GROUPS OF COMPLEXES OF A REPRESENTABLE LATTICE-ORDERED GROUP

by R. D. BYRD, J. T. LLOYD and J. W. STEPP

(Received 22 January, 1977)

1. Introduction. In 1954 N. Kimura proved that each idempotent in a semigroup is contained in a unique maximal subgroup of the semigroup and that distinct maximal subgroups are disjoint [13] (or see [6, pp. 21-23]). This generalized earlier results of Schwarz [14] and Wallace [15]. These maximal subgroups are important in the study of semigroups. If G is a group, then the collection S(G) of nonempty complexes of G is a semigroup and it is natural to inquire what properties of G are inherited by the maximal subgroups of S(G). There seems to be very little literature devoted to this subject. In [5, Theorem 2], with certain hypotheses placed on an idempotent, it was shown that if G is a lattice-ordered group ("*l*-group") then a maximal subgroup of S(G) containing an idempotent satisfying these conditions admits a natural lattice-order. The main result of this note (Theorem 1) is that if G is a representable *l*-group and E is a normal idempotent of S(G) and a dual ideal of the lattice G, then the maximal subgroup of S(G) containing E admits a representable lattice-order.

2. Notation and terminology. The collection S(G) of all nonempty complexes (subsets) of a group G is a semigroup with respect to the binary operation $AB = \{ab \mid a \in A \text{ and } b \in B\}$ for $A, B \in S(G)$. If E is an idempotent in S(G), then H(E) denotes the maximal subgroup of S(G) that contains E. A normal idempotent E of S(G) is an idempotent of S(G) and normal subset of G. If E is a normal idempotent of S(G), then $T(E) = \{aE \mid a \in G\}$ is a subgroup of H(E) and is isomorphic to G modulo the kernel of the mapping γ which sends x to xE for all $x \in G$. Moreover, if $A \in H(E)$, then $xAx^{-1} \in H(E)$ for all $x \in G$. If $1 \in E$, where E is a normal idempotent of S(G), then T(E) = H(E) [4, Proposition 4], and hence any property of G that is preserved by homomorphic images will be inherited by H(E). Consequently, the "more interesting" cases of maximal subgroups of S(G) occur when the identity element of G does not belong to the idempotent.

For the remainder of this note, we assume that G is an l-group, E is a normal idempotent of S(G), and γ is the mapping of G into H(E) given by $\gamma(x) = xE$ for all $x \in G$. For the standard definitions and results concerning *l*-groups the reader is referred to [1], [10], and [12]. An *l*-group G is said to be representable if there exists an *l*-isomorphism of G into a cardinal sum of totally ordered groups ("o-groups"). A dual ideal of G is a nonempty subset I of G such that $a, b \in I, x \in G$, and $x \ge a$ imply $a \land b, x \in I$. A prime subgroup of G is a convex *l*-subgroup such that if $a, b \in G^+ \backslash M$, then $a \land b \in G^+ \backslash M$.

Let E be a dual ideal of G. For an element A in H(E), define $A \ge E$ if and only if $A \subseteq E$. Then H(E) is an *l*-group with positive cone $\{A \mid A \ge E\}$, T(E) is an *l*-subgroup of H(E) with $aE \lor bE = (a \lor b)E$ and dually for all $a, b \in G$, and the kernel of γ is an *l*-ideal of G [5, Theorem 2]. It was shown in the proof of this theorem that if $A \in H(E)$, then $A \lor E = \bigcup (a \lor 1)E(a \in A)$.

3

Glasgow Math. J. 19 (1978) 135-139

If X and Y are sets, then $X \setminus Y$ denotes the set of elements in X but not in Y, and if G is an *l*-group, then $G^+ = \{g \in G \mid g \ge 1\}$.

3. Representability of H(E). If M is an *l*-subgroup of G such that for every $g \in G$ with g > 1 there exists an $a \in M$ with $g \ge a > 1$, then M is said to be *dense* in G. If M is dense in G, then joins and meets in M agree with those in G [2, Lemma 10]. The proofs of the next two lemmas are straightforward and will be omitted.

LEMMA 1. Let G and M be l-groups, η an l-homomorphism of G onto M, and E a dual ideal of G. Then $E^* = \eta(E)$ is a normal idempotent of S(M), a dual ideal of M, and if $A \in H(E)$, then $\eta(A) \in H(E^*)$. Let $\eta^* : H(E) \to H(E^*)$ be given by $\eta^*(A) = \eta(A)$ for all $A \in H(E)$, and let $\gamma^* : M \to H(E^*)$ be the l-homomorphism given by $\gamma^*(x) = xE^*$ for all $x \in M$. Then η^* is an l-homomorphism making the following diagram commute

$$\begin{array}{c} G \xrightarrow{\eta} M \\ \gamma \downarrow & \downarrow \gamma^* \\ H(E) \xrightarrow{\eta^*} H(E^*). \end{array}$$

LEMMA 2. If E is a dual ideal of an o-group, then H(E) is an o-group.

LEMMA 3. If E is a dual ideal of G, then T(E) is dense in H(E). Moreover, if $A \in H(E)$, then there is a $g \in G$ with $A \leq gE$.

