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ON THE HOMOTOPY PROPERTY OF NUSSBAUM'S 
FIXED POINT INDEX 

GILLES FOURNIER AND R E I N E FOURNIER 

Introduction. In [14] R. D. Nussbaum generalized the fixed point 
index to a class of maps larger than the one in [5]. Unfortunately his 
homotopy property conditions are more restrictive than the often more 
readily verifiable ones of Eells-Fournier. In this paper we shall try to 
find an intermediate class of maps which will contain all the known 
examples of maps for which the index is defined and for which the 
condition of Eells-Fournier will imply the homotopy property. 

In doing so, we shall give general conditions for which the sum of a 
compact map and a differentiable map will be a map having a fixed 
point index and for which the Lefschetz fixed point theorem is true. 

1. Preliminaries. 

1.1. Admissible maps and compact attractor. Consider the map / : U —> X 
where U is an open subset of X. Denote by F i x ( / ) the set of fixed points 
of/ (that is 

F i x ( / ) = {* € U:f(x) = x}). 

(1.1.1) Definition. A m a p / : U —> X is called admissible provided (i) 
U is an open subset of X and (ii) F i x ( / ) is compact. A homotopy 
h: U X I —* X is said to be admissible provided (i) U is an open subset 
of X and (ii) 

Fix(*) = VJ {Fix(fci): / € 1} 

is compact. 

In this paper, we shall make some use of the notion of compact attractor 
which is due to Nussbaum [13]. 

(1.1.2) Definition. Let X be a topological space a n d / : X —» X a con­
tinuous map. A compact nonempty subset M C X such that M is 
/-invariant (i.e., f(M) C M) will be called a compact attractor f o r / if, 
given any open neighbourhood U of M and any compact subset K C X, 
there exists an integer n = n(K, U) such tha t / w ( i£ ) C £7 for m ^ n. 
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NUSSBAUM'S FIXED POINT INDEX 45 

In the above situation, we say that M attracts the compact subsets of X. 

1.2. Leray endomorphisms and generalized Lefschetz number. In this 
paper, we shall make an essential use of the notion of the generalized 
Lefschetz number in the sense given by Leray [11]. This notion has 
proved to be of great importance in fixed point theory (cf. [7]). 

Let £ be a graded vector space over the field of rational numbers, <t> 
an endomorphism of degree zero of E and 

N(<t>) = KJ {ker (0W): n > 0}. 

Then <j> is said to be a Leray endomorphism if and only if Ë = E/N(<j>) 
is of finite type, that is (i) dim Eq < oo for all q, and (ii) Eq ^ 0 only 
for a finite number of q. In that case, one defines 

Tr (0) = trace (c/>) 

where <£: E —> E is the induced endomorphism. 
Let H denote the singular homology functor with rational coefficients, 

and f* denote H(f ), where / : X —» X is a continuous map; / is said to 
be a Lefschetz map if and only if /„, is a Leray endomorphism and, in that 
case, the generalized Lefschetz number of / is defined to be 

A(/) = E . ( - D , T r ( / M ) . 

The reason for using singular homology is that it has compact support. 

1.3. Measure of non-compactness. The notion of ''measure of non-
compactness" is due to Kuratowski [9, 10]. 

Let ( F, d) be a metric space. We define the measure of non-compactness 
7(F) of F to be 

y(y) = inf {r > 0: 3 a finite covering of F by subsets of 
diameter at most r\. 

Notice that 7(F) < oo if and only if F is bounded. Le t / : X —• F be 
a continuous map where (X, df) and (F, d) are metric spaces. We define 
the measure of non-compactness y(f) off to be 

7 ( / ) = inî{k:yY(f(A)) £ k yx(A) for all A CX}. 

This measure of non-compactness satisfies a number of properties (cf. 
[9, 13]) among which are the following 

(1.3.1) A C B C F implies that y(A) ^ y(B). 
(1.3.2) 0 ^ y(Y) ^ Ô(Y) where 5(F) is the diameter of F. 
(1.3.3) y (A) = Y(C1 A) where cl A denotes the closure of A. 
(1.3.4) y(A U B) g max \y(A), y(B)}. 
(1.3.5) If g: F—» Z is a continuous map, y(g of ) ^ 7 ( g ) 7 ( / ) . 
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Furthermore, if F is a linear normed space, we have the following 
(cf. [2]): 

(1.3.6)7(4 +B) ^ y(A)+y(B). 
(1.3.7) y(coA) = y (A) where co A denotes the closed convex hull of A. 

2. Compacting maps. 

2.1. Compacting families. 

(2.1.1) Definition. A family {A t\ ̂ 7 of closed subsets of X is compacting 
provided 

(i) n*<E/^U = A is compact and 
(ii) for each open subset U C X with A C. U there exists a finite subset 

/ of / such that Ojtj Aj C U. 

(2.1.2) PROPOSITION. / / X is compact, any family of closed subsets of X 
is compacting. 

