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Abstract
For a random binary noncoalescing feedback shift register of width n, with all 22n−1 possible feedback
functions f equally likely, the process of long cycle lengths, scaled by dividing by N = 2n, converges in
distribution to the same Poisson–Dirichlet limit as holds for random permutations in SN , with all N! pos-
sible permutations equally likely. Such behaviour was conjectured by Golomb, Welch and Goldstein in
1959.
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1. Introduction
We consider feedback shift registers, linear in the eldest bit (in F2), given as

xt+n = xt ⊕ f (xt+1, xt+2, . . . , xt+n−1). (1)

Here

f : Fn−1
2 → F2, (2)

is an arbitrary n− 1 bit Boolean function (the ‘feedback’ or ‘logic’), and we will consider all 22n−1

possible f to be equally likely. We write

N := 2n,

and note that the map

πf : Fn
2 → F

n
2

(x0, x1, . . . , xn−1) �→ (x1, . . . , xn−1, xn) (3)

= (x1, . . . , xn−1, x0 ⊕ f (x1, . . . , xn−1)).

is a permutation on N objects.
In 1959 [17], see also Chapter VII of [16], Golomb, Welch and Goldstein suggest that the flat

random permutation in SN , with allN! permutations π equally likely, gives a good approximation
to the cycle structure of πf , in the sense that the cycle structure of πf is close to the cycle structure
of π , in various aspects of distribution, such as the average length of the longest cycle. See [21],

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0963548323000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000020
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0963548323000020


560 R. A. Arratia, E. R. Canfield and A. W. Hales

especially the section ‘Cellular Automata and Nonlinear Shift Registers’, which includes an anec-
dote that Golomb used custom hardware modules in 1956 to experiment on this conjecture, and
these ran about 3 million times faster than the general purpose computer on the same problem.

We prove that the longest cycle part of this conjecture is true, and more, namely that π and πf
have the same limit distributions in the infinite-dimensional simplex �, for the processes1 of long
cycle lengths, scaled by N. This does not answer other aspects of Golomb’s conjecture, involving
the distribution of the number of cycles, or behaviour of short cycles.

There are two natural ways to view the large cycles of the random permutation πf , which we
now describe briefly. First, there is the process of largest cycle lengths: write Li for the length
of the ith longest cycle of πf , with Li := 0 if the permutation has fewer than i cycles, so that
always L1 + L2 + · · · =N, where N = 2n. Write L= L(N) for the process of scaled cycle lengths,
L= (L1/N, L2/N, . . .). Second, there is the process of cycle lengths taken in age order: pick a ran-
dom n-tuple, take A1 to be the length of the cycle of πf containing that first n-tuple, then pick
a random n-tuple from among those not on the first cycle, take A2 to be the length of the cycle
of πf containing that second n-tuple, and so on. Write A=A(N)= (A1/N,A2/N, . . .) for the
process of scaled cycle lengths in age order. For flat random permutations π in place of πf , the
limit of A is called the GEM process (after Griffiths [18], Engen [15] and McCloskey [20]); it is
the distribution of (1−U1,U1(1−U2),U1U2(1−U3), . . .), whereU,U1,U2, . . . are independent
and uniformly distributed in (0, 1). The Poisson–Dirichlet process is (X1, X2, . . .) where Xi is the
ith largest of 1−U1,U1(1−U2),U1U2(1−U3), . . .. This construction gives the simplest way to
characterise the Poisson–Dirichlet process, PD. For flat random permutations, the limit of L is
PD.2 See Section 5.1 for a review of these concepts, including more discussion of age-order and
the GEM limit as used in (5). See also [3]. Formally, our result is the following:

Theorem 1. Consider the random permutation πf given by (3), where all 22n−1 possible f in (2) are
equally likely. Then, as n→ ∞, L(N) converges in distribution to (X1, X2, . . .)with PD distribution.

Writing →d to denote convergence in distribution, we can succinctly summarise the conclu-
sion of Theorem 1 by writing

L(N)→d X := (X1, X2, . . .). (4)
We note some easy consequences of Theorem 1. Theorem 1 is equivalent to

A(N)→d (1−U1,U1(1−U2),U1U2(1−U3), . . .), (5)
with GEM distribution, by a soft argument involving size-biased permutations, originally given
by [13]. By projecting onto the first coordinate,3 we see

A1
N

→d U. (6)

By taking expectations, we see

E
A1
N

→ 1
2
. (7)

1A (stochastic) process is simply a collection of random variables, or, depending on one’s point of view, the joint distribution
of that collection.

2This same Poisson–Dirichlet process also gives the distributional limit for the process of scaled bit sizes of the prime
factors of an integer chosen uniformly from 1 to x, as x goes to infinity. Here we write PD for PD(1), where, in general,
GEM(θ) and PD(θ) for θ > 0 are constructed using U1/θ in place of U, and the case θ = 1/2 gives the limits for the processes
of sizes of largest components, in age order or strict size order, for random mappings, i.e., functions from [n] to [n] with all
nn possibilities equally likely.

3Since U,U1 and 1−U1 all have the same distribution, uniform in (0, 1).
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Of course, the uniform distributional limit in (6) makes no local limit claim; it is plausi-
ble that N P(A1 = i)→ 1 holds uniformly in n< i<N − n. For any fixed i> 1, the statement
N P(A1 = i)→ 1 is false. It is true that N P(A1 = 1)=N P(A1 =N)= 1. And for any fixed j> 0
the statement N P(A1 =N − j)→ 1 is false; see [10].

We work with the de Bruijn graph Dn−1, with edge set Fn
2 and vertex set Fn−1

2 ; edge e=
(y0, y1, . . . , yn−1) goes from vertex v= (y0, y1, . . . , yn−2) to vertex v′ = (y1, . . . , yn−1). The graph
Dn−1 is 2-in, 2-out regular, and a random feedback logic f corresponds to a random resolution
of all vertices; the resolution at a vertex v pairs the incoming edges, 0v and 1v, with the outgoing
edges v0 and v1. The cycles of a random permutation πf correspond exactly to the edge-disjoint
cycles in a random circuit decomposition of the Eulerian graph Dn−1.

2. A survey of the Proof of Theorem 1
In this section we survey the proof of Theorem 1 while omitting many necessary technicalities. It
is hoped the reader will thus have a better notion of what is happening, and why, as s/he reads the
later sections. We begin with the notion of relativisation. Suppose, as for example in the hypothe-
ses of Theorem 1, that one has for each n= 1, 2, . . . a probability Pn on the permutations of a set
En. Let π ∈ S(En) be one such permutation, and let e= (e1, . . . , ek) be a k-tuple of, for now, dis-
tinct elements from the domain En. Picturing the permutation π as a collection of disjoint cycles,
one sees that by ignoring all elements of En except for the ei, these latter are permuted among
themselves. That is, starting with ei, traverse the cycle of π containing this element: –

ei, π(ei), π2(ei), . . .

until after one or more steps an element ej is encountered. (It is possible for the first element so
encountered to be ei, which happens when the traversed cycle contains only a singlemember of the
k-tuple e.) Since the ei are given in a definite order, the induced permutation among these elements
is readily identified with an element of Sk, the permutations of the set {1, 2, . . . , k}. Altogether, we
have a function

reln,k : S(En)× (En)k → Sk,
which we call relativisation. Here, (En)k denotes the ordered k-tuples drawn from En without
replacement. We shall prove: Suppose that for every fixed k≥ 1 the sequence of distributions
induced on Sk by the functions reln,k and the probability distributions Pn tends to the uniform
distribution. (For brevity, we say ‘Pn has the uniform relativisation property’.) Then the large cycle
process associated with Pn tends to Poisson–Dirichlet. The proof that the uniform relativisation
property implies the Poisson–Dirichlet property appears in Section 5.3, as Lemma 10.

Henceforth we specialise to the particular sequence Pn of interest: the sets En are the binary
n-tuples F2

n, and Pn assigns equal weight to each of the 2N/2 shift register permutations πf (and
no weight to other permutations), where N = 2n. Let Sn,k denote the Cartesian product

{f : F2
n−1 → F2} × (F2

n)k .

For technical reasons we define the relativisation function reln,k on the set Sn,k, see Definition (8)
in Section 4.10. Nevertheless, pairs (f ,E ) in which e contains a repeated element may be safely
ignored by the reader for now, and only the primary objective be kept in mind: to show that as
(f , e) varies over Sn,k the coverage of Sk under the relativisation function reln,k is approximately
uniform.

Roughly speaking, this objective is accomplished by partitioning the set Sn,k into blocks such
that the restriction of reln,k to each block of the partition yields an almost uniform coverage of Sk.
The description of these blocks involves the notion of toggle. Let v ∈ F2

n−1 and f be a feedback
function; then the toggle of the function f at the point v is the function fv which disagrees with f
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only at the argument v:

fv(w)=
{
f (w) w �= v

1⊕ f (w) w= v .

That is, we have toggled a single bit in the truth table of f . Toggling a feedback function has a
predictable effect on reln,k(πf , e). In particular, for x ∈ F2, v ∈ F2

n−1, if xv= π i
f (ea) and

{πf (ea), π2
f (ea), . . . , π

i
f (ea)} ∩ {e1, . . . , ek} = ∅,

and, (with a< b), x̄v= π
j
f (eb), and

{πf (eb), π2
f (eb), . . . , π

j
f (eb)} ∩ {e1, . . . , ek} = ∅,

then (let the reader check by drawing a picture)
reln,k(πfv , e)= reln,k(πf , e) ◦ (a, b),

where (a, b) denotes a transposition in Sk. The blocks in our partition of Sn,k arise as follows: given
(f , e) ∈ Sn,k, we determine, in a way explained below, a subset of sizem,

V = {v#1, . . . , v#m} ⊆ F2
n−1 ,

and define the block containing (f , e) to be the 2m different toggles (fU , e), U ranging over subsets
of V . Here, fU denotes function f toggled at all v ∈U. For the block to be well defined, it must be
the case that the choice of V will be the same for all fU as for f . This necessitates the introduction
of a subsetH ⊆ Sn,k, the ‘happy event’, see equation (42) in Section 4.8. It turns out that the happy
event is almost all of Sn,k, |H|/|Sn,k| → 1, and for (f , e) ∈H the blocks are well defined. Moreover
for each such block we have an ordered sequence of transpositions (ai, bi) ∈ Sk (1≤ i≤m) with

reln,k(πfU , e)= reln,k(f , e) ◦ (ai1 , bi1 ) ◦ · · · ◦ (ai� , bi�),
where U = {i1, . . . , i�}. For m sufficiently large, almost all such sequences of transpositions yield
2m compositions which cover Sk almost uniformly. (Lemma 7 in Section 4.9 proves that for all
k, ε there is anm such that the distribution induced on Sk is within ε of uniform in total variation
for all but an ε fraction of possible sequences.)