Proof. Let $A \in H(E)$ such that E < A and let B be the inverse of A in H(E). We may assume $A \notin T(E)$. Then we have B < E < A and $B \notin T(E)$. Thus B < bE for all $b \in B$. Now

$$B = B \land E < bE \land E = (b \land 1)E \le E$$

for all $b \in B$. Suppose that $(b \land 1)E = E$ for all $b \in B$. Then $E = (b \land 1)E \le bE$ for all $b \in B$ and so $B = BE = \bigcup_{b \in B} bE \subseteq E$, a contradiction. Thus $B < (b \land 1)E < E$ for some $b \in B$ and so $E < (b \land 1)^{-1}E < A$. Therefore T(E) is dense in H(E). The second statement of the lemma is clear.

An element b of G is called *basic* if b > 1 and $\{x \mid x \in G \text{ and } 1 < x \le b\}$ is totally ordered. A subset B of G is a *basis* if B is a maximal set of (pairwise) disjoint elements in G and each b in B is basic. An *l*-group G has a basis if and only if for every $g \in G$ with g > 1, g exceeds a basic element [7, Theorem 5.1]. An *atom* is an element of G that covers 1.

COROLLARY 1. If E is a dual ideal of G, γ is one-to-one, and b is basic (respectively, an atom), then bE is basic (respectively, an atom) in H(E). Hence, if G has a basis, then H(E) has a basis.

THEOREM 1. If E is a dual ideal of G and G is representable, then H(E) is representable.

Proof. By [8, Lemma 3] it suffices to show that for each strictly positive element A of H(E), there is an *l*-homomorphism η^* from H(E) into an *o*-group such that $\eta^*(A) \neq 1$. Since T(E) is dense in H(E), it suffices to take A = aE where a > 1. We first consider the case in which the mapping γ is one-to-one. We assert that in this case $E \subseteq G^+$. If $b \in E$, then $bE \subseteq E$ and so $bE \ge E$. Thus $bE = bE \lor E = (b \lor 1)E$. Since γ is one-to-one, $b = b \lor 1 \in G^+$. Now suppose that $a \le e$ for every $e \in E$. Then, if $e \in E$, $e = e_1e_2$, where e_1 , $e_2 \in E$ and $a \le e_1$. Hence $ae_2 \le e_1e_2 = e$ and so $e \in aE$. Since aE is positive, $aE \subseteq E$. But then aE = E contrary to the choice of aE. It follows that $a \land e < a$ for some $e \in E$. Since G is representable, there is a minimal prime subgroup M of G which is normal [3, Theorem 3.1], G/M is an o-group, and $(a \land e)M < aM$. Consider the following commutative diagram

$$\begin{array}{c} G \xrightarrow{\eta} G/M \\ \gamma \downarrow & \downarrow \gamma^* \\ H(E) \xrightarrow{\eta^*} H(E^*) \end{array}$$

where η is the canonical mapping, $E^* = \eta(E)$, $\gamma^*(xM) = xME^*$ for every $xM \in G/M$, and $\eta^*(A) = \eta(A)$ for every $A \in H(E)$. By Lemma 1, η^* is an *l*-homomorphism and by Lemma 2, $H(E^*)$ is an o-group. Now $\eta(a) \wedge \eta(e) = \eta(a \wedge e) < \eta(a)$ and since G/M is totally ordered, we have that $\eta(e) < \eta(a)$. If $f \in E$, then $\eta(af) = \eta(a)\eta(f) \ge \eta(a) > \eta(e)$. Therefore $\eta(aE) \neq \eta(E)$ and so $\eta^*(aE) \neq E^*$. Thus H(E) is representable.

We next consider the general case. Let K denote the kernel of γ and consider the following commutative diagram

$$\begin{array}{c} G \xrightarrow{\eta} G/K \\ \gamma \downarrow & \downarrow \gamma^* \\ H(E) \xrightarrow{\eta^*} H(E^*) \end{array}$$

where η , E^* , γ^* , and η^* are as given above. We assert that γ^* is one-to-one. If $x, y \in G$ with $\gamma^* \eta(x) = \gamma^* \eta(y)$, then $\eta(x)E^* = \eta(y)E^*$ and so xKE = yKE. Since KE = E, we have that xE = yE and so $\eta(x) = \eta(y)$. Now G/K is representable and therefore, by the previous case, there is an *l*-homomorphism θ of $H(E^*)$ into an o-group such that $\theta\eta^*(aE) \neq 1$. It now follows that H(E) is representable.

An l-group G is said to be epi-Archimedean (or hyper-Archimedean) if each l-homomorphic image of G is Archimedean. In [11, Theorem 1.1] five conditions are given each of which is equivalent to the epi-Archimedean property.

THEOREM 2. If E is a dual ideal of G and G is epi-Archimedean, then H(E) is Archimedean.