Proof. Since f l<a At = A is closed, it is compact. Let U be an open 
neighbourhood of A in X. Ther. {AiC\ ^U) iei (where ^ U denotes the 
complement of U in X) is a family of closed subsets whose intersection 
is empty. Hence there exists a finite subset J (Z I such that 

Consequently, we get 

njejAjC u. 

(2.1.3) PROPOSITION. Let {-4*},€/ be a compacting family and ( 5 f | i € / 
be a family of closed subsets. Then {Af P\ B,} iei is compacting. 

Proof. Since 

n < € j ( 4 , n 3 f ) = B CA 

it is compact. Let U be an open subset such that B Q U. Since the 
family {A C\ Ai C\ Bt] iei is compacting in A (by (2.2)), there exists 
J d I such that 

(rw(4,ns,))nii cAnucu. 
Let V = # ( r W 0 4 * 0 5 , ) ) . Then i C f / U F a n d [ / U F i s open. 
Since {̂ 4*} i € / is compacting, there exists J' d I such that 

Clitj'AiC UV V. 

Consequently 

C ( f / U F ) n ? F C f / . 
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(2.1.4) PROPOSITION ([9]). Let X be a complete metric space and [At} <€N 
a family of closed subsets of X such that 

(i) At C At-! for all i 

(ii) \imUœ y (Ai) = 0. 

Then [A^i^ is compacting. 

(2.1.5) PROPOSITION. / / {-4*}*€N is compacting, then 

n 

Km 7 C\At = 0. 

2.2. Compacting maps. 

(2.2.1) As in [14], we shall write X £ IF if X is a closed subset of a 
Banach space from which it inherits its metric and if X has a locally 
finite covering {Ca: a £ A) by closed, convex sets Ca C X. 

If furthermore 4̂ is finite, we shall write X £ J^~0. 
Note that if X Ç Ĵ ~, it follows that X is an absolute neighbourhood 

retract (X 6 ANR). 

(2.2.2) Definition. Let 1 ^ and / : U —» X be an admissible map. 
Then / is a weakly compacting map if there exists a compacting decreasing 
sequence i£n Ç J S of subsets of X and an open subset W of [/ such that 

(2.7.1) F i x ( / ) C W C # i 

(2.7.2) / ( T ^ n ^ ) C * » + i . 

If, in addition, there exists en > 0 such that 

f(Wn Nen (Kn)) C KH.hl for all n £ N, 

we say t h a t / is a compacting map. If in addition for any compact subset 
M of U, with Fix ( / ) Cf(M) C M, we can choose W such that 
AT C W then we say t h a t / is a strongly compacting map. 

The following proposition gives an example of compacting maps. We 
shall assume that / : U —* X is an admissible map. 

(2.2.3) PROPOSITION. Let X be a subset of a Banach space and f: U —» X 
be a k-set contraction with k < 1. Then f is strongly compacting. 

Proof. Let a be a finite covering of M 2 Fix ( / ) by open balls such 
that the closure, cl (W {B: B Ç a}) is contained in U. Define 

.Kx = \J {c\B:B e a} 

and 

W = int ( ^ ) n / - 1 (int (Kt)) 

where int (Ki) denotes the interior of K\. 
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Then Fix ( / ) C M C W C Kx. Take * < 1 such that y(f ) < k and 
choose &', €i such that k < kf < 1 and 

&' — k 
6i < ~ ^ — T ( ^ I ) . 

Then 

7 ( / (WnNtl (*i))) ^ h ( ^ H i V q (i^O) 

^ M A ^ (7Q) 

= 26i* + *7(^ i ) <k'y(K1). 

Hence f(W P\ iV€1 (i£i)) is a finite union of sets with diameter less than 
k'y(Ki). Define K2 to be the union of the convex closure of these sets. 
Thus 

f(Wr\ Nn (KO) C K2 and 7(^2) ^ VyiKx). 

Repeating this procedure, take en < \(k'k~l — l)y(Kn) for each integer 
n, and we obtain 

y(Kn+1) =S k'y(Kn). 

Then 

l i m ^ œ 7 ( ^ n ) ^ l i m n , œ ^ 7 ( ^ i ) = 0. 

Hence, by (2.1.4), \Kn\ is compacting. T h u s / is compacting. 

(2.2.4) Definition. Let / : U —» X be a continuously Fréchet differen­
t i a t e map and \et D C. X. Then / is D-homogeneously eventually con­
densing if there exists k > 0 and w G N such that for any {x0jXi, . . . , xm\ 
C Î7 with Xi-i — f(xf) Ç .D for all ^ = 1, . . . , m, we have 

y(Df(x0) o £/(*,) o . . . o Df(xm)) < k < 1. 

(2.2.5) LEMMA. £>e/me ^: Xm+l - • Ym+1 by 

Hym,...,yux) = ( / ( / ( . . . ( / ( * ) + y i ) . . 0 

+ 3>m-l) + ^m, • • • , /"(*) + yi . %) 
then 

*(Dm x u)n um+l 

= {(xo . . . xm) £ £/m+1: Xj_i — /(#*) G £>/0r all i = 1 . . . m\. 