Let us say something about how, given (f , e) ∈ Sn,k, them-subsetV of F2
n−1 is chosen. The pair

(f , e) determines k segments
ea, πf (ea), . . . , π t

f (ea)(1≤ a≤ k), (8)

in which the length t is taken to be approximately N3/5. For this length it is almost certain that
not only are the initial edges ea distinct, but in fact all k× (t + 1) of the edges π i

f (ea) are distinct.
This feature is included in the definition (42) of event H. Given that πf acts by shifting left and
bringing in one new bit on the right, each sequence (8) is equivalent to a binary sequence

ea,0ea,1 · · · ea,n−1 · · · ea,n+t−1,
of length n+ t. To be considered for membership in V , an (n− 1)-tuple v# must appear in two of
these binary sequences; that is, for some a< b and some bit x ∈ {0, 1}

xv# = ea,i · · · ea,i+n−1 and x̄v# = eb,j · · · eb,j+n−1.
One may ask as (f , e) varies uniformly over Sn,k what is the probability of finding such leftmost

(n− 1)-repeats (i, j) in various regions of the plane? Remarkably, such points when rescaled as
(i/N1/2, j/N1/2) constitute, in the limit with respect to total variation distance, a familiar Poisson
process. Thanks to this limiting behaviour we can estimate not only the probability of finding
v#’s which satisfy the above minimal constraint for V-membership, but also the probability of
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finding m v#’s lying in a much more stringently constrained geometry, which geometry implies
(f , e) ∈H. Section 4 is devoted to proving these properties of H and V under the assumption that
the probabilities in question can be approximated by a Poisson process.

We conclude our survey by saying how this last assumption is justified.We present in Section 3
an algorithm called sequential editing which begins with k random binary sequences (referred
to as coin toss sequences) and edits them in such a way that the result of the editing is a set
of k sequences which could have been produced by choosing (f , e) ∈ Sn,k and forming the k seg-
ments (8). Evenmore, the probability of obtaining a particular set of sequences is exactly the same,
whether we choose (f , e) and form (8), or flip k(n+ t) coins and perform sequential editing. (This
is proven in Theorem 5 of Section 3.6).

Moreover, there is a ‘good event’ G, G⊆ F2
(n+t)k, such that when the initial coin toss sequence

C belongs to G the leftmost (n− 1)-repeats in the edited sequence appear in exactly the same
locations (i, j) as they do in C. Since G is almost all of F2

(n+t)k (Theorem 4 in Section 3), the
study of the (f , e)-induced pairs is reduced to the study of leftmost (n− 1)-repeats in k random
sequences. This new process is by no means easily evaluated, but fortunately it is in the realm of
the Chen–Stein method as presented and extended in [6]. In such a manner the above described
approximation is justified.

Looking back at this survey, it appears that the components in the proof of Theorem 1 have
been described almost in the reverse order that they appear in the sequel. May we wish that in the
end the determined reader will understand the proof forwards and backwards.

3. Comparisons with coin tossing sequences
Throughout this section these conventions will be observed: ai, bi, Ci denote bits; vi denotes an
(n− 1)-long sequence of bits; and ei denotes an n-long sequence of bits. A tool used in the proof
of Theorem 1 is to compare the bit sequence b0, b1, . . . bn+t generated by a randomly chosen feed-
back logic f with a coin toss sequence, denoted in this section C0, C1, . . . , Cn+t . A bit sequence bi
generated by a feedback logic has what we refer to as the de Bruijn property: it satisfies a recursion
of the form bt+n = bt + f (bt+1, . . . , bt+n−1). In a sequence with the de Bruijn property the n-long
words 0v and 1v must be followed by different bits. Of course, not every coin toss sequence has
the de Bruijn property. The sequential edit, defined below, of a coin toss sequence Ci is obtained
in a left-to-right bit-by-bit manner and adheres as closely as possible to Ci, changes being made
only when forced by the desire to respect the de Bruijn property. On the other hand, the shotgun
edit, also defined below, of a sequence Ci is a naive imitation of a sequential edit. In a sense and
circumstances to be made precise, by the combination of Theorems 2 and 4, with high probability,
these two produce the same output.

3.1. Sequential editing
We begin with an n+ t long bit sequence

C0, C1, . . . , Ct+n−1.

The new bit sequence of the same length,

b0, b1, . . . , bt+n−1,

is produced by following two rules:

Rule 1:

bi = Ci, 0≤ i≤ n− 1;

https://doi.org/10.1017/S0963548323000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000020


564 R. A. Arratia, E. R. Canfield and A. W. Hales

Rule 2: For i≥ 0 determine bit bi+n by first asking if the feedback logic bit f (bi+1, . . . , bi+n−1)
has been previously defined; if so, set bi+n accordingly:

bi+n = bi ⊕ f (bi+1, . . . , bi+n−1);
otherwise, define (and remember) the feedback logic bit in such a way that bi+n and
Ci+n agree.

Here, we give some terminology and indexing practice. We say that the sequence b is obtained
from the coin toss sequence C by sequential editing. Each time a bi+n has freedom – because the
necessary feedback bit has not yet been set – we set the feedback bit so that bi+n = Ci+n; but at any
time the bit bi+n ‘has no choice’, we assign it the forced value. Such a time i is a time of a potential
edit; if it turns out (by chance) that bi+n and Ci+n agree, then no actual edit has taken place; if it
is forced to take bi+n equal to Ci+n then an actual edit has taken place, and we label the time of
this actual edit as i rather than i+ n. The sequence b obtained by this process always has the de
Bruijn property. In terms of the de Bruijn graph with all vertices resolved, a potential edit occurs
at time iwhen ei, the edge from vi to vi+1, is going in to a vertex v= vi+1 where f (v), the resolution
of that vertex, is already known, so that the successor edge, ei+1 = πf (ei) is determined — this is
equivalent to determining bi+n, the rightmost bit of ei+1.

3.2. Shotgun editing
Now we define a second, generally different, way to edit the coin toss sequence Ci to produce a
sequence ai. We call this the shotgun edit. Unlike bi obtained by sequential editing, the sequence
ai obtained by shotgun editing may not have the de Bruijn property.

The symbols I, J, Ik, Jk denote intervals of integers contained in the (n+ t)-long interval
[0, 1, 2, . . . , t + n− 1]. We use �(I) and r(I) to denote the left- and right- endpoints of the interval
I. A binary sequence

C0, C1, . . . , Ct+n−1, (9)
has an m-long repeat at (I, J) if �(I)< �(J), |I| =m= |J| and the two ordered m-tuples (Ci : i ∈ I)
and (Cj : j ∈ J) are equal. We say that (9) has a leftmost4 m-long repeat at (I, J) if, in addition, either
�(I)= 0 or

C�(I)−1 �= C�(J)−1.
This given, the shotgun edit of coin toss (9) is readily defined: make a list (I1, J1), (I2, J2), . . . of all
the leftmost n-long repeats found in (9). Let

ai =
{
Ci ifi= r(Jk)somek

Ci otherwise.

3.3. Zero and first generation words
Let

C0, C1, . . . , Ct+n−1,
be a coin toss sequence whose leftmost n-tuple repeats occur at (I1, J1), (I2, J2), . . . . The zero-
generation words of length h are simply words of the form:

(Ci, Ci+1, . . . , Ci+h−1).

4This terminology means that the repeat cannot be extended on the left. The concept is standard in the literature, for
example [1] and [ 7, p. 19].
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A first-generation word is a zero-generation word with exactly one bit complemented, with the
index of the complemented bit required to be r(Jk) for some k:

(Ci, Ci+1, . . . , Ci+j, . . . , Ci+h−1), i+ j= r(Jk).

3.4. The good event G(t)
We always consider n to be understood, but sometimes we will not want to emphasise the role of
t, hence writing G≡G(t). Henceforth we shall always assume that t is at mostN = 2n, since we are
interested in cycle lengths for permutations on a set of size N. Let

C0, C1, . . . , Ct+n−1,
be a length n+ t coin toss sequence whose leftmost n-repeats occur at (I1, J1), (I2, J2), . . . . Then
the good event G(t) is defined to be the conjunction of these six conditions:

(a) neither the initial n-long word of the coin toss sequence, nor any of its 1-offs5 is repeated
(probability of failure O(tn/N));

(b) all intersections of the form Ik ∩ Jk′ are empty (probability of failure O(t3n/N2 + tn3/N));
(c) the sets I1, I2, . . . are pairwise disjoint; likewise J1, J2, . . . (probability of failure

O(t2n2/N2 + t3n/N2 + tn3/N));
(d) no first-generation word of length n− 1 equals a zero-generation word of length n− 1,

or another first-generation word of length n− 1 (probability of failure O(t4n2/N3 +
t3n3/N2 + tn3/N));

(e) for every leftmost (n− 1)-repeat (I, J) we have
r(Jk) /∈ I ∪ J ∪ {�(I)− 1, �(J)− 1},

for all k (probability of failure O(t3n/N2 + t2n2/N2 + tn3/N));
(f) there is no (2n− 1)-repeat (probability of failure O(t2/N2)).

The indicated probabilities of failure will be proven below in Theorem 4. First, though, we will
prove a theorem that explains why G is called the ‘good event’.

Theorem 2. If the coin toss sequence
C0, C1, . . . , Ct+n−1,

belongs to the good event G, then

Conclusion 1. The sequentially edited sequence bi and the shotgun edited sequence ai agree; and

Conclusion 2. The sequentially edited sequence bi and the coin toss sequence have their leftmost
(n− 1) repeats at exactly the same positions.

These conclusions, along with Theorem 4 in the next subsection, will provide substantial
control of the prevalence of (n− 1)-tuple repeats

Proof of Conclusion 1. Assume, to the contrary, that the a and b sequences differ; let i be the first
position of disagreement:

aj = bj, j< i; ai �= bi.
There are two possibilities: (1) ai �= bi and bi = Ci; or (2) ai �= bi and ai = Ci.

Case (1). Since ai �= Ci we have i= r(Jk) for some k, and there is a leftmost n-repeat in the C
sequence at (Ik, Jk). But aj = Cj for j ∈ Ik (condition(b)); and aj = Cj for j ∈ Jk \ {i} (condition (c)).

