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Turbulent motions enhance the diffusion of large-scale flows and temperature gradients.
Such diffusion is often parameterized by coefficients of turbulent viscosity (νt) and
turbulent thermal diffusivity (χt) that are analogous to their microscopic counterparts. We
compute the turbulent diffusion coefficients by imposing sinusoidal large-scale velocity
and temperature gradients on a turbulent flow and measuring the response of the system.
We also confirm our results using experiments where the imposed gradients are allowed
to decay. To achieve this, we use weakly compressible three-dimensional hydrodynamic
simulations of isotropically forced homogeneous turbulence. We find that the turbulent
viscosity and thermal diffusion, as well as their ratio the turbulent Prandtl number,
Prt = νt/χt, approach asymptotic values at sufficiently high Reynolds and Péclet numbers.
We also do not find a significant dependence of Prt on the microscopic Prandtl number
Pr = ν/χ . These findings are in stark contrast to results from the k−ε model, which
suggests that Prt increases monotonically with decreasing Pr. The current results are
relevant for the ongoing debate on, for example, the nature of the turbulent flows in the
very-low-Pr regimes of stellar convection zones.

Key words: turbulence simulation, homogeneous turbulence, turbulent mixing

1. Introduction

The fluids in stellar convection zones are generally characterized by a low microscopic
Prandtl number, Pr = ν/χ , where ν is the kinematic viscosity and χ is the thermal
diffusivity (e.g. Ossendrijver 2003; Augustson, Brun & Toomre 2019). Typical values
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in the bulk of the solar convection zone, for example, range between 10−6 and 10−3

(Schumacher & Sreenivasan 2020). Recently, several studies have explored the possibility
that solar convection operates at a high effective Prandtl number regime, meaning that
the turbulent Prandtl number Prt exceeds unity (e.g. O’Mara et al. 2016; Bekki, Hotta
& Yokoyama 2017; Karak, Miesch & Bekki 2018), as a possible solution to the too high
velocity amplitudes in simulations in comparison to the Sun (e.g. Hanasoge, Duvall &
Sreenivasan 2012; Schumacher & Sreenivasan 2020). However, few attempts have been
made to actually measure the turbulent Prandtl number from simulations. A notable
exception is the study of Pandey, Schumacher & Sreenivasan (2021), who reported that the
turbulent Prandtl number decreases steeply as a function of the molecular Prandtl number,
so that Prt ∝ Pr−1 in simulations of standard Boussinesq and variable-heat-conductivity
Boussinesq convection. Similar results have recently been reported by Tai et al. (2021) and
Pandey et al. (2022a).

The difficulty in measuring turbulent diffusivities in the absence of large-scale gradients
has led to the development of combined eddy-diffusivity mass-flux approaches in
convective boundary layers (Siebesma, Soares & Teixeira 2007). Here we instead set out to
measure turbulent viscosity and thermal diffusivity from a simpler system of isotropically
forced homogeneous turbulence. This is done by imposing large-scale gradients of velocity
and temperature (equivalently specific entropy) and measuring the response of the system.
The turbulent diffusion coefficients are computed from the Boussinesq ansatz and an
analogous expression for the enthalpy flux. This method provides a direct measurement of
the diffusion coefficients without the need to resort to turbulent closures. Similar methods
were used recently to measure the turbulent magnetic Prandtl number (Käpylä et al. 2020).
We compare our results with those from the widely used k−ε model, which was also used
by Pandey et al. (2021). We show that the direct results and those from the k−ε model are
systematically different and that the latter yields misleading results in the flows studied
here.

2. The model

We model isotropically forced, non-isothermal turbulence in a fully periodic cube of
volume (2π)3. We solve the equations of fully compressible hydrodynamics

D ln ρ

Dt
= −∇ · u, (2.1)

Du
Dt

= − 1
ρ

(∇p − ∇ · 2νρS) + f − 1
τ
(u − ū0), (2.2)

T
Ds
Dt

= − 1
ρ

(∇ · F rad − C) + 2νS2 − T
τ

(s − s̄0), (2.3)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, ρ is the density, u is the velocity,
p is the pressure, ν is the kinematic viscosity, S is the traceless rate-of-strain tensor with