Proof. Let $A, B \in H(E)$ such that A > E and B > E. By Lemma 3, there exist $a, b \in G^+$ such that $A \ge aE > E$ and $bE \ge B$. Since T(E) is an *l*-homomorphic image of G, T(E) is Archimedean. Thus there exists a positive integer n such that $a^n E \le bB$. Hence $A^n \le B$ and so H(E) is Archimedean.

4. Examples. In this section we give some examples to illustrate the scope and limitations of our results.

EXAMPLE 1. Let $G = \sum_{i=1}^{n} \mathbf{Q}$ be the cardinal product of *n* copies of the rational numbers \mathbf{Q} and let $E = \{(a_1, a_2, \dots, a_n) \mid a_i > 0, i = 1, 2, \dots, n\}$. Then *E* is a normal idempotent and a dual ideal of *G*. In this case H(E) is *l*-isomorphic to $\sum_{i=1}^{n} \mathbf{R}$, the cardinal sum of *n* copies of the real numbers.

In the above example E is the collection of units. In any *l*-group the collection of units is a normal subset, and, when nonempty, is a dual ideal. However, in general, the collection of units will not be an idempotent.

EXAMPLE 2. Let M be a normal proper prime subgroup of G such that G/M has no atoms. Then $E = \bigcup (xM) (xM > M)$ is a normal idempotent and a dual ideal. Moreover, M is the kernel of γ . If G is Archimedean and M is not a maximal ideal of G, then H(E) is not Archimedean.

If G is an *l*-subgroup of an *l*-group M, then M is said to be an *a*-extension of G provided that for every $1 < a \in M$ there exists $g \in G$ and there exist positive integers m and n such that $g \leq a^m$ and $a \leq g^n$. If G is an *l*-subgroup of M, then M is an *a*-extension of G if and only if the mapping $C \rightarrow C \cap G$ is a one-to-one mapping of the lattice of convex *l*-subgroups of M onto the lattice of convex *l*-subgroups of G[9, Theorem 2.1]. Our next example shows that even when γ is one-to-one, H(E) need not be an *a*-extension of G. The example also shows that when γ is one-to-one and G is epi-Archimedean, then H(E) need not be epi-Archimedean, and thus Theorem 2 is in some sense the best possible.

EXAMPLE 3. Let $G = \{f : \mathbb{Z}^+ \to \mathbb{R} | \text{ there exists } N \in \mathbb{Z}^+ \text{ with } f(n) = f(N) \text{ for all } n \ge N\}$, with $f \le g$ if $f(n) \le g(n)$ for all $n \in \mathbb{Z}^+$, and function addition is the group operation. Let $E = \{f \in G \mid f(n) > 0 \text{ for all } n \in \mathbb{Z}^+\}$. Then E is a normal idempotent and a dual ideal. In fact, E is the collection of units of G. Let $A = \{f \in G \mid f(n) > 1/(n+1) \text{ for all } n \in \mathbb{Z}^+\}$. Then $A \in H(E)$ and E < A. If there exists $g \in G$ and a positive integer m with $gE \le A^m$ then there is a positive integer N with $g(k) \le 0$ if $k \ge N$. But if $g(k) \le 0$ for $k \ge N$, then $A \le g^n E$ for all $n \in \mathbb{Z}^+$. Thus H(E) is not an a-extension of G.

REFERENCES

1. G. Birkhoff, Lattice Theory (Amer. Math. Soc., 1967).

2. S. J. Bernau, Orthocompletions of lattice groups, Proc. London Math. Soc. 16 (1966), 107-130.

3. R. D. Byrd, Complete distributivity in lattice-ordered groups, Pacific J. Math. 20 (1967), 423-432.

4. R. D. Byrd, J. T. Lloyd and J. W. Stepp, Groups of complexes of a group, J. Natur. Sci. and Math. 15 (1975), 83-87.

5. R. D. Byrd, J. T. Lloyd and J. W. Stepp, Groups of complexes of a lattice-ordered group, Sym. Math. 21 (1977) 525-528.

6. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups Vol. I, Amer. Math. Soc. Mathematical Surveys 7 (Providence, R.I., 1961).

7. P. F. Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240.

8. P. F. Conrad, The relationship between the radical of a lattice-ordered group and complete distributivity, *Pacific J. Math.* 14 (1964), 493–499.

9. P. F. Conrad, Archimedean extensions of lattice-ordered groups, J. Indian Math. Soc. 30 (1966), 131-160.

10. P. F. Conrad, Lattice-ordered groups, Lecture Notes (Tulane University, 1970).

11. P. F. Conrad, Epi-Archimedean groups, Czechoslovak Math. J. 24 (1974), 192-218.

12. L. Fuchs, Partially ordered algebraic systems (Pergamon Press, 1963).

13. N. Kimura, Maximal subgroups of a semigroup, Kōdai Math. Sem. Rep. 1954 (1954), 85-88.

14. S. Schwarz, Zur Theorie der Halbgruppen (Slovakian, German summary), Sbornik prác Prirodovedekej Fakulty Slovenskej University v Bratislave No 6 (1943).

15. A. D. Wallace, A note on mobs II, An. Acad. Brasil Ci. 25 (1953), 335-336.

UNIVERSITY OF HOUSTON