Ui, [Bﬁ]] . The cartesian [Bﬁ] is
B

b b ¢, b ¢,
generated by the elements [IJ’ bp] vhere u N 03

U, p €I ; w# p . Thus, because Cf\ is normel in B , [Ci, [BB]] is

B
generated by the elements [bu, bp’ c>\] s b‘J € BU ; b €B_ ey € C'f\ :
MU # p . Moreover,

3. =]

from Lema 2.2

IA

Q
>

9
=t

=D provided A # u .

The lemma is therefore proved if [bll’ bp’ cA] , H#p , can be shown to
lie in {Cﬁ, Bg] for some C # A .
The following identity comes from Hall [3], (10.2.1.3),‘page 150,
- b—l _ -lb'—l

wp A
; _ -1 ,-1 -1 -1 -1
(#%) [bll’ bp, c)\] = [c)\, bu , bp} {bp N bu]
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Consider the first commutator. There are two cases. If A= u then
-1 -1 . . . . .

[c)‘, bLl . bp] lies in [C’i, Bﬁ] since C, is normal in B, (A #p

since U # p by hypothesis). If A # y then

-1 o}
-1 ,-1] _ -1 -
[cA, bu , bp] = I:CA’ bu] [ck, bu]

u H
-b b7t
hich is i P, That i [ 1, 7t e in th al
whi n |8 Bl - at is _cA, no by is in the norm
subgroup [C'i, Bg:l . The second commutator
1o~ o]t ]
[bp > & bu] = I:CA . bp ] , bu can be treated in the same fashion.

The result follows from (#¥%),

THEOREM 2.5. c¢nB'/[C, B] is isomorphic to the direct product

[E C)\nB'/[CA, BA]] x H/[H, A] .

Proof. The argument is split into three parts.

(i) Let ¢ be the canonical homomorphism from B onto B/D . Then

¢ 1is a regular homomorphism since ker¢ = D and D is clearly a subgroup
of [Bﬁ] . It follows from (1.7) that ¢ restricted to B)\ is an

isomorphism for each A € I and that B¢ is a regular product of the
qu) .

Consider N = sgp(CA¢ | A ¢ I).K¢ in B¢ . Now [C)\, Cl-l] , A#E N,
is a subgroup of D = ker¢ , thus
(a) [c,¢, ¢9l =E in B¢ .

Also
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ECA’ K] = [C)\’ [Bf\]] since X = [Bﬁ:l by construction

=D by Lemme 2.L.
Thus
(b) (c,0, k0] = E .
In addition,
(e) Cy$ n h:}' cucp K¢ = Byo n [B)\zb) =F
[TEDN
and
(a) ko n T ] 00 s [B ¢B¢:| nTT ¢y
Ael v Ael
= E by (1.3).

Conditions (a) to (d) are sufficient to meke ¥ a direct product of
its subgroups K¢ and C>‘¢ .

(ii)

cnB' /D
(c,B)/D

(cnB')9/[C, BIY .

1]

cnB' /{C, B] since D = [C, B] from (2.3) (ii)

From (i) and (2.3), we have that (CnB')¢p is the direct product of its
subgroups K¢ and (ckna;\)(p , A€I, (since D$ = E ) and that ([C, Bl

is the direct product of its subgroups [X, Bl¢ and [CA’ B)\]¢ , A€T.
This, together with the facts that [X, B]¢ = K¢ and

[cA, B)\]da = [C)\OB;\)cb , implies that

R

(coB')¢/[C, Bld [T;T (eynBy )/ (e, BA]¢] x Ko/[K, B1
€T

1

(T;Tx (cyn8y)/ [eys BA]] x K¢/(K, B19,
€T

since ¢ 1is an isomorphism on B}‘ .

(iii) In conclusion, we prove that X¢/[K, Bl¢ is isomorphic to
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H/[H, A} . Now,

(1) K¢/[X, Bl = %%g—/i since D = kerd
=~ XKD/[K, BID
= K[K, BID/[K, BJD since K < B

1]

X/K n [X, B].D .
Similarly

(2) Kv/[K, BV = K/K n kerv.[K, B} .

But K nkerv[k, B] = XK n [TT C'i][K, B] since kerv = I Ci from Lemma

Ael Ael
2.1 (i). Thus
K nkerv.[K, Bl = K n [T"[' C)\]D'[K’ B]
Ael
= X n DX, B] . since K, DK, B] < [BB] )

Hence

n”

Kv/[K, B]v from (1) and (2)
H/[H, A] since Kv = H by construction.

K¢/{K, Ble

The main result is a corollary to Theorem 2.5.
THEOREM 2.6. M(G) <s isomorphic to the direct product

(T_Tx M[AA)] x H/{H, A] when G is a regular product of the A, and
Ael

*
A/H = G where A= l A)\ .
rel

Proof. If BJ\ is a free group then B)\/C)\ is a presentation for A)\
and anB'/[CA, B)\] equals M(A)‘] . The free product, B , will be a free

group and, since B/C is isomorphic to G , M(G) equals C(nB'/[C, B] .
The result follows immediately from Theorem 2.5.