5I.e., words at Hamming distance 1, hence with our two-letter alphabet, words formed by complementing a single bit.
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Hence bj = aj = Cj for j ∈ Ik ∪ Jk \ {i}. But bi �= ai �= Ci, so in fact the b-sequence itself has an n-
repeat at (Ik, Jk). But the b-sequence has the de Bruijn property, and so the (Ik, Jk) repeat can be
backed up d = �(Ik)> 0 steps to reveal

(b0, . . . , bn−1)= (bi−d−n+1, . . . , bi−d).(d = �(Ik)> 0).
Since i− d < i,

(a0, . . . , an−1)= (ai−d−n+1, . . . , ai−d),
so in fact

(C0, . . . , Cn−1)= (ai−d−n+1, . . . , ai−d). (10)

The word on the right side of the last equality is either a zero-generation or a first-generation
word; either case contradicts condition (a).

Case (2). Because i is a sequential edit point, (bi �= Ci), it must be that the (n− 1)-long word
(bi−n+1, . . . , bi−1) is appearing for a second or later time, say

(b�−n+1, . . . , b�−1)= (bi−n+1, . . . , bi−1), � < i.
We must have b� = C�, since no sequential editing took place at time �. (The relevant bit of the
feedback logic had not yet been determined.) We know that bi �= b�, else the b-sequence contains
an n-repeat which, as was explained in Case (1), backs up to yield the contradictory (10). So,
Ci �= bi �= b� = C�; that is, Ci = C� and

(b�−n+1, . . . , b�−1, C�)= (bi−n+1, . . . , bi−1, Ci), � < i.
Because i is the first point at which the b and a sequences disagree,

(a�−n+1, . . . , a�−1, C�)= (ai−n+1, . . . , ai−1, Ci), � < i. (11)

Suppose (for the sake of a contradiction) that none of the a bits appearing on either side of this
last Equation (11) was edited by the shotgun process. Then we have

(C�−n+1, . . . , C�−1, C�)= (Ci−n+1, . . . , Ci−1, Ci), � < i. (12)

We have thus discovered an n-long repeat in the coin toss sequence, but it might not be a leftmost
n-long repeat. So, we look left to determine the least m≥ 1 such that either � − n+ 1−m< 0
(i.e., you’ve gone ‘off the board’) or the run of equalities is broken:

C�−n+1−m �= Ci−n+1−m.
One of these two will happen for m< n or else the C-sequence is found to contain a 2n-repeat,
contradicting assumption (f). But thenwe have found a leftmost n-repeat in theC-sequence begin-
ning at � − n+ 1−m+ 1 and i− n+ 1−m+ 1; shotgun editing would consequently modify the
C-bit at position i− n+ 1−m+ 1+ n− 1= i−m+ 1. Since

i− n+ 1< i−m+ 1≤ i,
we have found that one of the C-bits on the right side of equation (12), namely the one whose
index is i−m+ 1, is changed by shotgun editing, contrary to our earlier supposition that none of
the a bits appearing on either side of the equality (11) was edited by the shotgun process.

By condition (c), every n-long word in the a sequence either is a zero-generation word (matches
exactly the corresponding C-bits) or is a first-generation word (matches the corresponding
C-bits with exactly one change). Thus, at least one of the n-long words appearing in (11) is a
first-generation word, and this contradicts condition (d). �
Proof of Conclusion 2. We will make use of the a and b sequences being equal. Suppose we have
a leftmost (n− 1) repeat in the coin toss sequence,

Ci+j = C�+j, 0≤ j< (n− 1); and i= 0 or Ci−1 �= C�−1. (13)
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By condition (e), none of these 2n bits (or 2n− 2 in case i= 0) can be edited by the shotgun edit.
Hence, we have a leftmost (n− 1)-repeat at the same place in the a sequence, whence also the b
sequence.

On the other hand, suppose we have a leftmost (n− 1)-repeat in the a sequence,
(ai, ai+1, . . . , ai+n−2)= (a�, a�+1, . . . , a�+n−2), (14)

and
i= 0, or ai−1 �= a�−1.

If
(ai, . . . , ai+n−2) �= (Ci, . . . , Ci+n−2).

then (ai, . . . , ai+n−2) is a first-generation word of length n− 1 which equals the first- or zero-
generation word (a�, . . . , a�+n−2), which is forbidden by condition (d). So,

(ai, . . . , ai+n−2)= (Ci, . . . , Ci+n−2). (15)
Similarly,

(a�, . . . , a�+n−2)= (C�, . . . , C�+n−2). (16)
Altogether by (14),(15),(16) we have

(Ci, . . . , Ci+n−2)= (C�, . . . , C�+n−2). (17)
If i= 0, then the last is a leftmost (n− 1)-repeat in the C sequence, as asserted. So, to conclude,
suppose for the sake of a contradiction that i> 0 and that Ci−1 = C�−1. Then, we have an n-long
repeat

(Ci−1, . . . , Ci+n−2)= (C�−1, . . . , C�+n−2).
Sliding left form steps, we will encounter a leftmost n-repeat in the coin toss sequence

(Ci−1−m, . . . , Ci+n−2−m)= (C�−1−m, . . . , C�+n−2−m),
with 0≤m< n− 1 by condition (f). But in such a case a�+n−2−m �= C�+n−2−m by the definition
of shotgun editing. However, for 0≤m< n− 1

� ≤ � + n− 2−m≤ � + n− 2,
and by (16) a�+n−2−m = C�+n−2−m The supposition that i> 0 and that Ci−1 = C�−1 has been
contradicted, and so (17) is, indeed, a leftmost (n− 1)-repeat as needed. �

3.5. Probability
In this section we bound the probability of failure of any one of the conditions (a)–(f) appearing
in Theorem 2. Let S be a set of relations, each of the form Ci = Cj or Ci �= Cj with i< j. We assume
always that S has at most one relation for a given (i, j); that is, we don’t allow both Ci = Cj and
Ci �= Cj. What is the probability that a coin toss sequence C will satisfy such a set of relations? The
desired probability is 2−|S| provided the graph associated with S is cycle free. The graph we have
in mind here is (V , E) where V is the set 0, 1, 2, . . . and E is the set of pairs {i, j} such that at least
one (and by convention exactly one) of the relations Ci = Cj or Ci �= Cj belongs to S.

In particular, if the graph of S consists of the n pairs (i, j), (i+ 1, j+ 1), . . . , (i+ n− 1,
j+ n− 1) the probability is 2−n = 1/N. This is quite clear if I = {i, . . . , i+ n− 1} and
J = {j, . . . , j+ n− 1} are disjoint, since then the underlying graph has no vertex of degree 2. It
is also true if I and J overlap, (of course I �= J): every vertex of degree 2 in the graph (i.e., every
element of I ∩ J) has one larger neighbour and one smaller neighbour. But a cycle would require
at least one vertex with two smaller neighbours.
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We will have frequent occasion below, in the proof of Theorem 4, to consider sets S whose
graphs are the union of two such n-sets of pairs (i1, j1), (i1 + 1, j1 + 1), . . . , (i1 + n− 1, j1 + n− 1)
and (i2, j2), (i2 + 1, j2 + 1), . . . (i2 + n− 1, j2 + n− 1). We begin with a lemma which shows that
in many situations which arise in these proofs the probability in question is 1/N2.

Lemma 3. Let G be the graph whose edges consist of two sets of pairs

(i1, j1), (i1 + 1, j1 + 1), . . . , (i1 +m1 − 1, j1 +m1 − 1).

and

(i2, j2), (i2 + 1, j2 + 1), . . . , (i2 +m2 − 1, j2 +m2 − 1).

Then G is cycle free if any one of the following three conditions holds, where we assume i1 < j1 and
i2 < j2:

(i) I1 ∩ I2 = ∅
(ii) J1 ∩ J2 = ∅
(iii) (I1 ∪ I2)∩ (J1 ∪ J2)= ∅ and j2 − i2 �= j1 − i1.

Proof. If I1 ∩ I2 = ∅ then no vertex has two neighbours larger than it. If J1 ∩ J2 = ∅ then no vertex
has two neighbours smaller than it. In case (iii), all edges out of I1 ∪ I2 go to J1 ∪ J2, and vice versa.
A cycle, if there is one, lies within the bipartite graph whose parts are I1 ∪ I2 and J1 ∪ J2, and clearly
the cycle must alternate edges between (I1, J1) and (I2, J2) types. If the cycle (of necessity even in
length) uses � edges of the first sort and � of the second, then it has travelled � × (j1 − i1) in one
direction and � × (j2 − i2) in the other. The last part of condition (iii) makes it impossible for the
cycle to have returned to its starting point. �
Theorem 4. Let G be the good event. Then,

P(G)≥ 1−O
(
t4n2/N3 + t3n3/N2 + tn3/N

)
.

Proof. We shall show that the probability that a random coin toss sequence of length t + n fails
any one of the conditions (a) through (f) in the definition ofG isO(t4n2/N3 + t3n3/N2 + tn3/N).
(More explicitly, each will be shown to fail with the probability indicated in the definition of G.)
We invoke the above Lemma during the proof by citing Lemma (i), Lemma (ii) and Lemma (iii).

Condition (a): [neither the initial n-long word of the coin toss sequence, nor any of its 1-offs,
is repeated.] Consider first an exact repetition. There are t − 1 places where the repeated sequence
can start, and by earlier remarks the probability that the second sequence repeats the first is 1/N.
The same argument applies to the 1-offs of the initial pattern, and we conclude that the probability
for condition (a) to fail is less than t(n+ 1)/N.

Condition (b): [all intersections Ik ∩ Jk′ are empty.] For k= k′ we bound the probability of
failure by tn/N using the same technique as in case (a). Suppose that I1 ∩ J2 �= ∅. By the k= k′
case of the proof we may assume J1 disjoint from I1 and to its right; and I2 disjoint from J2 and
to its left. If I1 ∩ I2 = ∅ then Lemma (i) yields the upper bound O(t3n/N2). If J1 ∩ J2 = ∅ then
Lemma (ii) yields O(t3n/N2). In the remaining case I1 meets I2, J1 meets J2, and I1 meets J2. Thus
the union I1 ∪ I2 ∪ J1 ∪ J2 is an interval, and a bound of O(tn3/N) results.