Sij = 1
2(ui,j + uj,i) − 1

3δij∇ · u, (2.4)

f is the external forcing, τ is a relaxation timescale and ū0 is the target mean velocity
profile. Furthermore, T is the temperature, s is the specific entropy, F rad is the radiative
flux, C is a cooling term and s̄0 is the target mean specific entropy profile. Radiation is
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modelled via the diffusion approximation, with the radiative flux given by

F rad = −cPρχ∇T, (2.5)

where cP is the specific heat in constant pressure and χ is the thermal diffusivity. The ideal
gas equation of state p = (cP − cV)ρT = RρT is assumed, where R is the gas constant
and cV is the specific heat capacity at constant volume. In a non-isothermal system with
forcing and/or imposed large-scale flow, viscous dissipation of kinetic energy acts as a
source for thermal energy and leads to a linear increase of the temperature. Additional
volumetric cooling is applied to counter this with

C(x) = ρcP
T(x) − 〈T0〉

τcool
, (2.6)

where 〈T0〉 is the volume-averaged initial temperature and τcool is a cooling timescale. We
use τ = τcool = (cs0k1)

−1, where cs0 is the initial uniform value of the sound speed and
k1 is the wavenumber corresponding to the box scale.

The external forcing is given by

f = Re{N(t)f k(t) exp[ik(t) · x − iφ(t)]} (2.7)

(see Brandenburg 2001), where x is the position vector and N(t) = f0cs(k(t)cs/δt)1/2 is
a normalization factor in which f0 is the forcing amplitude, k = |k|, δt is the length of
the time step, and −π < φ(t) < π is a random delta-correlated phase. The vector f k
describes non-helical transverse waves and is given by

f k = k × ê√
k2 − (k · ê)2

, (2.8)

where ê is an arbitrary unit vector, and where the wavenumber k is randomly chosen. The
target profiles of mean velocity and specific entropy are given by

ū0 = u0 sin(k1z)êy, (2.9)

s̄0 = s0 sin(k1z). (2.10)

The imposed mean flow is sufficiently weak so that the turbulence remains nearly isotropic
and turbulence production due to the shear is negligible. In addition to the physical
diffusion, the advective terms in (2.1) to (2.3) are implemented in terms of fifth-order
upwinding derivatives with sixth-order hyperdiffusive corrections and flow-dependent
diffusion coefficients; see appendix B of Dobler, Stix & Brandenburg (2006).

The PENCIL CODE (Pencil Code Collaboration et al. 2021) (http://github.com/pencil-
code), which uses high-order finite differences for spatial and temporal discretization, was
used to produce the numerical simulations.

2.1. Units, system parameters and diagnostics
The equations are non-dimensionalized by choosing the units

[x] = k−1
1 , [ρ] = ρ0, [u] = cs0, [s] = cP, (2.11a–d)

where ρ0 is the initial uniform density and cs0 = √
γRT0 is the sound speed

corresponding to the initial temperature T0. The level of velocity fluctuations is determined
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by the forcing amplitude f0 along with the kinematic viscosity. A key system parameter is
the ratio of kinematic viscosity and thermal diffusion or the Prandtl number

Pr = ν

χ
, (2.12)

which is varied between 0.01 and 10 in the present study. The Reynolds and Péclet numbers
quantify the level of turbulence of the flows:

Re = urms

νkf
, Pe = PrRe = urms

χkf
, (2.13a,b)

where urms =
√

〈(u − ū0)2〉 is the volume-averaged fluctuating root mean square velocity
and kf is the average forcing wavenumber characterizing the energy injection scale. The
latter is chosen from a uniformly distributed narrow range in the vicinity of 5k1. The
imposed gradients of large-scale flow and entropy are quantified by

Mas = u0

cs0
, Mag = [(γ − 1)s0T0]1/2

cs0
, (2.14a,b)

where Mas is the Mach number of the mean flow. The Mach number of the turbulent flow
is given by

Ma = urms

〈cs〉 , (2.15)

where 〈cs〉 is the volume-averaged speed of sound.
Mean values are taken to be horizontal averages denoted by bars; that is,

f̄ = 1
(2π)2

∫
x

∫
y

f (x) dx dy. (2.16)

Often an additional time average over the statistically steady part of the simulation is taken.
Volume averages are denoted by angle brackets 〈.〉, apart from the root mean square values,
which are always assumed to be volume-averaged unless otherwise stated. Errors were
estimated by dividing the time series into three parts and averaging over each subinterval.
The greatest deviation from the average computed over the whole time series was taken as
the error estimate.