Theorem 2.6 reduces the problem of finding M(G) to that of finding
H/[H, A] . Vhen G=A x4y, A=A *A, and

H/[H, A] = [Al, A2] / [[Al, Ae], A] . Wiegold ([9]), Lemma 3.9) shows that
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the latter group is isomorphic to Al ®A2 . So we have the well known
result, first proved by Schur, that M(Al X A2) is isomorphic to

Ma)) x mlay) x (4, ®4,)

3. Construction of a representing group

There is a useful characterisation of M(G) , when G 1is finite, due
to Schur [7]. Of all the pairs of groups (L, M) such that

(i) L 1is finite,
(ii) M=1L' n 2(L) ,
(iii) L/M =G ,
there exists an L of maximal order called a representing group for G .

The M corresponding to such an I is isomorphic to M(G) . We will call

the pair (L, M) a representing pair when L 1is a representing group.

If G 1is finite then it must be generated by a finite set of

subgroups Al, A2, PN An . Let (Li’ M(Hi)] be a representing pair for

‘41: s, £ =1,2, ..., n . Then these can be used to form a representing

pair for G when (G 1is a regular product.

We use the same constructions as before. There is an epimorphism from

n
L; to A; with kernel M(Ai) by hypothesis. Let L = | | Li and O
=1

be the natural epimorphism from L onto A induced by these epimorphisms.

Put J = H n [Lf] , where H. 1is the group in L which maps onto H#

1 1

n
under 0 , and let N = l I [M(Ai)’ LJ.]L . Then JO = H 1is normal in
Z,4=1
it

THEOREM 3.1. Suppose G 1is finite and a regular product of its

subgroups Al, A .s An . Let (Li’ M[Ai]] be a fixed representing

2’

pair for A, . Then (L1, Mt) <is a representing pair for G where
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n

T:L>L/NJ, L] and M= T_]-M(Ai)].J in L . The groups L, N and
o

J are as defined above.

Proof. (i) Apply Lemme 2.1 by putting I = {1, 2, ..., n} , B, =1L,

and Ci=M(Ai] . Then L=B, C=M, N=D and J =K. We have
G = B/C from Lemma 2.1
. B/D[X,B]

c/plx. 5] Sinee DK, Bl =C from (2.3) ().

_L/N[J,L] _ s
Thus G = MINLT.L] = Lt/Mt by definition of T .

Now J 1is a subgroup of L' immediately from its definition, and

M[Ai) is a subgroup of E% by hypothesis, so that M is a subgroup of
L' . That is (Mr)' is a subgroup of (L1)' .

The kernel of T contains [J, L] as a subgroup which means that JT
is central in LT . Also [M(Ai)’ Lj] s T #J , is a subgroup of W

which is in kert . Thus M(Ai)T commutes with LJ.T for 1 #4 . If
i =J then M(Ai) commutes with Li by hypothesis. Hence Mt , as &
product of JT and the M[Ai)'t , is central in LT .

The pair (LT, Mt) will be a representing pair if Mt is isomorphic
to M(G) .

(ii) Theorem 2.5 gives that

=1

n
ML'/(M, L] = ('I“r" (M[Ai)n[,?':] / M), | < 8/08, 4] .

But M(4;) =L} nZz(L;) sothat M(4,) nL;=M(4;) and

MA.), L.] = E . Hence
[#(4;), L]

1

n
MAL' /M, L] (T]"‘ M[Ai)] x H/[H, A]

1=1
M(G) by Theorem 2.6.

1

Looking at the quotient MnL'/[M, L] , we have from (2.3) (ii), that
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(M, L]

n
TT [ils), £]}lv, L]
i,5=1 J
1#J
N[J, L] by definition

= kerT .
Thus Mt = M~L'/[M, L] = M(G) .
Theorem 3.1 has already been established by Wiegold in [10] for the

case where G = Al X A2 .

4. An application of Theorem 2.6

Blackburn has calculated the multiplicator of a wreath product 4 wr B
for arbitrary groups A and B in [1]. I can obtain a more general

result for a verbal wreath product, 4 wry, B , using techniques similar to

those of Section 2. However, when A 1is abelian, A4 wry, B is
isomorphic to a regular product of A and B and M(A wry, B] can be
found directly using Theorem 2.6.

Let Ab be an isomorphic copy of A for each b € (B and denote by

a;, the element of Ab mapped to a € A . The V-verbal product

D = bl BV Ab corresponding to a set of words V is defined to be the
€

quotient C/C, where C = -[_T* 4 and C, = V(C) n {4°] (see Moran [51).
|4 beB b v b

The mapping a, > @, for all a ¢ A, b €B and fixed b' € B ,
induces automorphisms of both C and D .
DEFINITION 4.1. The free wreath product of A by B, Awr, B, is

the splitting extension of C by B wnder the above action of B on C .
Similarly the V-verbal wreath product A wr, B, 18 the splitting

extension of D by B wunder the action of B on D.