Condition (c): [the sets I1, I2, . . . are pairwise disjoint; likewise J1, J2, . . . .] We will prove
the assertion regarding I1, I2, . . . ; the other assertion is proven in an entirely similar manner.
Suppose I1 ∩ I2 �= ∅. We may assume J1 ∩ J2 �= ∅; otherwise Lemma (ii) implies an upper bound
of O(t3n/N2). So now, both intersections I1 ∩ I2 and J1 ∩ J2 are nonempty. If any one of the four
intersections Ia ∩ Jb is nonempty, then again the union I1 ∪ I2 ∪ J1 ∪ J2 is an interval, and we have
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the upper bound O(tn3/N). So assume (I1 ∪ I2)∩ (J1 ∪ J2)= ∅. Assume, for the sake of a contra-
diction, that r(J2)− r(I2)= d = r(J1)− r(I1). Then we have I1 �= I2 and J1 �= J2. Without loss, let
us say I1 is left of I2 and J1 is left of J2. We have C�(I2)−1 �= C�(J2)−1 because (I2, J2) is assumed to
be a leftmost n-repeat. Since I1 is left of I2, �(I2)− 1 ∈ I1; but then C�(I2)−1 = C�(J2)−1, the contra-
diction. So, r(J2)− r(I2)= d = r(J1)− r(I1) is untenable and now Lemma (iii) implies an upper
bound of O(t2n2/N2).

Condition (d): [no First-generation word of length n− 1 equals a Zero-generation word of
length n− 1, or another First-generation word of length n− 1]. Suppose the first assertion is
violated. Then we have, for some i, some d > 0 and some j ∈ {i, i+ 1, . . . , i+ n− 2},

C� = C�+d for � ∈ {i, i+ 1, . . . , i+ n− 2} \ {j}, and Cj �= Cj+d, (18)

with r(Jk) ∈ {j, j+ d} and with (Ik, Jk) a leftmost n-repeat. Let I = {i, i+ 1, . . . , i+ n− 2} and let
J = {i+ d, i+ d + 1, . . . , i+ d + n− 2}. If I and Ik are disjoint then using Lemma (i) the proba-
bility is bounded by O(t3 n/N2). So assume they intersect, so their union is an interval. Similarly
we can assume, using Lemma (ii), that J and Jk also intersect so their union is another inter-
val. If these two intervals intersect, forming another interval, we have a probability bound of
O(t n3/N). Otherwise (I ∪ Ik)∩ (J ∪ Jk) is empty. If r(Jk)− r(Ik)= d then Cj = Cj+d, contradict-
ing (18). So Lemma (iii) implies O(t2 n2/N2) for the probability. This gives an overall bound of
O(t n3/N + t2 n2/N2 + t3 n/N2).

Next, suppose the second assertion of (d) is violated. Then we have, for some i, some d > 0 and
some j1, j2 ∈ {i, i+ 1, . . . , i+ n− 2},

(Ci, Ci+1, . . . , Cj1 , . . . , Ci+n−2)= (Ci+d, Ci+d+1, . . . , Cj2+d, . . . , Ci+d+n−2), (19)

with j1 = r(J1), j2 + d = r(J2) and (I1, J1), (I2, J2) leftmost n-repeats. As reasoned before we have
I ∩ J, I1 ∩ J1 and I2 ∩ J2 all empty with probability at least 1−O(tn2/N). It follows, from the sheer
geometry of the situation, that I ∩ I1 = ∅. We may assume that I1 ∩ I2 = ∅, since (as proven in (c)
above) the probability of failure isO(t3n/N2 + t2n2/N2 + tn3/N).Wemay assume that I1 ∩ I = ∅,
for otherwise the union of I1 and I and J1 is a connected interval, and then by reasoning as above
a bound of O(t3n3/N2) results. We now have all three intersections I ∩ I1, I ∩ I2 and I1 ∩ I2 being
empty; and by an obvious embellishment of Lemma (i) the probability of the remaining case is
O(t4n2/N3).

Condition (e): [for every leftmost (n− 1)-repeat (I, J) we have

r(Jk) /∈ I ∪ J ∪ {�(I)− 1, �(J)− 1},
for all k.] Say I = {i, i+ 1, . . . , i+ n− 2} and J = {i+ d, i+ d + 1, . . . , i+ d + n− 2}. The prob-
ability that Ik ∩ Jk is not empty is O(tn/N), so assume Ik ∩ Jk = ∅. If r(Jk) ∈ I ∪ {i− 1}, then, since
Ik lies entirely to the left of Jk, Ik ∩ I = ∅. By Lemma (i) the probability of this is O(t3n/N2).

The probability that I ∩ J is not empty is O(tn/N), so assume both Ik ∩ Jk and I ∩ J are empty.
The probability that Ik ∩ I is empty is, by Lemma (i), O(t3n/N2), so assume Ik ∩ I �= ∅. If I ∩ Jk or
Ik ∩ J is nonempty then Ik ∪ I ∪ Jk ∪ J is an interval, and the probability of this is O(tn3/N). So,
assume (I ∪ Ik)∩ (Ik ∪ J)= ∅. If r(Jk)− r(Ik)= r(J)− r(I), then

C�(I)−1 = C�(J)−1 by �(I)− 1 ∈ Ik
C�(I)−1 �= C�(J)−1 by (I, J) being a leftmost (n− 1)− repeat,

an impossibility. So, r(Jk)− r(Ik) �= r(J)− r(I) and Lemma (iii) gives the bound O(t2n2/N2) for
this final scenario.

Condition (f): [there is no (2n− 1)-repeat.] Easily, the failure probability is at most 2t2/N2. �
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3.6. Coin tossing versus paths in the de Bruijn graph

Theorem 5. Let b0, . . . , bt+n−1 be a bit string. Then, the probability that this string arose by the
sequential editing of an n+ t long coin toss sequence is the same as the probability that it arose by
choosing a logic f :Vn−1 →V and starting position (b0, . . . , bn−1) each uniformly at random.

Proof. Without loss of generality we assume the given string has the de Bruijn property. (Else,
the two probabilities are both zero.) First, let’s compute the probability that b arose by sequential
editing of a (t + n)-long coin toss. The probability of the coin toss yielding b0, . . . , bn−1 is (1/2)n.
Consider bi, with i≥ n. If (bi−n+1, . . . , bi−1) is equal to (bj−n+1, . . . , bj−1) for some j in the range
n≤ j< i, then sequential editing says to let bi be what it ought to be: bi−n ⊕ f (bi−n+1, . . . , bi−1).
In which case, it does not matter what value Ci has. But if i≥ n and (bi−n+1, . . . , bi−1) has not
been seen before (among (n− 1)-long words ending at a position greater then or equal to n),
then Ci must be equal to bi. (And, we remember henceforward the value of f (bi−n+1, . . . , bi−1) is
bi ⊕ bi−n.) Altogether, then, the probability that a length t + n coin toss will yield a given sequence
b0, b1, . . . , bt+n−1 by sequential editing is 2−r where

r = n− 1+ #distinct (n− 1)-long subwords ending at position n− 1 or later.

Now let’s compute the probability that b arose by choosing a starting position and logic at
random. Classify each position i, 0≤ i≤ t + n− 1, as Type I or Type II. The position is Type I
if i≥ n and the preceding (n− 1) long word (bi−n+1, . . . , bi−1) is appearing for the first time in
the b-sequence. The position is Type II otherwise: either i< n, or the preceding (n− 1) long word
(bi−n+1, . . . , bi−1) is appearing for the second or later time. It should be clear that the probability
in question is (

1
2

)n+#Type I
.

The two probabilities just calculated agree.6 �

3.7. Notation for paths starting at k random n-tuples
We now fix k≥ 1 and use the notation e1, . . . , ek to name k random n-tuples. Collectively, these k
edges of Dn−1 are denoted

e= (e1, e2, . . . , ek) ∈ (Fn
2)

k. (20)

Picking a random feedback f , and k random n-tuples, independent of f , is equivalent to picking
one element, uniformly at random from the space

Sn,k := {(f , e) : f : Fn−1
2 → F2, e ∈ (Fn

2)
k}, with |Sn,k| = 22

n−1+kn. (21)

The choice of (f , e) from Sn,k determines k infinite periodic sequences of edges: for a= 1 to k,

Seg(f , ea) := (ea,0ea,1ea,2 · · · ) where ea,0 = ea, and for i≥ 0, ea,i+1 = πf (ea,i). (22)

For the sake of comparison with coin tossing, we often look at such paths only up to time t (this
is what motivated our terminology segment):

for a= 1 to k, Seg(f , ea, t)= (ea,0ea,1 · · · ea,t). (23)

6There are several interesting results in Maurer [19] for cycles in de Bruijn graphs; one must be careful to think about
the factor 2±r in going back and forth between these estimates, and estimates for a random πf , corresponding to randomly
resolved de Bruijn graphs.
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3.8. (k, t)-sequential editing
Now we will define a modification of the sequential editing process that was discussed earlier in
Section 3.1. The reader should bear in mind our ultimate goal. We wish to study what happens
when a feedback logic f is chosen at random; k different starting n-tuples e1, . . . , ek are chosen
at random; and k walks of length t are generated, the first starting from e1 and using the logic
f to continue for t steps; the second starting from e2, etc. As in Section 3.1, we wish to generate
these walks using k(n+ t) coin tosses, and we would like to have an analogue to Theorem 5 saying
that our procedure for passing from the coin toss to the k walks perfectly simulates the process
of choosing a logic and starting points at random. The reader can almost certainly envision the
natural way to achieve this, but we will write out the details.

The first n+ t coins are used exactly as in Section 3.1: Rule 1 is applied to the first n coin
tosses to yield starting point e1, and then Rule 2 is applied t times to get the overlapping n-tuples
e1 = e1,0, e1,1, . . . , e1,t that form the first walk. Equivalently, this segment is spelled out by the
(n+ t) de Bruijn bits b0 . . . bt+n−1, and along the way, some feedback logic bits have been defined.

Then, for the next n coin tosses, Ci for i= t + n to i= t + 2n− 1 inclusive, sequential editing
is suspended; again Rule 1 is applied, to give

e2 := (bt+n, . . . , bt+2n−1) := (Ct+n, . . . , Ct+2n−1),
with no new feedback logic bits learned. Then, Rule 2 is applied for the next t input bits, Ci
for i= t + 2n to i= 2t + 2n− 1 to create the second walk of length t, Seg(f , e2, t) — remem-
bering of course those feedback logic bits that were learned during the creation of Seg(f , e1, t),
and (most likely) learning some new feedback logic bits in the process. (It might be the case that
e2 = e1, or that e2 appears in the first walk, in which case, we don’t learn any new feedback logic
bits.) If k> 2, we continue in a similar fashion, first suspending editing for time n, during which
time we learn no new feedback logic bits and we form ea := (b(a−1)(t+n), . . . , b(a−1)t+an−1) :=
(C(a−1)(t+n), . . . , C(a−1)t+an−1), then returning to Rule 2 for the next t bits, to fill out Seg(f , ea, t).