Proof. By the definition of ^, since 

/ ( / ( . . - ( / ( * ) + y i ) + • • • ) + yt-i)+yt 

we have the first inclusion. Now take (x0 . . . xm) Ç [7m+1 with xt-\ — 
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f(xt) Ç D for a lH = 1, . . . , m. Define 

Ji = %m—i ~~/(#m-t-l)-

Then we can prove by induction on i that 

* « . , = / ( . . . (f(x) +yi) + . . .) +yt. 

Thus we have equality. 

(2.2.6) LEMMA. Letf: U —» Ebe D-homogeneously eventually condensing. 
Then for any compact subset M of U and for any e > 0, there exists a 
neighbourhood V of M and r > 0 such that A C V and 8A < r imply 

\\Rx(a) - Rx(b) || < e \\a - b || /or a// x,a,b £ A 

where 6(A) denotes the diameter of A and Rx(a), the remainder term in 
Taylor's formula at the point x. Thus 

f(A) C NeSA (fix) - Dfix)ix) + Dfix)iA)). 

Proof. We know (cf [3] p. 164, 8.6.2) that co {a, b) C U implies 

(*) \\Rxia) - Rs(b)\\ = ||fia) -fib) - Df(x)(a - b)\\ 
S | |a-&| |sup{| |Z)/(x) - Df(y)\\:ye co {a, b}}. 

So, since / is continuously Fréchet-differentiable, choose xi, . . . , xn 

and 5i, . . . , hn such that 

(1) N2ti (Xi) C U 

(2) y G N29i (*,) implies \\Df(y) - Df(xt)\\ < e/2 

(3) y = VJ {JVa, (*,): * = 1, • • • , n\ D M. 

Put r = min {ôf. i = 1, . . . , n\. \i A C V and ôA < r, we have 

A P\ Nsi ixt) ^ 0 for some i; 

hence A C N8i+ôA ixi), thus 

co ,4 C cl (iV5i+5u, (*<)) C N6i+r ix^ C iV2̂ t ixO C t/. 

However if x, y 6 iV^ (#*) we get 

||2>/(*) - Z?/(y)|| è \\Df(x) - Z>/(*,)|| + \\Df(xt) - Df(y)\\ 

Hence 

sup {||Z>/(x) - Z?/Cy)||: y e c o i C Nttl (*«)} ^ e. 

That is, using (*), if x, a, b £ ^4, we get 

\\R,(o) -Rx(b)\\ <e \\a-b\\. 
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The second part of this lemma is evident from Taylor's formula. 

(2.2.7) LEMMA. Under the assumptions of (2.2.6), there exists a neigh­
bourhood V of M and s, k > 0 such that ôA < s implies that ôf (A) ^ k8A 
for all A C V. 

Proof. Denote 

k = 1 + sup{\\Df(x)\\:x e M). 

Then there exists an open neighbourhood W of M such that x £ W 
implies that ||l?/(x)|| < k. Since Fix (h) is compact, there exists 5 > 0 
such that N2s(M) C W. Put V = NS(M). Then, if A C V and 
ÔA < s, it follows that co,4 C N2s(M) C W. Hence by [3, p. 164, 
8.5.4], we get 

\\f(x) -f(y)\\ S ||x — y|| sup {||Z?/(a)||: a € co {*, y] C co A] 

S k\\x — y\\ 

for all x, y £ A ; that is 8f(a) ^ ko A. 

(2.2.8) LEMMA. Assume that f: U —» X is D-homogeneously eventually 
condensing where D is a compact subset of X. Then there exists a finite 
union E of closed convex subsets of X such that D C E and f is E-homo-
geneously eventually condensing in a neighbourhood of any compact M C U. 

Proof. Choose V an open subset of U such that 

MCVCcWCU. 

Consider the function <j>: Um+1 —» R + defined by 

4>(xu • • • , xm) = y(Df(x0) o . . . o Df{xm))\ 

since / is continuously (Fréchet) differentiable, <t> is continuous. Hence 
4>~l [0, k) is an open subset. 

Now consider the map \//: Xm+1 —» F w + 1 where Y is the whole Banach 
space, defined by 

*(?«, • • •, yux) = ( / ( / ( . . . (/(*) +yi)+ ...)+ ym-i) 

+ ym, • • • , / (*) + yi,x)\ 

it is continuous. Furthermore by (2.2.5), we have that 

t(Dm X U)C\ Um+l C <t>~1 [0, k), 

thus 

Dm X M C Dm X U C t~x ((Um+1 H 0-1 [0, k)) U #[c l Vm+1] = W 

which is open. Since Dm X M is compact there exists e > 0 such that 

N€(D
m X M) CW. 

https://doi.org/10.4153/CJM-1982-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-006-3


NUSSBAUM'S FIXED POINT INDEX 51 

The norm of the product being 

/ m \ l / 2 

I I ( y « , . . . ,yi,yo)\\ = [12 y*) 

choose 0 < s < e (m + 1)~1/2 such that NS(M) C V. Then 

(iV5(£>)™ X NS(M) C iV€(D
w X M)) C W. 

