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Abstract

In the May 1983 issue of Scientific American, A.T. Winfree published an article
which gave an explanation of sudden cardiac arrest in terms of topology. His
topological argument was modified in his 1987 book called "When time breaks
down". In this paper we fill what appears to be a gap in Winfree's topological
arguments.

Sudden cardiac arrest is a leading cause of death. Experiments carried out
at the beginning of this century, notably by G.R. Mines (see [2], [3]) showed
how even healthy hearts can be made to undergo fibrillation by relatively
weak electrical shocks or neural stimuli delivered at certain fleeting instants
(generally about 30 milliseconds long) in the heartbeat cycle.

In [2] and [3], Arthur T. Winfree gives a topological explanation for this
phenomenon, based upon two essentially different ways in which the timing
of the heartbeat is affected by stimuli. One way is called weak rescheduling
in [2] and odd (or weak) resetting in [3]. As defined in [2] and [3] its essential
property is that, as the termination point of the stimulus is varied continu-
ously through one cycle, the time to the beginning of the next cycle passes
continuously through the full range, from the cycle length to zero. The other
way, called strong rescheduling in [2] and even (or strong) resetting in [3],
has the property that the time to the beginning of the next cycle does not
pass through the full range of values.

As the name implies, weak resetting is elicited by relatively weak stimuli,
with zero stimulus as the limiting case. In between these stimuli and those
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eliciting strong rescheduling, Winfree's topological argument implies the ex-
istence of a stimulus which, when applied at some critical instant, has an
inherently unpredictable effect on the timing of the next beat.

Winfree and others have, in more technical articles, generalised the con-
cepts of weak and strong rescheduling using the concept of winding number
and the fact that functions of different winding number are homotopicaly
inequivalent. We shall outline a short proof of Winfree's result in this spirit
for topologically sophisticated readers.

The purpose of this article is to show how Winfree's argument in [3]
(though not, apparently, in [2]) can be filled out using concepts accessible
to anyone with a strong calculus background. In the first proof we shall use
Tietze's extension theorem, in the following simple form: a continuous real-
valued function from a closed, bounded subset of the Euclidean plane can be
extended to a continuous function defined on the entire plane. Later we shall
give a method of constructing such an extension for the specific subset of the
plane needed for Winfree's argument, which is self-contained and uses only
facts mentioned in standard calculus texts, and proved in advanced calculus.
The only advanced theorem remaining in the resulting argument is the "no
retraction" theorem already used in the part of the argument found in [3].

Following Winfree, we plot the time before the following beat as a function
on a rectangle R.

§
on

3
B

0
Point in cycle where stimulus ends

1

The bottom edge ("floor") of R represents zero stimulus strength; the top
edge ("roof") represents a strength which produces even resetting. The ver-
tical sides ("walls") represent stimuli applied at the beginning, and, which
amounts to the same thing, the end, of a cycle. Functional values of the cor-
responding points of the left and right walls are thus the same. The length of
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a single cycle is scaled to make it equal 1, and times greater than or equal to
1 are reduced modulo 1; that is, we subtract the integer part of any number
> 1 to produce a number in the interval [0, 1).

The main theorem is that it is impossible to extend this function contin-
uously throughout the region R. [If there were a discontinuity on R, there
would be nothing to prove; however, the beginning of the cycle is chosen so
as not to be one of the critical points in the cycle where a stimulus of interme-
diate strength is disruptive.] The physical implications of this impossiblity
are explored in [2] and [3].

We now abstract the mathematical essentials of the function. Other ex-
amples of functions satisfying the given conditions appear in [2] and [3],
relevant to a variety of interesting medical, biological, chemical, and physi-
cal phenomena.

DEFINITION. A colouring of a subset 5 of the plane E2 is a function / from
S into [0, 1]. A colouring is said to be continuous if / is continuous as a
function into [0, 1] with the endpoints identified.

Informally, 0 and 1 are taken to be the same colour ("red") and the
identification space of [0, 1], which is topologically a circle, is thought of as
a continuous spectrum, with violet close to 0 and orange close to 1 before
the identification of the endpoints is made. So we shall refer to [0, 1] with
endpoints identified as "the spectrum", and its elements (numbers modulo
1) as "colours".

The continuous colouring of R satisfies the following conditions:
1. "The full cycle of colours is encountered on the bottom edge of the rectan-

gle". More precisely, the colouring f of R takes on every value in [0, 1]
exactly once on the bottom of the rectangle, except that the two corners
are given the same value.

2. "The left and right walls of the rectangle are identically coloured." More
precisely, points on the same horizontal line are given the same value of
/ . In particular, this is true of the two top corners.

3. There are colours missing from the "roof" (top edge). In other words, /
takes the roof to a proper subset of the spectrum, which by continuity is a
closed subinterval of the spectrum, and topologically the same as a closed
interval [a, b] of the line.
Given these conditions on / , we have:

THEOREM. There is no continuous extension of f to the region enclosed
byR.
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To prove this, let C be a circle in the plane which surrounds and nowhere
touches R, and let g be a continuous colouring of C which maps C one-
to-one onto the spectrum.