For k, t ≥ 1 we define
Q− EDITk,t : {0, 1}k(n+t) → (Ft+n

2 )k (24)

(C0, C1, . . . , Ck(n+t)−1) �→ (Seg(f , e1, t), . . . , Seg(f , ek, t)) (25)
as given by the above procedure.
It may, or should, seem intuitively obvious that Q− EDITk,t , applied to an input uniformly

chosen from {0, 1}k(n+t), induces the same distribution on the k segments of length t in (22),
as does a uniform pick from Sn,k and iteration of πf from each of e1, . . . , ek. We claim that the
argument given in the proof of Theorem 5 can be adapted to show this.

3.9. The good event G(k,t) for (k, t)-sequential editing
There are two different ways to produce k walks each of length t out of a sequence of k(n+ t) coin
tosses. The first, with t′ = (k− 1)n+ kt playing the role of t, is simple sequential edit, to determine
a starting n-tuple e, and one path e0, e1, . . . , et′ corresponding to t′ = (k− 1)n+ kt iterates of πf
starting from e. The good event, regarding this first procedure, is really G≡G((k−1)n+kt). We can
then cut the path of length t′ to produce k paths of length t; see (31) to see the natural notation
associated with such cutting. The second procedure is is to apply Q− EDITk,t , defined in the
previous section, to produce a k-tuple of starting edges, e, and k segments of length t, as in (23).
The good event, regarding this second procedure, to be called G(k,t), is designed so that the two
procedures agree. We simply take all of the demands of the good event for simple editing on
k(n+ t) coins, and throw in additional requirements to ensure the suspensions of editing involved
in the definition of Q− EDITk,t . Informally, these additional requirements are that every (n− 1)
tuple which appears at some time j involved in suspension occurs at no other time i in the coin toss
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sequence. Formally, given n, k, t, the bad event B is given by

B=
⋃

i∈[0,k(n+t)−n+1]

⋃
j∈∪k−1

a=1[a(n+t)−n+2,a(n+t)]

Mij, (26)

where the eventMij = ∅ if i= j, and otherwise

Mij = {dHAMMING(CiCi+1 · · · Ci+n−2, CjCj+1 · · · Cj+n−2)≤ 1},
and the good event is then

G(k,t) =G((k−1)n+kt) \ B. (27)

Since a word of length n− 1 has n neighbours at Hamming distance 1 or less, P(Mij)= n/2n−1 for
i �= j, so that P(B)≤ (n+ t)k2n2 × 2/N, for the sake of extending Theorem 4.

We now consider the following to have been proved; it is a single theorem, to give the exten-
sions of Theorems 2 and 4 and 5, appropriate to k, t sequential editing. Note that in the final
conclusion of Theorem 6 we treat k as fixed while n, t → ∞, so that t and kt are of the same order,
and we take the assumption t/

√
N → ∞ so that the three terms in the bound from Theorem 4 are

covered by a single term.

Theorem 6.

(i) The procedure Q− EDITk,t , applied to a coin toss sequence

(C0, C1, . . . , Ck(n+t)−1),

chosen uniformly at random from {0, 1}k(n+t), yields k segments of length t,
(Seg(f , e1, t), . . . , Seg(f , ek, t)) with exactly the same distribution as obtained by a
random feedback logic f and k starting n-tuples, e= (e1, . . . , ek).

(ii) The good event G(k,t) ⊂ {0, 1}k(n+t), defined by (27) — which ultimately involves conditions
(a) through (f) from Section 3.4, applied with t′ = (k− 1)n+ kt in the role of t, is such that
for every outcome in G(k,t), the bit sequence b0b1 · · · bk(n+t)−1 (and the equivalent sequence
of overlapping n-tuples, e0e1 · · · e(k−1)n+kt) formed by single sequential edit agrees with the
shotgun edit of the k(n+ t) coins, and leftmost (n− 1)-tuple repeats have the same locations
in b0b1 · · · bk(n+t)−1 and in (C0, C1, . . . , Ck(n+t)−1).

(iii) Also, on the good event G(k,t), the k segments of length t, produced by Q− EDITk,t and
notated as in (23) match exactly with e0 · · · et , et+n · · · e2t+n, . . . , e(k−1)(t+n) · · · e(k−1)n+kt,
produced by cutting the output of the single sequential edit of k(n+ t) coins.

(iv) Finally, if t/
√
N → ∞ with k fixed, then P(G(k,t))≥ 1−O(n3 t3/N2).

We summarise: there is an exact operation, sequential editing of n+ t coin tosses, which
achieves the exact distribution of Seg(f , e, t), as induced by a uniform choice of (f , e) from its
22n−12n possible values, followed by starting at e and taking t iterates of the permutation πf .
There is a good eventG≡Gt , with P(G)→ 1 provided that t3n3/N2 → 0, for which the sequential
edit agrees with the shotgun edit, and vi = vj iff the coins have a leftmost (n− 1)-tuple repeat at
(i, j). This sequential edit can be used with k(n+ t) in place of n+ t, to create one long segment;
there is the corresponding good event Gt′ , t′ = (k− 1)n+ kt. There is a second, distinct opera-
tion, Q− EDITk,t , for editing k(n+ t) coin tosses, to yield the exact distribution of k segments of
length t under a single logic f and k starting n-tuples, e= (e1, . . . , ek); that is, the distribution of
(Seg(f , e1, t), . . . , Seg(f , ek, t)) as induced by a uniform choice of (f ,E ) from its 22n−12kn possible
values. And there is a corresponding good event G(k,t) ⊂Gt′ , with

P(Gt′ \G(k,t))≤ 2k2n2(n+ t)/N,
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Figure 1. An example, one segment of length 290, where there are three leftmost (n− 1)-tuple repeats, at (56,153), (120,260)
and (135,175).

Figure 2. The same example: one segment of length 290, where there are three leftmost (n− 1)-tuple repeats, at locations
(56,153), (120,260) and (135,175). Now, the locations are plotted in standard Cartesian coordinates.

Figure 3. Coloring. An example, with k= 3, n= 10, t= 90. The same one segment of length 290, as in Figure 1, where there
are three leftmost (n− 1)-tuple repeats, at (56,153), (120,260) and (135,175). Now the first segment is coloured red, the
second yellow and the third blue.

formed by adding the constraint that i or j ∈ ∪0≤a<k[a(n+ t)− n+ 2, a(n+ t)] implies that there
is not an (n− 1) tuple repeat at (i, j). On the event G(k,t), the k-sequential edit agrees exactly with
the cutting of Seg(f , e1, k(n+ t)− n).

3.10. A cutting example
We now illustrate some of the concepts just introduced, with an example and with Figures 1, 2,
3 and 4. Take n= 10, t = 90, k= 3. So, to generate k= 3 segments of length t = 90, we start with
k(n+ t)= 300 coin tosses, used to generate one segment of length k(n+ t)− n= 290. When we
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Figure 4. Coloring and cutting; a succinct way to visualise both. The k segments of length t are still shown as they appear
along the single segment of length k(t+ n)− n. We also show the

(
k
2

)
t by t squares where matches may occur between two

differently coloured length t segments. Note the repeat at (56,153) is a vertex coloured both red and yellow, hence orange.
The repeat at (120,260) is a vertex coloured both yellow and blue, hence green. The vertex at (135,175) is coloured yellow
twice - we could show it as an extra-saturated yellow but did not. The significance of the diagonals of the small squares is
explained in Section 4.3.

have in mind a single segment of length t, we will use a single subscript to label the edges, so that
with e= e0, the segment is a list of t + 1 edges

Seg(f , e, t)= e0e1 · · · et . (28)
The coin tosses, indexed from i= 0 to i= 299, are labelled Ci, the de Bruijn bits formed by

sequential edit are labelled bi, and the bits formed by shotgun edit are labelled ai. On the good
event G, we will have ai = bi for all i. The vertex vi is the (n− 1)- tuple of bits starting with bi, the
edge ei is the n-tuple of bits starting with bi and edge ei at time i goes from vertex vi to vi+1:

vi = bibi+1 · · · bi+n−2, ei = bibi+1 · · · bi+n−1, ei = (vi, vi+1).
We also view the segment in (28) as a list of t + 2 vertices, or as a list of t + n bits, and abuse
notation by writing equality, so that

Seg(f , e, t)= v0v1 · · · vtvt+1. (29)

Seg(f , e, t)= b0b1 · · · bn−1bn · · · btbt+1 · · · bt+n−1. (30)
Since we are particularly interested in leftmost (n− 1)-tuple repeats, we shall suppose that we

are in the good event G, and the leftmost (n− 1)-tuple repeats in the coin toss sequence are at
(56,153), (120,260) and (135,175). Thanks to G occurring, we know that all 291 edges e0 to e290
are distinct, and the only vertex repetitions are v56 = v153, v120 = v260 and v135 = v175. One way
of indicating where these vertex repeats occur is to draw some auxiliary lines pointing to the
locations, as in Figure 1. Figure 2 gives a two-dimensional (‘spatial’) view of the same situation.

When we cut the single long segment in (28) into k= 3 segments, we use two indices; the first
runs from 1 to k, and the second runs from 0 to t. Including the relation with (28), for Example 1,
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but with the labels e1, . . . , ek overloaded — since they also appear on the left side, naming the
starting edges for the k segments — this will give

Seg(f , e1, t) = e1,0 · · · e1,90 = e0 · · · e90
Seg(f , e2, t) = e2,0 · · · e2,90 = e100 · · · e190
Seg(f , e3, t) = e3,0 · · · e3,90 = e200 · · · e290.

The same k= 3 segments of length t = 90, presented as lists of vertices (which here are 9-tuples)
are notated as

Seg(f , e1, t) = v1,0v1,1 · · · v1,90v1,91 = v0v1 · · · v90v91
Seg(f , e2, t) = v2,0v2,1 · · · v2,90v2,91 = v100v101 · · · v190v191
Seg(f , e3, t) = v3,0v3,1 · · · v3,90v3,91 = v200v201 · · · v290v291.

(31)

Collectively, these k segments are given by a deterministic function of (f , e), where e=
(e1, e2, . . . , ek) names all k starting points.

3.11. Coloring
Imagine the k segments of length t as pieces of (directed) yarn, with k different ‘primary’ colours.
Vertices that appear only once get the primary colour of the segment they come from; vertices
that appear twice on the same segment might be visualised as having a more saturated version
of the primary colour of that segment. The interesting case occurs when a vertex appears on two
different segments; such a vertex, call it v#, gets each of two primary colours — and its secondary
colour shows which two segments this vertex lies on; for example imagine that the two strands
are red and yellow, so that v# is coloured orange. Figure 3 on page 31 and Figure 4 illustrate this
colouring.