Thus 

4<(Ns(D)m X iV.(Af)) H (iVs(M))w+1C £/m+1H 0"1 [0, ̂ ) C ^ I O , * ) , 

that is / : NS(M) —» X is NS(D)-homogeneously eventually condensing. 
Let a be a finite covering of D by balls of diameter less than s/2 ; then 

E = KJ {c\A\A Ça} CNS(D) 

and so E is the set we were looking for. 

The following proposition for / , the zero constant map, and g, a, self 
map, is due to Nussbaum [3, 367 Corollary 9]; if / is the zero constant 
map, it is due to Nussbaum [14] and Eells-Fournier [5]. If g is a linear 
map it is due to Nussbaum [12, p. 225, Corollary 3]; in fact, in this 
particular case, if / is compact and g is eventually condensing, the 
conclusion of (2.2.9) always follows. 

(2.2.9) PROPOSITION. Let f, g: U —> X be two maps such that g is 
compact and f is c\g(U)-homogeneously eventually condensing. Then 
h — f + g is a strongly compacting provided ¥\x(h) is compact. 

Proof. By (2.2.8), we may assume that U has the property that 
/ : U —» X is ^-homogeneously eventually condensing, where cl g(U) C E 
and £ is a finite union of closed convex sets. 

Since / is continuously differentiate and M is compact, with 
Fix (*) C f(M) C M, we define 

d = 1 + sup{||JD/(*)||: x G M} 

and the open subset 

V = {%: \\Df{x)\\ <d\D M. 

Now let m and k be as in (2.2.4) and take / such that 

1 < t < ft-1; 

then 1 — kt > 0. Let V and r be as in (2.2.6) and choose e > 0 such that 

(2.2.9.1) e < (2dm(t + 4 ) « + 2t + 2d + 6)"1 (1 - kt). 

Finally choose s such that s < l,s < ed~l and r' = d(M, ^V) — sr > 0. 
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Now define 

U' = Nr>(M)r\ Y. 

Notice that 

(2.2.9.2) \\Dj{x)\\ ^ d < e/s 

for ail x £ U' CV and 

(2.2.9.3) Nar(U') C Nar+T>(M) C V. 

We may now proceed with the inductive construction of the Kn's. 
Choose 311 a finite set of closed convex subsets of £/', the union of 

which is a neighbourhood of M and such that A G 2Ii implies that 

0(A) < r(t+ e + 2s)~\ 

Put Ki = yj 211 and T^ = int ( i Q C\ h~l (int ( # 0 ) . Then W is an 
open set and Fix (h) C. W C K\. We may assume that A G 211 implies 
that 

0(4) < / 7 ( ^ i ) . 

Notice that 

h(NsyiKl) (Kx) H W) C ft(W) C Xi. 

Now assume that 2li, . . . , 2IW and Kt = U 21* (i = 1, . . . , n) are 

defined and satisfy the properties (i) A G 21* implies that 6(4) < ty(Ki), 

(ii) there exists 4 ' G 2I*_i such that 

(iii) MiV57(*«) ( i Q H W) C A(W0 C X« and (iv) Kt C X M for all 

i = 2, . . . , n. Now let us define Sln+i and Kn+i = U 2lw+i. Consider 

(2.2.9.4) h(Nsy{Kn) (Kn) n W) Cf(Nsy{Kn) (Kn) H W) + cl g(W). 

Since g is compact, let 33„+i be a finite covering of cl g(W) by convex 
subsets of E, of diameter less than ey(Kn). Let 2^+1 be a set of subsets 
of f(Nsy(Kn) (Kn) C\ W) satisfying the following property: 

for each A G 2lw+i, there exists A G 2IW such that 

ÂCf(Nn{Kn) (A)n W). 
Define 

(2.2.9.5) £„+1 = M n ( c o l + 5 ) : i G gn+1, 4 G 2l„ and B G 93„+i} 

and Kn+1 = U 6,+ 1 C 2C«. Since Y C ^ + I ) ^ T ( ^ ) (cf (1.3.2)) which is 
finite, there exists a finite collection 3X+i of subspaces of Kn+i such that 
VJ SD„+i = Kn+1 and 0(D) < ^(^»+i ) for all D G $)n+1. Define 

(2.2.9.6) 2lw+i = {co D H C: C G &n+i and D G 5D„+i}. 
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Then if A 6 8l„+i, it follows, from (1.3.7) and (2.2.9.6), that 

(2.2.9.7) 8(A) ^ S(coD) = 8(D) < ty(Kn+1) 

for some D £ ï>„+i- Clearly W 2ln+i = Kn+i. Since 

h(Nsy{Kn) (Kn) f\W)CKn 

we get (using (2.2.9.4) and (2.2.9.5)) 

h(Nn(Kn) (Kn) C\W)C Kn+l C Kn 

hence 

h(Nn(Kn+l) (Kn+1) H F ) C M A W . ) (Kn) r\W)C Kn+1. 

It remains to show that 

l i n w , y(Kn) = 0. 