3. Results

The simulations discussed in the present study are listed in table 1.

3.1. Turbulent viscosity and heat diffusion from imposed flow and entropy methods
We measure the turbulent viscosity and thermal diffusivity using large-scale gradients
of u and s in two ways. First, we impose sinusoidal large-scale profiles of velocity
(2.9) or entropy (2.10). The response of the system consists of non-zero Reynolds stress
and vertical enthalpy flux profiles that are parameterized with gradient diffusion terms
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Set Pr Re Pe Ma Mas Mag #runs

i001 0.01 27 . . . 779 0.27 . . . 7.8 0.069 . . . 0.079 0.01 . . . 0.03 0.07 . . . 0.1 10
i002 0.02 27 . . . 779 0.54 . . . 16 0.069 . . . 0.080 0.01 . . . 0.03 0.07 . . . 0.1 12
i005 0.05 27 . . . 780 1.4 . . . 39 0.069 . . . 0.080 0.01 . . . 0.03 0.07 . . . 0.1 12
i010 0.1 12 . . . 800 1.2 . . . 80 0.060 . . . 0.082 0.01 . . . 0.03 0.07 . . . 0.1 30
i020 0.2 27 . . . 781 5.4 . . . 156 0.069 . . . 0.080 0.01 . . . 0.03 0.07 . . . 0.1 10
i025 0.25 397 99 0.081 0.01 . . . 0.03 0.07 . . . 0.1 2
i050 0.5 27 . . . 781 14 . . . 390 0.069 . . . 0.081 0.01 . . . 0.03 0.07 . . . 0.1 12
i075 0.75 399 301 0.081 0.01 . . . 0.03 0.07 . . . 0.1 2
i100 1.0 27 . . . 1582 27 . . . 1582 0.069 . . . 0.081 0.01 . . . 0.03 0.07 . . . 0.1 14
i200 2.0 22 44 0.068 0.01 . . . 0.03 0.07 . . . 0.1 2
i500 5.0 22.2 111 0.068 0.01 . . . 0.03 0.07 . . . 0.1 2
i1000 10.0 22.3 223 0.068 0.01 . . . 0.03 0.07 . . . 0.1 2
du001 0.01 153 1.5 0.078 0.01 — 10
du010 0.1 153 . . . 391 15 . . . 39 0.078 0.01 . . . 0.03 — 11
du100a 1.0 154 154 0.079 0.01 — 10
du100b 1.0 154 154 0.079 0.03 — 10
ds001 0.01 153 1.5 0.078 — 0.1 10
ds010 0.1 153 . . . 391 15 . . . 39 0.078 — 0.07 . . . 0.1 11
ds100 1.0 153 153 0.078 — 0.1 10

Table 1. Summary of runs. Runs with imposed velocity or specific entropy gradients are denoted by the prefix
i, whereas decay experiments of velocity (specific entropy) are identified by the prefix du (ds). Grid resolutions
range between 1443 and 11523.

(e.g. Rüdiger 1989),

Fenth
z (z) = cP(ρuz)′T ′ ≈ cPρ̄u′

zT ′ = −χtρ̄T̄
∂ s̄
∂z

(3.1)

and

Ryz(z) = u′
yu′

z = −νt
∂ ūy

∂z
, (3.2)

where primes denote fluctuations from the mean, e.g. u′ = u − ū. The Mach number in
the current simulations is always less than 0.1. Therefore we neglect density-dependent
terms in our analysis, because they scale with Ma2.