4. Toggling
To toggle a logic f : Fn−1

2 → F2 at a vertex v ∈ F
n−1
2 is simply to get a new f from the old, by chang-

ing the value at v. This is called a ‘cross-join step’ and is studied extensively in the context of cycle
joining algorithms to create a full cycle logic. Our interest in toggling is different: we have k≥ 2
segments induced by a logic f and k starting n-tuples, e1, . . . , ek, and wewant to choosem different
‘toggle points’ in the role of v, to get a nice family of 2m related logics. All this is done in the interest
of showing that the chance that e1 and e2 lie on the same cycle of πf is approximately one-half, for
large n, and more generally, that the chance e1, . . . , ek all lie on the same cycle is approximately
1/k, and even more, that the permutation πf , relativised to e1, . . . , ek, is approximately uniformly
distributed over all k! permutations. This introductory paragraph is intentionally short and vague;
the full details use all of Sections 3–6. Section 4.1 gives a longer attempt at introduction, including
Figure 5, showing the huge collection of candidate toggle vertices, using k colours to help visualise
the k segments of interest.

4.1. Big picture perspective: k coloured segments, m toggle points
We will have k segments each of length t =N .6. The expected number of leftmost (n− 1)-tuple
repeats within a single segment is about

(
t
2

)
/N .= .5N .2. The expected number of repeats between
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Figure 5. Take n= 34, N= 2n and t= 3× (n+ N.6)− n. The expected number of leftmost (n− 1)-tuple repeats is about(
t
2

)
/N .= 501.4. The picture shows 500 ‘arrival’ points, giving the locations of repeats, plotted as for one segment of long

length t. In each N.6 by N.6 square, the expected number of points is N.2 .= 111.4. The colour scheme is intended to be purple,
green, blue across the top row, orange, yellow for the middle and red (magenta) for the bottom.

two different given segments is about t2/N =N .2, so the expected number of repeats between two
different segments, combined over all

(
k
2

)
choices for which two segments, is about

(
k
2

)
×N .2.

This is a huge number of repeats (each based on one vertex having a secondary colouring), and
we intend to findm such repeats, say at v#1, . . . , v#m in narrowly constrained spatial positions. The
goal is to show that, with high probability, for all 2m choices of how to change f by toggling
the values of f (v#i ) for i ∈ I ⊂ {1, 2, . . . ,m}, the same m vertices will be picked out by the narrow
two-dimensional spatial constraints.

In this section we present further figures intended to assist the reader’s intuition. We also give
an algorithm which for a given logic f and starting edges ei finds m vertices v#1, . . .,v#m. These
points—we call them toggle points—give rise to a family of 2m functions. We also define (in
Section 4.10) a process called relativisation which associates with πf in SN a permutation σ in
Sk, k being fixed and N → ∞. It will be shown that as f varies over the 2m functions in a ‘toggle
class’, the resulting σ ′s cover Sk almost uniformly. In Section 5, it will be shown that this uniform
coverage of Sk (for each fixed k) is a sufficient condition to prove Theorem 1.

A critical issue is that the algorithm for choosing the toggle points must be such that, if the
feedback f is replaced by any one of the 2m functions in the toggle class, the algorithm would
find the same toggle points and the same class.7 However this is not necessarily the case and

7Consider the simplest situation, k= 2 and m= 1, where one is trying to prove (7) by showing that P(e1, e2 lie on the
same cycle) is approximately one half. Knowing that the segments starting from e1 and e2 have high probability of reaching
a common vertex v#, and that performing a cross-join step by toggling the logic f at this v#, to get a new logic f ∗, changes
whether or not e1 and e2 lie on the same cycle, one might consider the proof complete. The fallacy is that this procedure
does not pair up f with f ∗, i.e., it need not be the case that (f ∗)∗ = f , because the procedure used to find v# (from f , given
e1, e2) might find a different v when applied to f ∗. Overcoming this fallacy entails the study of displacements, starting in
Sections 4.2–4.4.
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the probability of success for the algorithm must be estimated; this leads to the definition of an
event H.

4.2. Toggling: The case k= 2 andm= 1
We show what can happen when we toggle one bit of a logic f . We have two segments of length
t, which share a vertex v#. Toggling changes the value of f , only at v#, and gives a new logic f ∗.
Suppose that the segments under f were red and yellow, and that v# appears at position i on the
red segment, and position j on the yellow segment. Overall, this repeat has spatial location (i, j)
and colour orange. Exactly one such repeat was visualised in Figures 2 and 3; it occurred with
(i, j)= (56, 53). The displacement is i− j — we have a preferred sequence of colours, (derived
from the rainbow ROY G. BIV) where red comes before yellow — hence the displacement is 3,
rather than −3, in this example.

4.3. Picking the ‘earliest’ toggle with a small displacement
Consider the case where we have k= 2 segments and want to find a single vertex v# via a recipe
which, when applied to the segments under the toggled logic f ∗, still picks out the same vertex. A
good recipe involves naming a small bound d on the absolute displacement |i− j| (thus staying
close to the ‘diagonal’), and then picking the ‘earliest’ pair (i, j) that satisfies the displacement
bound. This was the key to overcoming the ‘fallacy’ described in Footnote 7.

The specific choice of how to define earliest is somewhat arbitrary; we will take smallest (i+ j)
as the first criterion for earliest, with ties to be broken according to smallest value of max(i, j)
— given that i+ j= i′ + j′, this is equivalent to taking smallest absolute displacement for the tie-
break criterion. For use in the case of k colours and

(
k
2

)
colour pairs α = (a, b), break further ties

according to min(a, b) and then max(a, b).
The logic f , with value at v# complemented, gives a new logic f ∗ = Toggle(f , {v#}), so that

f ∗(v#)= 1− f (v#), while f ∗(v)= f (v) ∀v �= v#. It is possible that changing the logic bit at v#, will
cause an earlier pair to become available as the location of a match between the two segments; so
that the recipe for picking the earliest small displacement match, applied to f ∗, picks out a differ-
ent vertex instead of v#. In this case, the word toggle is very misleading: the overall operation (find
v#, then complement the logic at that vertex) is not an involution. Our programme is to specify a
displacement bound d that varies with n, in such a way that 1) with high probability, at least one
small displacement match can be found, and 2) with high probability, the vertex for the earliest
small displacement match is the same in the logic f ∗ = Toggle(f , {v#}) at the vertex selected for
f . The example in Figure 8, viewed with any d ≥ 3, illustrates what might go wrong with respect
to 2).

Recall, from Section 3, that t is the length of our segments. To get high probability in 1), a
necessary and sufficient condition is that

td/N → ∞. (32)

To get high probability in 2), a necessary and sufficient condition is that

d2/N → 0. (33)

The argument that (33) suffices is somewhat delicate, akin to a stopping time argument; it is easier
to prove — see (37) — that a sufficient condition is that

td3/N2 → 0; (34)

and then it will be easy to arrange for situations corresponding to pairs (t, d) satisfying both (32)
and (34).
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Figure 6. About 333 of the 500 occurrences of repeats from Figure 5, but now viewed as among k= 3 segments of length t=
N.6 .= 1.38× 106. The

(
k
2

)
t by t above-diagonal squares from Figure 5 are superimposed, so the expected number of points is

about
(
k
2

)
× N.2 .= 334.3. The approximately 167.1 repeats where both occurrences lie in the same segment, corresponding

to the k right triangles hugging the diagonal in Figure 5, are not shown. In Section 4.5 we discuss this picture, suggesting
scaling for the axes, so that in each colour, the picture is approximately a standard (rate 1 per unit area) two-dimensional
Poisson process. The colour scheme is intended to be purple, green, orange.

Figure 7. Toggling. An example with t= 90 and displacement d= 3. The same repeat as shown in Figure 3 with location
(56,153) and shown by the orange dot in Figure 4. When all

(
k
2

)
squares are superimposed, as in Figure 6, the spatial location

becomes (i, j)= (56, 53). Before the toggle, we have two segments of length t= 90; after the toggle, the segments have length
t± d, that is, 93 and 87.

4.4. Displacements caused by toggles
Suppose we have k= 3 colours, as shown in Figure 9. There are three segments of length t = 90,
with respect to f . The segment with respect to f , starting with e1, coloured red, has v#1 in position
6 and v#2 in position 35 — so the red segment, of length 90, is divided into an initial red path of
length 6, followed by a red path of length 29, followed by a red path of length 55.

The f segment starting with e2, coloured yellow, has v#1 in position 3 and v#3 in position 75;
hence, it is divided into yellow paths of lengths 3, 72, 15, in that order.
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Figure 8. Toggling. This is a continuation of the example in Figure 7, with one repeat with location (56,153), shown by the
orange dot in Figure 4. When all

(
k
2

)
squares are superimposed, as in Figure 6, the spatial location becomes (i, j)= (56, 53).

Now suppose therewere an additional repeat, (whichwould have been shown by a red dot at (53,58) in Figure 4,) shown here
in Figure 8 by the pair of red dots for f . After the toggle at the orange vertex, vertex 53, along the segment that starts red and
finishes yellow, is the same as vertex 55, along the segment that start yellow and finishes red. So, in the logic f∗, we have two
matches between the two segments: the original, at (56,53), shown by the orange dots, and a new one, at (53,55), shown by
the red dots.

Figure 9. With starting edges e1, e2, e3, three segments under the logic f are shown in the top part of the display; the red
and yellow segments share a vertex v#1 , coloured orange, early on, the red and blue segments share a vertex v

#
2 , coloured

purple, at a intermediate time, and the yellow and blue segments share a vertex v#3 , coloured green, at a late time. We take
f∗ = Toggle(f , {v#1}) and f∗∗ = Toggle(f , {v#1 , v#2}) to be the logics formed by toggling at v#1 , and at both v#1 and v#2 . The mid-
dle part of the display shows the three segments under f∗, and the bottom part of the display shows the three segments
under f∗∗.

The f segment starting with e3, coloured blue, has v#2 in position 37 and v
#
3 in position 71; hence,

it is divided into blue paths of lengths 37, 34, 19, in that order.
Next, consider f ∗ := f , toggled at v#1. Its segment starting from e1 has length 6 red followed by

length (72+ 15)= 87, for a total length of 93. Its segment starting from e2 has length 3 yellow,
followed by length (29+ 55)= 84, for a total length of 87. The f ∗ segment starting from e3 is still
length 90, all blue. More importantly, v#2 has moved from position 35 on Seg(f , e1) to position 32
on Seg(f , e2), and v#3 has moved from position 75 on Seg(f , e2) to position 78 on Seg(f , e1), so these
have new positions under f ∗, i.e., have been displaced.