But 

(2.2.9.8) y(Kn+1) ^ max {T(co À + B): A £ â.+i and B 6 Sn+i} 

g max j 7 ( l ) + 7 (5 ) : 1 6 t n + 1 and 5 € Sre+1S 

^ max (7(/(iV««.) (̂ 4) ^ W)) + ^ ( t f , ) : ^ £ %,}. 

Notice that Kt C -Kf-i, hence y(Kn) ^ 7(ifi) for all n and by con­
struction, if A (z 21» there exists ^4' 6 3IK_i such that 4̂ C A', con­
sequently we have that 0(A) < ty(Ki) for all A 6 Sl„. But 

7(^1) ^ max {M| 4 e 2Ï!Î < r(< + « + 2s)"1 

thus 

Ô(iVS7(Xn) (A))£ (t + 2s)y(K1) <r. 

Furthermore, since Kn C Ki C Z7', we obtain using (2.2.9.3), that 

(2.2.9.9) Nsy{Kn) (A) C ATsr (A) C Nsr (V) C V. 

Hence if A0 Ç 2In, it follows from (2.2.9.9) and (2.2.6), that 

(2.2.9.10) f(Nsy(Kn) (A0) r\ W) 

(Ao) + 2esy(Kn) (/(*„) + Df(x0) (*„) + Df(x0)(NsyiKn) (Aa))) 

for any x0 € A0. Then from (2.2.9.2), (2.2.9.8) and (2.2.9.10), we get, 
for all x0 € A 0 

(2.2.9.11) 7(-K*+i) g max, o e ! ( „7W(x»)( iV ! r ( W (A0))) 

+ 2e8(A0) + ±esy(Kn) + 2(y(Kn) 

^ maxAo€a„ min^a, y(Df(x)(A0)) + (2ds + 2< + 4s + 2) e-y^n) 

^ max4o€a„ minJ€a„ T ( 5 / ( Ï ) M O ) ) + (2d + 2* + 6) «YCK») 

for all w > 0. However, there exists ^4] £ 2lre_i and -Bi 6 33«-i such that 
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for any xx 6 Ax and any by Ç Bh we have using (2.2.9.10), the con­
struction of $„- i and (2.2.9.7) that 

(2.2.9.12) A0 C / ( ^ ( i . - ) {Ai) C\ W) + 5 , 

C 5 i + A^ (/(x,) +Z)/(xi)(xi) +Z>/(x ])(A^ ( x„_ l ) (i4j))) 

C iVr2 ( * ! + / ( * ! ) + Df(Xl)(Xl) + Z?/(*i)(#„«,_!) (ill))) 

where 

fi = rf(i4i) +2es 7 (X n _ 1 ) 

and 

r 2 = e ( * + l + 2 s ) 7 ( ^ - 1 ) . 

Furthermore any x0 € Ao can be written in the form xo = / (x) + b for 
some x £ iV'n(XB_1) (^4i) and some b (E 5 i . Hence we may assume that 
Xo = f{x\) + èi. We can repeat this process and obtain the same inclusion 
((2.2.9.11)) for the sets Aa, . . . , Am, S i Bm 

Xi € iVn(jrn_,.) (At) C U and 6, Ç 5 , 

such that 

/(*<) + bf = Xi_i 

for t = 1, . . . , m < «. Denote, for some i ^ m, 

<j> = Df(x0) o . . . o Df(xi-i) ; 

then by (2.2.9.2), ||0|| < d*-1 < dm. Hence, by (2.2.9.12) and the fact 
that y(Ka) ^ y(Kp) for any 0 ^ a, we have 

(2.2.9.13) 7(*(4«_i)) £ 7(«(^(î+i+25)7(K„_<) (61 + / ( * 0 + Df(xt)(xt) 

+ Z)/(x<)(iVS7(Xn.,.) U , ) ) ) ) ) 
g y(Nu (*(&,) + *o/ (*«) + * o / ) f ( x ( ) W 

+ 4>oD/(x<)(iVn<*„-,> (.4,)))) 

^ 2d» €(* + 3) y(Kn_t) + y{<j>oDf(Xi)(Niy(Kn_%) (A,))) 

g 2dm (e(t + 3) + ||Z>/(*,)l|s) 7 ( ^ - 0 + y(<t>oDf(xt) (A,)) 

g 2rfM e(* + 4) 7 (#»-«) + 7(0 o £>/(*,) (.4,)) 

where 

r3 = 11*11 e(* + 3) y(Kn-{) 

Applying the previous inequality successively, we obtain 

y(Df(x0)(Ao)) g 2m<r e(t + 4) 7 (#„-«) 

+ y(Df(x0) o . . . o Df(xt) (Am)) 

S 2mdm e(t + 4) y(Kn-m) + ^ ( ^ r o ) 
^ [2m<?"e(* + 4) + &] 7 (£•„_,) 
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by (2.2.9.7) and (2.2.4). Hence, it follows from (2.2.9.11), that 

y{Kn+1) g [e(2mdm (t + 4) + (2d + 2t + 6)) + kt] y(Kn.m). 