The following key result is implicit in [3]. However no formal proof is
given. (See p. 63 of [3] for a discussion of the result.)

MAIN LEMMA. The colourings f and g can be extended simultaneously to a
continuous colouring of the annular region between R and C.

This lemma, together with the "no retraction" theorem of topology [3,
Chapter XVI Corollary 2.2], yields the theorem. Indeed, as pointed out on
p. 63, such a continuous extension would, by the lemma, result in a continu-
ous extension of g to the entire disk D bounded by C. But then we could
define a function h from D to C by simply sending each point of D to
the unique point of C which receives the same colour. The colouring being
continuous, the function h is also continuous, violating the "no retraction"
theorem.

FIRST PROOF OF MAIN LEMMA. Draw simple smooth arcs Ao and Al from
the two lower corners of the rectangle R to the point on C which is given
the same colour, without Ao or A{ touching each other or intersecting R
or C anywhere else.

Points elsewhere on the circle are similarly joined to the corresponding points
on the bottom edge of R by arcs in a continuously varying fashion, no two
arcs meeting, and no arc touching either R or C anywhere else; the arcs
are also to fill the region between C and the union of Ao and A{ with
the bottom edge of R. (For details, see Remark 1.) Similarly, it is easy to
connect the two top corners p0 and p{ of R by an arc A2 that stays inside
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the region bounded by the union of Ao and Al with the three other edges
of R, and to fill in the region bounded by Ao, Ax, A2 and the "walls" of
R by nonintersecting arcs that connect the corresponding points of the left
and right "walls" of R. By taking all points on a constructed arc to the same
colour, we thus extend the union of / and g to all of the annular region
between R and C except for the interior of the closed region L whose
boundary B is the union of A2 with the upper edge of R:

Po Pi

Now L is a metric space, and B is a closed subspace. By Condition
3 on / , and the construction of the extension above [all of A2, including
pQ and px, is sent to the same colour], B has been taken continuously to
a topological copy A of [a, b]. By Tietze's extension theorem, [3, p. 149]
there is a continuous extension of this map to all of L, with range A. This
completes our first proof of the Main Lemma.

ALTERNATIVE PROOF OF THEOREM. For those familiar with homotopy theory,
here is a short alternative proof which does not require the main lemma.
Suppose / could be extended to a continuous function g on all of the
region enclosed by R. By change of scale and translation, we may assume
this region is the unit square [0, 1] x [0, 1]. For each point (x, y) in the
region, let h(x, y) = g(x, y) - g(0, y) mod 1. This means that we subtract
the nearest integer < our figure, so that h(x, y) is in the interval [0, 1).
Then h is identically zero on both walls, and is a continuous colouring. Now
take 0 to be the basepoint in the spectrum. The function h can be regarded
as a homotopy leaving this basepoint fixed: the homotopy is between the map
h0 taking x to h(x, 0) and hx taking x to h{x, 1). But the homotopy class
of h0 generates the fundamental group of the circle, which is infinite cyclic.
On the other hand, since the range of hx is a proper subset of the spectrum,
its homotopy class is the identity element of this group, contradicting the
existence of a homotopy between h0 and h{.

REMARK 1. The filling in of the annular region between RuL and C can be
done by an induction as in Urysohn's lemma [3, p. 146]. Take the region G
bordered by C, Ao, A{, and the bottom of R. An arc A(l/2) joining the
points "coloured 1/2 " can be defined to divide G into two subregions; then
arcs .4(1/4) and A(i/4), similarly defined, can divide each of these into
two subregions; and so we continue with binary subdivisions, using dyadic
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rationals, i.e. numbers of the form k/2" , with k an integer between 0 and
2" . In this way an infinite family of nonintersecting arcs is denned. Now
at each stage n in the induction, any point p of G is either on an arc, in
which case its colour is already determined; or it is on a subregion between
arcs representing kJ2n and (kn + l)/2" , where kn depends on p as well as
n . If p is never on a constructed arc, it is assigned the value l i m ^ ^ kn/2

n ,
which exists. Continuity follows from the fact that we arrive at the same
value for the limit no matter what direction p is approached from.

Thus we have extended / to the entire region outside L. If, in addition,
our arcs are drawn evenly enough so that (a) the distance between arcs goes to
zero as the difference between their colours goes to zero and (b) the straight-
line distance between points on the same arc increases monotonically with
the distance along the arcs, then it can be shown that outside L every colour
occurs on a family of disjoint arcs.

REMARK 2. The existence of a continuous extension from B to L (last
paragraph of the first proof of the Main Lemma) was explained on p. 63
of [3] by saying "the roof, consisting only of even-resetting segments along
which hue changes undirectionally then falls back again, connects to itself
through concentric arcs of colour". This seems to presuppose more than the
three conditions given, but if one does not take the word "concentric" too
literally, an argument like that in Remark 1 is still possible. Here is a more
elementary argument, promised in the introduction, for extending from B
to all of L.