The coefficients χt and νt are assumed to be scalars and were obtained from linear fits
between time-averaged Fenth

z and −ρ̄T̄∂zs̄ and between Ryz and −∂zūy, respectively. Results
from our simulations are shown in figure 1. We normalize νt and χt by

νt0 = χt0 = 1
3 urmsk−1

f , (3.3)

which is an order-of-magnitude estimate for the turbulent diffusion coefficients. We note
that in the parameter regimes studied here, the estimates νt0 and χt0 are very similar
in all of our runs. Our results show that for low Péclet numbers the turbulent heat
diffusion increases in proportion to Pe for Pe � 1. This is consistent with earlier numerical
results for turbulent viscosity (e.g. Käpylä et al. 2020), magnetic diffusivity (e.g. Sur,
Brandenburg & Subramanian 2008) and passive scalar diffusion (Brandenburg, Svedin &
Vasil 2009), and with corresponding analytic results in the diffusion-dominated (Pe � 1)
regime. For sufficiently large Pe, χ̃t tends to a constant value. The turbulent viscosity is
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100 101 102 103

Re, Pe

0.2

0.5

1

2

ν̃
t,

χ̃
t

ν̃t (Re): 1.48 ± 0.02

χ̃t (Pe): 2.19 ± 0.02

∝ Pe

10–2

10–1

100

101

Pr

Figure 1. Normalized turbulent viscosity ν̃t = νt/νt0 (squares) and heat diffusivity χ̃t = χt/χt0 (circles) as
functions of Reynolds and Péclet numbers. The crosses (×) and pluses (+) indicate results from decay
experiments. The colours of the symbols indicate the microscopic Prandtl number as shown by the colour
bar. The dotted horizontal lines show fit to the data for Pe, Re > 10, and a line proportional to Pe is shown for
low Pe.

also roughly constant in the parameter space covered here. For low fluid Reynolds numbers
νt is proportional to Re, as has been shown in Käpylä et al. (2020). However, we do not
cover this parameter regime with the current simulations.

3.2. Turbulent viscosity and heat diffusion from decay experiments
The second approach to computing νt and χt relies on the decay of the imposed gradients
of ū and s̄. This is an independent way to measure turbulent viscosity and heat diffusion.
Snapshots from the imposed velocity/entropy gradient runs were used as initial conditions,
and the relaxation terms of the right-hand sides of the Navier–Stokes and entropy equations
were deactivated. The large-scale velocity and entropy profiles in such runs decay because
of the combined effect of molecular and turbulent diffusion. To measure the decay rate we
monitored the amplitude of the k = k1 components of ūy and s̄. Exponential decay laws

ūy(t, k1) = ūy(t0, k1) exp(−(νt + ν)t), s̄(t, k1) = s̄(t0, k1) exp(−(χt + χ)t) (3.4a,b)

were then fitted to the numerical data. Representative examples from decay experiments
of large-scale velocity and entropy are shown in figure 2. The upper panels (a,b) show
ūy(z, t) and s̄y(z, t) from typical decay experiments. The k1 components of these fields
decay exponentially when the forcing is turned off; see panels (c,d) of figure 2. Ultimately
the amplitude of the k1 mode decreases sufficiently so that it cannot be distinguished from
the background turbulence. The time it takes to reach this state varies and depends on the
initial amplitudes u0 and s0. However, at the same time, these amplitudes need to be kept as
low as possible to prevent nonlinear effects from becoming important (see e.g. Käpylä et al.
2020). This is particularly important for the velocity field, because of which the range from
which turbulent viscosity can be estimated is limited, which necessitates running several
experiments with different snapshots as initial conditions to reach converged values for νt
and χt.

For this reason, only a limited subset of the parameter range covered by the imposed
cases were repeated with decay experiments. We used ten snapshots from each run for the
decay experiments. The separation between the snapshots is roughly �t = 40urmskf , so
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Figure 2. Panels (a,b) show ūy(t, z) and s̄(t, z) normalized by cs and cP, respectively, from decay experiments
with Pr = 1 and Re = 157. Red vertical lines denote end times of exponential fits. Panels (c,d) show temporal
decays of the kz/k1 = 1 mode of ūy and s̄, respectively; the black line shows the progenitor run, and the red/grey
lines indicate the decaying runs. The red part is used to fit exponential decay; the blue dotted lines show the
exponential fit.

that the realizations can be considered uncorrelated. Results from the decay experiments
are shown in figure 1 with crosses (χt) and pluses (νt). We find that the results from the
decay experiments are consistent with those from the imposed flow and entropy gradient
methods.