PutL = e[2mdm (t + 4) + (2d + 2t + 6)] + */, then by (2.2.9.1), L < 1. 
Hence 

7 (^+1) ^ Ly(Kn_m) 

with L < 1. Since n > m is arbitrary and y(Kn) < y(K\) for all w, it 
follows that 

lining» 7 (iSTn) = 0. 

(2.2.10) Examples. Here we give some examples of /^-homogeneously 
eventually condensing maps / : U —> X. 

1) / is linear eventually condensing and D any subset of X (cf. [12]). 
2) / is eventually condensing and f(x + y) = f(x) for all y Ç D. 
3) There is a sequence {Et\ i=i...n and k, L > 0 such that 
a) Ei is the whole Banach space 
b) Df(x) (Et) C Ei+i which is a linear subspace of Et for all i = 1, 

. . . , » — 1 and all x £ E{ 

c) 7(#/(*)U») < * < 1 for all x € £ , 
d) y(Df(x)) ^ L for all x. 

Then / is ^-homogeneously eventually condensing for any D C X. 
4) If conditions 3 (a)-3 (c) are satisfied and if D and M are two compact 

subsets of X then there exists e > 0 such that 

/ : N€(M)->X 

is P-homogeneously eventually condensing. 

3. Fixed po in t index. The main reference for this section is [14]. 

(3.1) Suppose that U and Y are open subsets of a space X £ &~ such 
that U C Y and / : U —» F is a continuous map. Assume that Fix ( / ) is 
compact (possibly empty). Suppose there exists a bounded open neigh­
bourhood W of Fix ( / ), W C U, and a decreasing sequence of spaces 
Kn C Y, Kn £ #~0, such that 

(3.1.1) KtD W; 

(3.1.2) f(Wr\Kn)CKn+ù 

(3.1.3) \imn_œy(Kn) = 0. 

(3.2) Définition (Nussbaum). If the above conditions are satisfied for 
some W and some decreasing sequence {Kn} we say t h a t / belongs to the 
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fixed point index class, and we define 

ind ( F , / , U) = U n w i n d (Knif WC\Kn). 

If Kn is empty for some n, we take ind ( F , / , U) to be zero. 

Note that a map /:£/—» F which has a compact set of fixed points 
and is weakly condensing (in the sense of [5]), is weakly compacting and 
belongs to the fixed point index class. The fixed point index defined in 
the above generality satisfies the familiar properties: e.g., the excision, 
additivity, fixed point and contraction properties. Since the properties 
of normalization, commutativity and homotopy have special hypotheses, 
we write them here. We need one more definition. 

(3.3) Definition (see [6]). Suppose that X £ Ĵ ~, F is an open subset 
of X and / : F —» F is a continuous map. Let M C F be a compact, 
/-invariant set. Assume that there exists an open neighbourhood W of M 
and a decreasing sequence of sets Kn £ ^ o , Kn C F, such that K\ D W, 
f(Wr\Kn) C Kn+1 and \imn_œy(Kn) = 0. Then we say t h a t / : Y-> Y 
has property («Sf ) in a neighbourhood of M. 

Note that a strongly compacting map has property {f£) in a neigh­
bourhood of any such M. We have the following properties. 

(3.4) Normalization. Suppose that X Ç ^~, F is open in X, and 
/ : F —> F is a continuous map which has a compact attractor M. Then, 
if / has property (f£) in a neighbourhood of M, / belongs to the fixed 
point index class, / is a Lefschetz map, and 

ind (* , / , F) = A( / : F - * F ) . 

(3.5) Commutativity. Suppose that X, Y £ ^~, that [/ and F are open 
subsets of X and F respectively and that / : t/ —> F and g: F —» X are 
continuous maps. Assume that 

S = {x£f-l(V): gof(x) =x} 

is compact (possibly empty), so that 

r = {y erH^/ogOv) =3-1 
is compact. Assume that there exists a decreasing sequence of sets 
An G ^""o, ^4n C X, indexed by nonnegative even integers and a decreasing 
sequence of sets Bn £ J^o, Bn C F, indexed by positive odd integers with 
the following properties: 

(3.5.1) f(U H An) C Bn+1 and g ( 7 H A*+i) C 4 n + 2 for all even 
integers n ^ 0. 

(3.5.2) Ao contains an open neighbourhood of 5 and B\ contains 
an open neighbourhood of T. 

(3.5.3) l im^œ T Un) = 0 and limn_œ y(Bn) = 0. 
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Then it follows that 

ind(X,gof,f-l(V)) = i n d ( F f / o g , g - i ( E O ) . 

(3.6) Homotopy. Suppose that X £ Ĵ ~, [/, F are open in X, and 
h: U X [0, 1] —» F is a continuous map such that 

5 = {x Ç [/: there exists t such that fe/(#) = h(x, t) = x} 

is compact. Assume there exists a bounded open neighbourhood W of 5 
with W C U and a decreasing sequence Kn G J^o, -K"n C ^, such that 

i ^ D W, h«Wn H i Q X [0, 1]) C i^n+i and l im^œ y(Kn) = 0. 

Then ind (F, &t, £/) is defined and constant for 0 g / rg 1. 
Furthermore this index has the following properties. 