Now consider the full effect of changing from f to f ∗, by toggling the logic at the bit v#1 which
appeared at positions (i, j)= (i, i− d)= (6, 3), with d = 3, for the red and yellow segments: every
red vertex later than 6 gets displaced by −d, and every yellow vertex later than 3 gets displaced
by +d. If a match occurs at (I, J) in the f segments, and the colours involved are red, and some
colour, call it a, with a not equal to yellow, then:
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Figure 10. Displacements caused by a single toggle. An example with t= 90, and three colours, red, yellow, and blue. Say
the toggle is at v#2 occurring at (red,blue) time (35, 40), similar to the purple vertex at (35, 37) in Figure 9, butwith the displace-
ment changed from−2 to−5, for the sake of being easier to see in the two-dimensional picture. We have thrown in several
more matches between two different colours, at various earlier and later times, to show the resulting two-dimensional dis-
placements. Red vertices at times greater than 35 have their time increased by 5, and blue vertices at times greater than 40
have their time decreased by 5. Two-dimensional match locations are indicated by a solid circle for the logic f and an open
circle for the logic f∗.

• Case 1. Color a comes after red, in the list of k colours: the ordered colour pair is (red,a).
The index I > i belongs to a red vertex in position I under the logic f , and this vertex has
position I − d under the logic f ∗. So the point at (I, J)moves to position (I − d, J).8

• Case 2. Color a comes before red, in the list of k colours; the colour pair is (a,red). The
index J > i belongs to a red vertex, in position J under the logic f , but in position J − d
under the logic f ∗. So the point at (I, J) moves to position (I, J − d).

If there is an orange match at (I, J) for the f segments, with I > i and J > j, this match will move
to (I − d, J + d).

Similarly, a match between yellow, and some a not equal to red, occurring at (I, J) under the
logic f , moves to (I + 3, J) or (I, J + 3) under the logic f ∗, according to whether a comes after or
before yellow, in the list of all k colours.

This effect can be seen in Figure 9: the orange dot is at (6,3) with displacement d = 3, the purple
dot occurs at (35,37) under f , but at (32,37) under f ∗ and f ∗∗.

More cases can be seen in Figure 10.

8More formally, the point at (I, J), labelled by the pair of colours (a,red), in the coloured-spatial process of indicators of
matches between segments under f , corresponds to a point at (I − d, J) in the coloured-spatial process for f ∗.
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4.5. The natural scale: by 1/
√
N for length, by 1/N for area

One gets an intuitive grasp of the process of spatial locations of places (i, j) where two segments of
different colours share a vertex, by looking at a picture such as that in Figure 6 — even though the
axes are unlabelled.

One view would be that the square is t by t, with n= 34,N = 2n, t =N .6, i.e., about 1.3 million
by 1.3 million. The other natural view is that the square is about t/

√
N by t/

√
N, i.e., about 10.556

by 10.556, with area 111.43.
The latter point of view is natural, since at each (i, j), for each colour pair (a, b), 1≤ a< b≤ k,

with .= to allow a small discrepancy for the failure of the good event, P(an arrival9 at (i, j) in
those colours) := P(va,i = vb,j and va,i−1 �= vb,j−1)

.= P(there is a leftmost (n− 1)-tuple repeat at
a specific location10 in the coin tossing sequence)= 1/N. Hence, scaling length by 1/

√
N, so that

area is scaled by 1/N, leads to
the expected number of arrivals per unit area = 1.

The picture in Figure 6, viewed as occurring on a 10.556 by 10.556 square, closely resembles
a (standard, rate 1 dy dx) two-dimensional Poisson process, in each secondary colour pair. And
overall, ignoring colour, the picture resembles the rate

(
k
2

)
dy dx Poisson process on the t/

√
N by

t/
√
N square.
There are additional requirements for the Poisson process, beyond having intensity 1 dy dx.

Namely, probabilistic independence for the counts in disjoint regions. We do have a good Poisson
process approximation, for a combination of two reasons. First, the good event G=G(k,t) from
Theorem 6 gives a high-probability coupling (since t =N .6 entails t3n3/N2 → 0) between coin
tossing and the k de Bruijn segments of length t. Second, the Chen–Stein method, Theorem 3 of
[6], gives a total variation distance upper bound (tending to zero since t =N .6 entails t3n/N2 → 0)
between the process of indicators of leftmost (n− 1)-tuple repeats for coin tossing, and a process
with the same intensity, but mutually independent coordinates.

We get our intuition from the Poisson process. But for our proofs, we will work directly with
the discrete, dependent processes.

4.6. Controlled regions for m successive potential toggle vertices
4.6.1. Quick motivation for the geometric progression
We will construct choice functions in (40), based on regions, defined in (36), which in turn
are based on a geometric progression in (35). Here we give some motivation for this elaborate
construction.

If we search for a single toggle point, in a thin and long rectangle along the diagonal, {(i, j) : |i−
j| ≤ d, 0≤ i, j≤ t}, then, in the natural scale of Section 4.5, (and ignoring factors of

√
2 related to

the 45 degree rotation, and of 2 for ±d), the rectangle is d1 = d/
√
N by w1 = t/

√
N. Condition

(32) can be interpreted as meaning that the (natural scale) area, d1w1, tends to infinity — so that
with high probability, matches can be found in this rectangle, and condition (33) can similarly be
interpreted as meaning that d1 → 0, so that no matches will be found in the two-dimensional set,
of area on the order of d21, of points within �∞ distance d1 of the chosen location (i, j).

Now in choosing m toggle points, displacements caused by earlier toggles might change the
search result, and we wish to make this unlikely. In more detail: as seen in Section 4.4, toggling

9This jargon comes from queuing theory and Poisson arrival processes; we say there is an arrival at (i, j) if the indicator
indexed by (i, j) takes the value 1, here indicating that there is an (n− 1)-tuple repeat.
10The precise location doesn’t matter, but, using Section 3.10, the location is (i0, j0) where i0 = i+ (n+ t)(a− 1) and j0 =

j+ (n+ t)(b− 1).
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a logic f at a vertex v# which appears on two different colours, at times i, j with |i− j| ≤ d causes
displacements in the time indices of vertices occurring later on those segments, by amounts up to
d. Ourm potential toggle points, v#1, . . . , v#m, are controlled so that on any segment, v#� is preceded
by toggle points from among the v#1, . . . , v

#
�−1. If the displacement caused by toggling at v#i is at

most di, then in choosing v#�, the accumulated displacements from previous toggles is at most
d1 + · · · + d�−1. By taking the di in geometric progression, with large ratio r2, this accumulated
displacement in the search for v#� is at most order of d�−1. The rectangle where we search for v#�
is thin and long, d� by w� = r/d�; the length of its boundary is order of w�, so the area involved
in points at a distance at most d�−1 = d�/r2 from the boundary is order of 1/r = o(1). Hence with
high probability, displaced indices have no effect.

4.6.2. The search regions
We divide the time interval [0, t] into m equal length pieces. On the earliest piece, with times in
[0,t/m], we demand that we can find a match (i, j) with |i− j| very very very small, but no upper
bound on max(i, j) other than max(i, j)< t/m. In the natural scale of Section 4.5 we are searching
for matches in a very very very thin and very very long rectangle surrounding the diagonal line
i= j; this rectangle has a large area. On the second piece, with times in [t/m, 2t/m], we relax the
notion of thin, expanding by a large factor r2, relax the notion of long, dividing by the factor r2,
thus keeping the area constant.We continue this pair of geometric progressions, so themth region
is a thin long rectangle — but still with the same area.

Here is a concrete way to accomplish the above, together with t3n3/N2 → 0 and with k fixed.
Let

t := mN .6, a := N .1, so that t/m= a
√
N.

The last condition should be understood as ‘in the natural scale from Section 4.5, the t by t
rectangle isma byma, and length t/m for the discrete i and j corresponds to length a’. Let

r := a1/(2m+1), so that r2m+1 = a,

and, ignoring the factors of
√
2 involved in the 45 degree rotation, take the thin long rectangles to

have shapes

d1 = 1
r2m

by w1 = r2m+1 = (t/m)/
√
N

d2 = 1
r2m−2 by w2 = r2m−1 (35)

...

dm = 1
r2

by wm = r3

Indexing by � = 1 to m, the �th rectangle is d� := r2�−2m−2 by w� := r2m−2�+3 on the natural
scale. Directly in terms of the discrete i and j, we define

Region� =
{
(i, j) :

|i− j|√
N

< r2�−2m−2 and (36)

(� − 1)t
m

≤min(i, j)≤max(i, j)≤ (� − 1)t
m

+ t/m
r2(�−1)

}
,
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so one checks that 1) as � increases by 1, the thinness constraint relaxes by a factor of r2, while
the width constraint becomes more severe by a factor of r2, so the area stays constant, 2) the first
region, with � = 1, allows i, j ∈ [0, t/m] and 3) the last region, with � =m, has |i− j|/√N ≤ 1/r2 =
o(1) as n→ ∞.

Consider the possibility discussed in Section 4.3, where a toggle at a vertex appearing in two
differently coloured segment enables a match within a single segment to become, after the toggle,
an earlier match between two different segments. For each � = 1 tom, with the (t, d) in (34) given
by t =w�

√
N, d = d�

√
N, the condition in (34) is indeed satisfied by our specific choice in (35).

On the natural scale, and ignoring rotation, we are searching for a match in a δ = d� by W =w�

rectangle, thin and long, with δ → 0 and area δW → ∞. The condition (34), on the natural scale,
means that δ3W → 0. It implies that, with high probability, we do not find a match between two
differently coloured segments (at (i, j) in the rectangle, with |i− j|/√N < δ,) and simultaneously
a nearby match within a single segment. Here, nearby means with both indices within distance
δ
√
N from i or j. Now, the δ by W rectangle can be covered by W/δ squares, each square of size

4δ by 4δ, and with each successive square being a translate, by δ, of the previous square. Ignoring
constant factors,11 the expected number of arrivals in one square is order of δ2, and the chance of
two or more arrivals in that one square is order of δ4. Thus the expected number of squares with
two or more arrivals is order of

W/δ × δ4 = δ3W → 0. (37)

4.7. Definition of the choice functions
WriteV = F

n−1
2 for the set of vertices inDn−1, and write ‘null’ for a special value, not inV , used to

encode ‘undefined’. Recall that we write e= (e1, . . . , ek) for the starting n-tuples for k segments,
and Sn,k = {(f , e)} for the space in which we make a uniform choice of logic and starting edges.
Also recall our notation (31) for vertices along the k segments. Note that we have both k segments
and k colours; these are different concepts, and ultimately, colours will be labelled according to
the segment labels under f — but on the soon to be defined ‘happy’ event H, finding v#i on two
different segments of f will be equivalent to finding v#i on two different colours. To keep track of
the colours, let

A := {α = (a, b) : 1≤ a< b≤ k} (38)

For � = 1 tom, we define

Candidates� : Sn,k → [0, t]2 ×A (39)

Candidates�(f , e)= {(i, j, a, b) : (i, j) ∈ Region� and va,i = vb,j}
where Region� is defined by (36).