3.3. The k−ε model
To facilitate a comparison with Pandey et al. (2021), we use the expressions for νt and χt
derived under the k−ε model with

ν
(k−ε)
t = c′

νk2
u/εK, (3.5)

χ
(k−ε)
t = c′

χkukT/εT , (3.6)

where ku = 〈u′2〉/2 is the turbulent kinetic energy, kT = 〈T ′2〉 is the variance of the
temperature fluctuations, and c′

ν and c′
χ are assumed to be universal constants. (The primes

indicate the constancy of c′
ν and c′

χ ; however, see also § 3.4, where this assumption is
lifted.) The viscous and thermal dissipation rates are defined as εK = 2ν[〈S2〉 − 〈S2

0〉]
and εT = χ〈(∇T ′)2〉 = χ [〈(∇T)2〉 − 〈(∇T̄)2〉], respectively, where we have removed
contributions from the mean flow and the mean entropy; S0 denotes the traceless
rate-of-strain tensor as defined in (2.4) but with ū0 instead of u. Pandey et al. (2021)
computed Prt using the k−ε model by fixing the ratio c′

ν/c′
χ , which yields

Pr(k−ε)
t = ν

(k−ε)
t

χ
(k−ε)
t

= c′
ν

c′
χ

kuεT

kTεu
. (3.7)
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10–1 100 101 102 103

Pe

0.1

0.2

0.5

Pr
t(k

–
ε)

10–2

10–1

100

101

Pr

0.1 1.0 10

Pr

0.1

0.2

0.5
∝ Pr–0.25

Figure 3. Turbulent Prandtl number Pr(k−ε)
t according to (3.7) as a function of Péclet number. The colour of

the symbols denotes the molecular Prandtl number as indicated by the colour bar. Inset: Pr(k−ε)
t versus Pr from

runs with Pe > 20.

For simplicity, we assume c′
ν/c′

χ = 1 in this subsection. The results are shown in figure 3.

We find that taking the ratio c′
ν/c′

χ to be a constant leads to results where Pr(k−ε)
t increases

monotonically with decreasing Pr when Pe is larger than about 20; see the inset in figure 3,
which reveals a dependence of Pr−0.25. Qualitatively, this result is in agreement with the
one in Pandey et al. (2021). However, we would like to note here that a strong assumption
was made to reach this conclusion, namely, that the ratio c′

ν/c′
χ is fixed, and that c′

ν and c′
χ

are universal constants, independent of control parameters such as Re and Pe. Henceforth,
we relax these assumptions, and also omit primes from the coefficients cν and cχ .

3.4. Relaxing the assumption that cν and cχ are constants
It is reasonable to assume that for sufficiently large Reynolds and Péclet numbers, ku and
kT tend to constant values. Furthermore, there is evidence from numerical simulations
that εK , normalized by u3

rms/� where � = 2π/kf , also tends to a non-zero constant value
for large Reynolds numbers; see e.g. Frisch (1995) and Pandey et al. (2022b). Similar
evidence for εT has not been presented. Therefore it is not clear whether the assumption of
universality of cν and cχ is valid. This is particularly important for numerical simulations,
such as those in the current study, where the Reynolds and Péclet numbers are still modest.
Since we have independently measured νt and χt using the imposed flow and entropy
method (§ 3.1) and from decay experiments (§ 3.2), we can estimate cν and cχ using

cν = νt/(k2
u/εK), (3.8)

cχ = χt/(kukT/εT), (3.9)

where νt and χt are the ones obtained above in § 3.1 with the imposed field method. The
results are shown in figure 4. They indicate that cν and cχ are highly variable and that they
depend not only on Re and Pe but also on Pr. Furthermore, for sufficiently large Reynolds
and Péclet numbers, cν and cχ show decreasing trends proportional to roughly the −0.25
power of Re and Pe, respectively. This shows that any estimate of νt or χt with the k−ε

model in the parameter regime studied here would require prior knowledge of cν and cχ

for the particular parameters (Re, Pe, Pr) of that system.

952 R1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

90
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.906


Turbulent Prandtl number from forced turbulence

100 101 102 103
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c ν
,
c χ

cν(Re)

cχ(Pe)

∝ Pe

∝ Pe–0.22±0.02

∝ Re–0.26±0.01

0.01

0.1

1.0

10

Pr

Figure 4. Similar to figure 1 but for cν(Re) and cκ (Pe) from (3.8) and (3.9). The colours again indicate
the microscopic Prandtl number. The grey dotted lines indicate fits to the data for (Pe, Re > 10), and a line
proportional to Pe is shown for low Pe.