(3.7) PROPOSITION (Product). Let f: U —> X and g: V —> F belong to 
the fixed point index class. Then 

ind (X XY,fXg,UXV) = ind ( X J , t/) ind (F, g, 7 ) . 

Proof. Let W and W7 be open neighbourhoods of Fix ( / ) and Fix (g) 
respectively such that cl W C U and cl fiT C U. Let i£w, lfn' Ç J S 
^n C X and Kn' C ^ be two decreasing sequences of spaces satisfying 
conditions (3.1.1)-(3.1.3). T h e n / X g belongs to the fixed point index 
class since W X W and the sequence Kn X Kn

f satisfy all the required 
properties (notice that y (A X B) ^ y (A) + y{B) provided the norm 
of X X F is defined by 

IK*, 30 II = (ll*IU2 + I M I r 2 ) 1 7 2 ) -
Finally if ir of and i o g are admissible approximations of / and g 

respectively, the map (irof) X Or' o g) is an admissible approximation 
of / X g and 

ind (X X Y,fX g, UX V) 

= linv,œ ind (Kn X Kn', (TT of ) X W o g), 

(WX W')r\ (KnXKn
f)) 

= l im^œ [(ind (Kny TT of, WnKH)) 

X (ind (#n ' , * ' o g, W XKn'))} 

= ind (X,f,U) X ind (F,g , V). 

The following proposition extends the previously stated homotopy 
property but only for compacting maps. The conditions are sometimes 
easier to verify. 

(3.8) PROPOSITION (Homotopy). Let U be an open subset of X X L 
Assume h: U —» X is a homotopy. Let H: U —» X X I be the map defined 
by 

H(x,t) = (h(x, t),t). 

https://doi.org/10.4153/CJM-1982-006-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-006-3


58 G. FOURNIER AND R. FOURNIER 

If H is a compacting map, it follows that 

ind {X, h„, f/o) = ind (X, h„ U,) for all t ̂  I 

= ind (X X I,H, U). 

Proof. By (2.2.2), there exists an open subset W, e„ > 0 and Kn £ J^~0 

for all n such that 

(3.8.1) Fix(H)CWCKu 

(3.8.2) H{WC\ Ntn (Kn)) C Kn+1 C KH, 

(3.8.3) l i m ^ T ^ » ) = 0 . 

(i) Without loss of generality, it is sufficient to prove the first equality 
for W = V X I- In fact, since Fix (H) is compact, it has a neighbourhood 
of the form 

{J ViX IiCW 
1 = 1 

where Vt is an open subset of X and It is a closed interval for alW = 1, 
. . . , n. 

Let us well-order the extremities of the I\, say {to, . . . , tm], where 
tt < ti+\. We may assume that to = 0: otherwise Fix (ho) = 0 and 
Ifl^i Vi X It being a neighbourhood of Fix (H), it follows that 

Fix (H)n (X X {/<>}) = 0, 

that is Fix (/^0) = 0 and consequently 

ind (X, ho, Uo) = ind (X, fcf0, t/0) = 0. 

For the same reason, we may assume that tm = 1. 
Now define Wj = U { F<: /if ^_i Ç /,} ; it follows that 

n 

Wj X [/,_!, /,] C U F, X / , . 
t = i 

Furthermore 

since there exists jo, ji such that It = [tj0, t^]. Hence 

n m 

U VtX It= U WjX [tj-i, tj]. 
1=1 j=\ 

Now Wy X [/y-i, tj] has the required form and satisfies the required 
hypothesis. Thus, if 

ind (X, htj_19 Utj.l) = ind (X, htj, Utj) 
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for all j = 1, . . . , m it follows that 

ind (X, ho, Uo) = ind (X, hlt Ui). 

(ii) Now, we shall prove that ind (X} ht, Ut) is a constant. In fact, 
since Kœ = C\ {Kn: n G N} is compact and 

Fix (H) C\ (KX\W) = 0, 

we know that 

r = sup {\\y - H{y)\\: y Ç {K,\W) H 2TJ > 0. 

Hence 

W = {y: \\y - H(Y)\\ > r/2\ D (K^W) H Kœ. 

Notice that KœCW\JW: in fact, since Kœ C Kx it follows that 

Kœ C ( # i W ) \J W 

and consequently we have 

xœc ( (# iW)n i f ju i r c ru^ 
Now take e > 0 such that N2< (Kœ) C W V W and take n0 such that 
Kn C iV€ ( i £ J for all n ^ n0. Then 7Ve(^J C ^ ' U i y for all n ^ »0. 

Choose Wi è n0 such that 7(2CW) < r /4 for all w ^ wf, take £ ^ wi, 
p even, and let J^p be a finite covering of i£p by closed convex subsets of 
Kp of diameter less than r/4. Choose 5 such that 

s < min {r/4, e, e£/4, l / £} . 

Take to £ I and consider the interval / = [to, t0 + 5]. 
For all A G ^ , define 

Ai = cl {x: there exists / G / such that (x, t) £ A) 

and let A j = yl 1 X 7. Then 

4 , C cl Nt{A) C #2, 04) C Nhp (Kp) ; 

hence 

H ( ^ n U {Ay. A G ^ P } ) C ^ . 