Actually A wr, B =Avwr, B when V 1is the empty word.

4

The verbal wreath product is generated by Al and B since
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a = b—lalb for all a €A, b €B . It is therefore & quotient of

A » B by some group H . Now both [Ag] and V(C) are invariant under
the action of B on C by definition of the cartesian and since verbal
subgroups are characteristic. That is (), = v(c) n [Ag] is normal in
Awr, B. It follows from Definition 4.1 that A4 vr, B is isomorphiec to

A wr, B/CV . But it is well known that the natural epimorphism from A * B
onto A wr, B induced by the identity onm B and the isomorphism

43 Al » is also an isomorphism (Hal! and Hartley [4]). Hence

-1
H = CVd) and,

(4.2). 4 wr, B is isomorphic to A*B/CV¢-1 .

By (1.8) 4 wr;, B will be a regular product of A and B if CV¢_1

is contained in the cartesian [4, B] , or equivalently, if CV is

contained in [A4, Bl¢ . Firstly

sgp(la, p1¢"Y | a €4, b € B)

-1
sgp[alab | a €4, b eB]

(4, Bl¢™L

gp[azlab, | a €4; b, b' € B]

Also, by (1.2), [Ag] is the normal closure in C of the commutators

[a,al",] , a,a' €4 ; b,b' €B. But

' -1 ,-1
[ab9 ab'] b b" bal')'

1l

R A Cacs)
= [“bl"b'] (a1 o ]“1371“1_;}“27“1; a'-la"]

= (e )t @1y (taa), ) Haa"), (4 7ay
[ -1 -]((aa) Yaa’ )b{ - al'),]

i}
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for all a, a' € 4 if and only if A is abelian. Thus [Ag] is

contained in (4, Bl¢ and 4 wry, B is indeed a regular product of A4 and
B .
THEOREM 4.3. If A <is abelian, the multiplicator of A wr, B is

isomO{'phic to M(4) x M(B) x CV/[CV, ] [CV, B] where Cy = v(C) n [Ag] A

X
c=T] Ay and the quotient is evaluated in A wr, B .
beB

Proof. From Theorem 2.6 the multiplicator of A*B/qub-l is

M(A) x M(B) x cV¢‘l/[cV¢'l, A*B] . Also

cV¢’1/ [chb'l, A*B] =,/ [c,, A wr, B]
c /e

e C.BJ since 4 wr, B

is the splitting extension of C by B
cy/ [cV, C] [cV, B] .

The ordinary wreath product 4 wr B is obtained from A4 er B  when

X
V(C) = C' end D becomes the direct product | Ab .
beB

COROLLARY 4.4, If A is abelian, M(A vwr B) is isomorphic to

M{A) x M(B) x {T_rx 4y ® Ab,]/lv where '<" {is any fized ordering of the
b<b'

elements of B and N +<is the subgroup generated by the elements
(ab ® aér)-l [abbn ® ab,rbn] when bb" < b'b"
' -1 ' -1 rpn "
[ab ® abv) (abrbn ® abbn) when b'b" < bb

for all a, a' €4 ; b,Db',Dd" €¢B.
Proof. When V(C) = C' , denote €, by €, andlet & be the

canonical homomorphism from 4 wry B onto 4 wry B/[Cx, C] 3 ([Cx, C'] is
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normal since C is normal). The quotient CV/[CV, C] [CV, B] is

isomorphic to Cxa/[Cx, B]a .

Now C . =¢C"n [chl

5 [Ag] , so that Co 1is the second nilpotent

product , |(2)A , of the 4, (see [6]). We have the following

elementary facts:

(i) [Ag]a is central in Ca , by construction of o ;

w [ -
Wen, Ll

N €

(4,, 4,:]a vy definition of the cartesian
B

and (i);

(iii) [Ab, Ab,]a = [Ab, s Ab]a :

(iv) |:A , A ,]ansgp[[A ,Aé]a | b,, b € B;
bl bl b2 b 22 "2

(b, by) # (b), b}), (7, B,)

is trivial by Definition 1.1 and the associativity of
nilpotent products £2];
(v) [Ab, Ab .] = Ab ® Ab' by the remark following Theorem

2.6.

Therefore [Ag‘a is isomorphic to | |>< Ay ®A4,.,
g b<b'

Finally,
(e, Bla = sgp (c-lcb" | e ¢ [Ag], " € B]a
A Dw As o YR Y

by definition of [Ag] and (i)

S [ e & ipil]o 1@ €455, 5, 5" €8] .
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X
The quotient Cxa/[cx, B]cx is clearly isomorphic to ] ] Ab ®Ab,}/1V .
<p!
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