3.5. Turbulent Prandtl number
Our results for the turbulent Prandtl number

Prt = νt

χt
(3.10)

are shown in figure 5 with νt and χt as discussed in §§ 3.1 and 3.2. The data fall into
a smooth sequence as a function of the Péclet number in the parameter regime studied
here, where the turbulent viscosity is not strongly dependent on Re; see figure 5. We find
that for Pe � 1 the turbulent Prandtl number is roughly inversely proportional to Pe for
low molecular Prandtl number. We have not computed the turbulent Prandtl number for
cases where both Re and Pe are smaller than unity. For sufficiently high Péclet number
the turbulent Prandtl number tends to a constant value which is close to 0.7. This is in
accordance with theoretical estimates, in that Prt is somewhat smaller than unity. For
example, Rüdiger (1989) derived Prt = 2/5 using a first-order smoothing approximation.
The turbulent Prandtl number also plays an important role in the atmospheric boundary
layer, where several methods yield values of the order of unity (Li 2019, and references
therein). The data for Prt show much stronger scatter when plotted as a function of Pr or
Re; see figure 6. The scatter is due to the dependence of χt on the Péclet number at low Pe.

The fact that the turbulent Prandtl number Prt reaches a constant value at sufficiently
large Pe, independent of Pr, is in stark contrast to the results obtained from the k−ε model
with a fixed cν/cχ ; compare figures 3 and 5. Now we make an attempt to understand
the reason for this discrepancy. From figure 4 we note the following approximate scaling
relations at sufficiently large Re and Pe: cν ∝ Re−0.25 and cχ ∝ Pe−0.25, which suggests
that the ratio cν/cχ scales with the Prandtl number as Pr+0.25. With this, if we let
c′
ν/c′

χ ∝ Pr+0.25 in (3.7), instead of a fixed ratio, and note from the inset of figure 3 that the

factor kuεT/kTεu ∝ Pr−0.25, we would obtain from (3.7) that Pr(k−ε)
t becomes independent

of Pr, which agrees qualitatively with our results as shown in figure 5. Therefore we
conclude that the results from the k−ε model with a fixed value for the ratio cν/cχ are
unreliable in the present flows. We note that the strong dependence of Prt on Pr found in
Pandey et al. (2021) with the k−ε model has also been found using the gradient method in
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Figure 5. Turbulent Prandtl number Prt = νt/χt as a function of Péclet number. The colour of the symbols
denotes the molecular Prandtl number as indicated by the colour bar. The crosses (×) show results from
decay experiments. Linear and power law fits to data for Pe > 10 are shown by the dashed and dotted lines,
respectively, and a line proportional to Pe−1 is shown for low Pe.
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Figure 6. Turbulent Prandtl number Prt as a function of (a) Pr and (b) Re; crosses (×) show results from
decay experiments.

Tai et al. (2021) and Pandey et al. (2022a). This suggests that the behaviour of Prt(Pr)
found by these authors is not specific to the k−ε model in that case but reflects the
properties of Boussinesq convection at constant Rayleigh number.

4. Conclusions

Using simulations of weakly compressible isotropically forced turbulence with imposed
large-scale gradients of velocity and temperature, and corresponding decay experiments,
we find that the turbulent Prandtl number Prt is roughly 0.7 and is independent of
the microscopic Prandtl number Pr provided that the Péclet number is higher than
about 10. This is in contrast to the recent results of Pandey et al. (2021), who found
that Prt ∝ Pr−1 from non-Boussinesq simulations of convection using the k−ε model.
Although the physical set-ups are quite different, we were able to qualitatively reproduce
their finding under the assumption that cν/cχ is fixed. However, given that these
results differ qualitatively from those obtained from the imposed gradient method and
decay experiments, the former results are considered unreliable for the system under
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consideration here. The fact that the gradient method yields a similar Pr dependence as the
k−ε model for Boussinesq convection (Tai et al. 2021; Pandey et al. 2022a) suggests that
in those flows the behaviour of turbulent transport can indeed be different. This is possibly
connected to the strong driving of flows in the low-Pr regime when the Rayleigh number
is fixed (e.g. Spiegel 1962). This issue will be addressed in a future study.
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