Let A2 be an arc of a circle of radius M. Consider the graph of the
restriction of / to the roof, with the roof represented by the horizontal
coordinates and the colours represented by the vertical coordinates. The
horizontal line at f(p0) = f(px) will be used as a reference line; the regions
between it and the graph of / (shaded below for a sample function / ) are
used as a guide to the defining of the "concentric arcs".

Here is how to do it. Each horizontal line that meets the graph represents
a single colour. With most of the functions encountered in calculus and
physics, such a horizontal line meets the shaded region in a finite family of
disjoint closed intervals, some degenerate; that is, single points. For more
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general continuous functions it is more convenient to study the interiors of
the regions, specifically excluding the graph of / . Each horizontal line meets
the interior in a (possibly empty) family of disjoint open intervals. As the
horizontal line moves either up from f(p0) = f(j>x) or down, the total length
of these intervals decreases monotonically. In fact, if f(p0) < a0 < ax,
each interval associated with al projects to a portion of some open interval
associated with a0 (see illustration); similarly if a{ < ao< f(p0).

l\ Al
-a0

The trick is now to join any two points of the roof by an arc of a circle
of radius M if they correspond to the abscissae of the endpoints of an open
interval obtained as above. In particular, they will have the same colour
(determined by the horizontal line whose subinterval we are using). The arc
with which we join them will not meet any other arc we construct, except in
the special case of points with colour f(p0) = f(px), where two arcs may
meet at their endpoints.

Now there will generally be some points of L which are not on any arc
constructed as above. For instance, suppose there is a local minimum above
f{p0) as shown:

l
a0

X / (Po)

If this point is on the horizontal line with ordinate ax, then the two arcs
we associate with the illustrated intervals will look somewhat like this:

On the other hand, the two subintervals project to a single interval for
any number a0 in interval [f(pQ), ax), and the arcs resulting from these
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single intervals converge to an arc joining xx and x3 as a0 converges to ax

leaving a region Ro in which there are no constructed arcs:

The simplest solution is to colour the entire region with the (single) colour
of the points x{, x2, x3.

Another possible region is between A2 and the other arcs (if any) associ-
ated with f{p0) = f(p1).

There are more complicated ways in which such regions can arise but in
every case the simple solution of using a single colour works. If one desires
every colour to appear only on a union of arcs ("isochronal lines") this can
also be done, by just giving the boundary the single colour and then using a
simple "target with bull's-eye" system of contours inside the region.

The general way to identify and isolate such regions is to look at the in-
tervals that pass through an arbitrary fixed vertical line:

If the graph is above f(p0) on this line (as shown), we push a horizontal
line up and observe the interval inside the region that crosses the chosen
vertical line. The interval may shrink continuously for a while, in which
case the arcs we are defining also shrink continuously and the space between
them is filled up. But at some points the shrinking may experience a jump
discontinuity, and here is where regions like RQ will arise. By identifying
all such discontinuities over all vertical lines [it is enough to consider the
vertical lines with rational abscissae] we locate all the regions that require
special attention.

REMARK 3. In the Scientific American article [2] a different proof for the main
theorem was claimed: it was said that if one had a continuous extension of
/ to the entire interior of the rectangle R, then a circle C' (topologically
speaking: a simple closed curve) could be drawn in the interior such that
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every colour appears on C' exactly once. A fully general proof of this sort
must, of necessity, use the false claim of the existence of such an extension,
hence the above proofs are preferable. If one removes a point p from the
interior, then / can easily be extended to the resulting punctured rectangular
region without any such C' existing (except, of course, in the degenerate case
where the roof and two walls all receive a single colour): just connect each
point r of R to p by the straight line segment whose endpoints are r and
p, and give the segment the same colour you gave p . Now on any simple
closed curve enclosing p, the colour appears at least as often as it does on
R.

Admittedly, the way of extending / outlined here is not very faithful
to the physical phenomena from which / arose, so some extra hypotheses
might yield such a C'. For instance, the examples illustrated in either [1] or
[2] seem to have such circles C'. In particular, the boundaries of the "black
holes" to which the colouring is not extended, and which together contain the
set Z of all points where behaviour is inherently unpredictable, all appear
to be simple closed curves where each colour appears at exactly one point.
Mathematically speaking however, even if such circles C' do appear, there
is no reason why the boundary of the set Z should have a simple colouring
even if Z is a simple region; indeed, one need consider only the case where
the circle C' is the circle C of the Main Lemma, which in turn is in the
interior of a larger rectangle, while Z is the interior of the rectangle R of
the Main Lemma.

This mathematical observation may be relevant to some speculation on
pp. 157-159 of [1] of how fibrillation might start. There, some experiments
are cited in which circular waves ("rotors") are observed on the surface of
heart muscle. Were the latency at each point on the muscle plotted at a given
instant in time, these waves would correspond to a circle C' as above. It
is hypothesised in [1] that if such a C' were to border a region of degen-
erate tissue (the analogue of the set Z ) then the rotor might "shatter" and
thus initiate fibrillation. On the other hand, in line with the observation in
the preceding paragraph, there might be a buffer zone between C' and Z
in which behaviour is continuous but not circulatory. Which of these two
possibilities is more conducive to fibrillation? Which is more often found in
nature?
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