Denote: Kv' = *J [Ai: A Ç. s/p}, then 

X.+ i ' C Kn', KnCKn
f XJC Nhn (Kn) 

and 

y(KH') ^ y(Kn) + en ^ y(Kn) + n~\ 
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Hence 

H(Wr\ {K: X J)) = H(WC\U {Ay.A ^stfv\) 

C K,+1 ^(WXJ)C Kn+l' X / , 

that is 

ht(Vr\ Kn') C Kn+1' C Kn' for alite J and all n. 

Furthermore Fix ht C V C K' X / . By definition, since i£n ' is com­
pacting, we have that 

ind (X, ht, Ut) = ind ( # / , *<f F H X / ) 

for all i G / . But k ( F H Kp) X /—» i £ / is a homotopy without any 
fixed point on the boundary, thus 

ind (Kp', fcl0, VC\Kp
f) = ind {Kp\ ht, V C\ Kp') 

for all / € / ; that is ind (X, hu Ut) is constant for all t Ç / . Since / is 
arbitrary of length s, we get the conclusion. 

(iii) Let us prove that ind (X, ft0, UQ) = ind (X X / , if, U). Define 
HS:BS = (Ur\ (X X [0 ,5 ] ) )U C7, X [s, 1] -> X X I by 

It is sufficient to prove that there exists e such that 

ind (X, HS1 Bs) = ind (X, Hrj Br) for all s, r with \s - r\ < e. 

Because, we would then have that H = H1 and H0 = h0 X 0 

ind (X X / , H, U) = ind (X X I,h0X 0, f/0 X / ) 

= ind (X, *o, Uo) • ind (I, 0, / ) 

= ind (X, *o, tfo) 

by (3.7) and (3.4) since 0 is a constant map. 
Take e < ei. Without loss of generality, by (i), we may assume that 

r — s < e and s, r £ [tj-i, tj] for some j = 1, . . . , m. Put 

Us = (TFi X [*„, *i] U . . . U ^ _ ! X [/,-,, *,-i] U W, X [^-1, 1]) X / 

and define ifs: Us -» X X I X I by 

Hs{xyt,t
r) = ( f l ( 1 . t ^ , J r ( x , 0 , O . 

It is sufficient to prove that ifs is compacting, since by (ii) we would 
have the conclusion. 

Furthermore since Fix H is compact and thus U tei Fix ht is compact, 
since X Ç J ^ by excision, we may assume that X G «̂ "V 
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Now define 

Ds = { ( / , / ' ) : ' £ ( 1 -t')s + t'r) 

and 

Ei = [ Z i X / n i X Z>,] and i£„ = Enforn^2 

and 

2^' = £x u («-u^i)) n [x x (i2 \z>,)] 
where 

4>(x, t, t') = (x, (1 - O 5 + t'r, t'). 

We have that Kn
s £ J ^ : since Kn £ ^~o and since the finite product or 

the intersection of closed convex sets is closed and convex, we obtain 
that En Ç J S ; since <t>: E X I2 ~> E X I2, where E is the whole Banach 
space, satisfies 

4>(a(x,t,t') + (1 - aX*!,*!,*!7)) 

= a<l>(x, t, t') + (1 - a) <t>(xu h, ti) 

we obtain that the inverse image of a closed convex set is closed and 
convex, thus Kis Ç J S . 

Define 

i = [ ^ x / n i x D j w fo-Hw x mx XDS) 
nxx (P\DS)] 

and 

T^s = int A Pi £/s. 

We have that F C ^ C AV. Notice that HS(US) CX X Ds and so 
Fix Hs C X X D„ thus 

Fix H* C (Fix HX I)C\ (X X Ds) 

and is a compact contained in the interior of (W X I) r\ (XX Ds) in 
X X Ds. Furthermore since <t>(X X I2) C X X Ds we get that 

<trl(wxmxxD,)niXx (I2\DS) 

is open in X X (I2\DS) ; moreover it is a neighbourhood of 

Fix Hsr\[X X (I2\DS)] = Fix Hsr\ (X X dDs) 

since <j> is the identity on X X dDs. Thus Fix Hs C int A and Ws is an 
open neighbourhood of Fix Hs in X X I X L Since Kn+i C Kn* and 
YCKV) ^ y(Kn X I) - y(Kn)} it remains to prove that 

Hs(Kn
sr\ ws) cK+1. 
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But if n è 2, 

Hs(Kn
s H W ) C (H(WC\Kn) X / ) H ( I X Z?,) 

C î n+i x / n x x DS = K+l. 
Similarly i f s (£ i H Ws) G -KV. Furthermore 

^ ( ^ ( ( w x /) n (z x z>,)) n x x (P\DS)) 
CHS((WX I) X (X XD8)) 

CHS(E1 X W") CK2
S. 

Thus we have #*(#!* H W") C #2
S . 

Thus except for the commutativity property all the preceding results 
have nicer statements for the class of strongly compacting maps. 
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