For � = 1 tom, we define

Choice� : Sn,k →V ∪ {null}, Choice�(f , e)= v#� or else null (40)

where the value is null if the set of candidates is empty, and otherwise, picking the first (i, j, a, b)
in Candidates�(f , e), v#� is the vertex with v#� = va,i = vb,j. To be very careful, the order for first is
the lex-first order on (i+ j, max(i, j), a, b).

11such as
(
k
2

)
+ k—for the intensity of arrivals in the superimposed processmarkingmatches between two different colours

or both within the same colour, and 16 — since a 4δ by 4δ square has area 16δ2
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4.8. The happy event H=H(k,m, n)
We now describe a subset of Sn,k and refer to this subset as the happy event H. One requirement
for (f , e) ∈H is that, for � = 1 to m, each of the values Choice�(f , e) �= null. Starting with such an
(f , e), the choice functions pick out a set ofm distinct vertices; call them v#1, . . . , v#m, and name the
set, V# = {v#1, . . . , v#m} —we will use this notation in (42) below.

Given a set of vertices, U ⊂V , we denote the logic f toggled at the vertices in U as Toggle(f ,U),
defined by

Toggle(f ,U) := f ∗, where f ∗(v)=
⎧⎨
⎩
1− f (v) if v ∈U

f (v) if v ∈V \U
. (41)

We define H as follows:

H = {(f , e) : ∀ U ⊂V#, with f ∗ = Toggle(f ,U), v#� = Choice�(f ∗, e) (42)

and the segments Seg(f , ei, t) collectively have k(t + 1) distinct edges}.
Informally, (f , e) is in the happy event iff the k segments involve no n-repeats, and the choice
recipes find m potential toggle vertices, and all 2m cousins f ∗, formed by toggling at a subset of
those vertices, give rise to the same v#1, . . . , v#m.

The definition above creates an equivalence relation on H, in which all classes have size
2m, and all (f ∗, e) ∈ [(f , e)] share the same sequence v#1, . . . , v#m. Using the calculations given in
Section 4.6.1 one may show that for fixed k,m, |H|/|Sn,k| → 1; that it, that P(H)→ 1 as n→ ∞.

4.9. Definition and likelihood of an ε-good schedule
Given k, viewA, defined by (38) as an alphabet of size

K :=
(
k
2

)
.

A schedule of lengthm is a word α1α2 · · · αm ∈Am. Given a schedule of lengthm, andm coin
tosses D1, . . . ,Dm, for i= 1 tom define permutations in Sk by

τi =
⎧⎨
⎩
the transposition (ab) if αi = (a, b) and Di = heads

the identity if Di = tails
,

and let τ = τ (α1α2 · · · αm,D1, . . . ,Dm) be the product, with τ1 applied first,

τ = τm ◦ · · · ◦ τ2 ◦ τ1 ∈ Sk. (43)

Write σ for an arbitrary permutation in Sk, and let

pσ = pσ (α1α2 · · · αm)= P(τ = σ |α1α2 · · · αm)

be the conditional probability of getting σ for the value of τ , given the schedule α1α2 · · · αm
— these are values of the form z/2m with z in Z. The total variation distance to the uniform
distribution on Sk is

Distance(α1α2 · · · αm)= dTV(τ , uniform)= 1
2

∑
σ

∣∣∣∣pσ − 1
k!

∣∣∣∣ .
Given ε > 0, a schedule α1α2 · · · αm is ε-good if Distance(α1α2 · · · αm)< ε.
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Lemma 7. Given k, and ε > 0, there exists m such that, for a random schedule of length m, with all(
k
2

)m
equally likely,

P(α1α2 · · · αm is ε-good)> 1− ε. (44)

Proof. There is a well-known bijection between Sk and the set Ck := [1]× [2]× · · · × [k] : given
c= (c1, c2, . . . , ck) with 1≤ ci ≤ i, take

σ = (2 c2) ◦ · · · ◦ (k− 1 ck−1) ◦ (k ck), (45)

where (a b) denotes the transposition (a b) ∈ Sk if a �= b, and the identity map otherwise. (The
corresponding algorithm, to generate uniformly distributed random permutations, is known as
the ‘Fisher-Yates shuffle’ or ‘Knuth shuffle’.)

Now consider the particular word w of length K over the alphabetA defined in (38), given by

w= (1 2)(1 3)(2 3) · · · (k− 2 k)(k− 1 k).

If we had m=K and the schedule is α1α2 · · · αm =w, then Distance(α1α2 · · · αm)≤ 1− 2−K ,
because for each σ in (45), one assignment of the coin values (D1, . . . ,Dm) yields τ = σ , via the
coins for the genuine transpositions among the (i ci) on the right side of (45) being heads, and
all others coins being tails. When the word w appears � times inside a long word α1α2 · · · αm, we
have, using a standard result,

Distance(α1α2 · · · αm)≤
(
1− 2−K)� .

For historical interest, we note that similar results are in [11, Thm. 1, p. 23]; see also [12]. In a
very long random word α1α2 · · · αm, the number of occurrences of w is random, with mean and
variance roughlym K−K , so a sufficiently largem guarantees that � is sufficiently large, with high
probability. �

4.10. Relativized permutations
We will define ‘πf relativized to e1, . . . , ek’ to be a specific permutation in S1 ∪ · · · Sk−1 ∪ Sk,
where Sj denotes the set of all permutations on {1, 2, . . . , j}. For use in Lemma 10, we need to
allow for the possibility that e1, . . . , ek are not k distinct n-tuples.

Definition 8. Let π be a permutation on a finite set S, and let e= (e1, . . . , ek) ∈ Sk. In case
e1, . . . , ek are all distinct, write the full cycle notation for π , erase all symbols not in {e1, . . . , ek}, and
then relabel e1, . . . , ek as 1, . . . , k. This yields the cycle notation for a permutation σ = σ (π , e) ∈ Sk,
and we call σ ‘π relativized to e’. In case j := |{e1, . . . , ek}| < k, edit the list (e1, . . . , ek) by delet-
ing repeats, from left to right, to get a new list e′ = (e1′, . . . , ej′) ∈ Sj, with no repeats. Now we take
‘π relativized to e’ to be σ (π , e′) ∈ Sj.

On the happy event H from (42), consider an equivalence class [(f , e)]. We want to name
a canonical choice of class leader, and since all 2m elements (f ∗, e) in the class share the same
v#1, . . . , v#m, and differ only in the values of the f ∗ at those vertices, the natural choice of leader is
(f0, e) where

f0(v#1)= · · · = f0(v#m)= 0.

Finally, we can say what colours are: for a= 1 to k, the vertices along Seg(f0, ea, t) have colour a.
Among the various (f ∗, e) in the equivalence class [(f0, e)], except for the case f ∗ = f0, at least some
of the k segments start with one colour and end with another.

The schedule corresponding to the equivalence class [(f , e)] is the word α1α2 · · · αm where
αi = (ai, bi) where 1≤ ai < bi ≤ k and v#i appears on colours ai and bi, that is, v#i is a vertex of both
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Seg(f0, eai , t) and Seg(f0, ebi , t). We visualise12 f (v#i )= 1 as meaning that the strands of colours ai
and bi are cut (at v#i ) and glued together to create a colour jump, as in Figs. 8 and 9.

For a= 1 to k, write e′a := the final edge ea,t of Seg(f0, ea, t), so that, under the logic f0,
Seg(f0, ea, t) is a directed path (in colour a) from its female end ea to its male end e′a. Note that
being inH implies that the starting edges e1, . . . , ek are distinct, and the final edges e′1, . . . , e′k are
distinct.

It is clear — from the relative timing of the appearances of the v#1, . . . , v#m along the segments
Seg(f0, ea, t) — that under the logic f ∗, Seg(f ∗, ea, t) is a directed path from its female end ea to its
male end e′g(a), where g ≡ g(f ∗) is the permutation in Sk given by

g = τm ◦ · · · ◦ τ2 ◦ τ1 ∈ Sk. (46)

τi =
⎧⎨
⎩
the transposition (ab) if αi = (a, b) and f ∗(v#i )= 1

the identity if f ∗(v#i )= 0
,

compare with (43).
Take the usual notation from Hall-style matching theory, and abbreviate the female ends as

{1, 2, . . . , k} and the male ends as {1′, 2′, . . . , k′}. Then f0 induces the matching from {1, 2, . . . , k}
to {1′, 2′, . . . , k′}with a �→ a′. Now the k paths under f0 starting from the male ends {1′, 2′, . . . , k′}
must eventually arrive at female ends {1, 2, . . . , k}. Define the return matching ĝ by ĝ(a′)= b if the
path starting from the male end a′ first arrives at the female end b. This return matching ĝ is the
same under all logics f ∗ with (f ∗, e) ∈ [(f0, e)].

Finally, for (f , e) ∈H,

πf relativized to {e1, . . . , ek} = ĝ ◦ g, (47)

and of course, on each toggle class

dTV(ĝ ◦ g, uniform(Sk))= dTV(g, uniform(Sk)).
With hindsight, we observe that the estimates of this section, and the previous Section 4.9,
have enabled us to dodge a very difficult consideration of interlacement (of the e1, . . . , ek and
v#1, . . . , v

#
1); see [5] for a study of interlacement.

5. Sampling with k starts, to prove poisson–Dirichlet convergence
5.1. Background, and notation, for flat random permutations
An overall reference for the following material and history is [3]. For a random permutation in
Sk, with all k! possible permutations equally likely, for j= 1,2,. . ., let

Lj ≡ Lj(k) := size of j-th longest cycle

with Lj = 0 if the permutation has fewer than j cycles, so that always L1(k)+ L2(k)+ · · · = k. The
notation Lj ≡ Lj(k) means that we consider the two notations equivalent, so that we can use either,
depending on whether or not we wish to emphasise the parameter k. Write

L≡ L(k) := (L1(k), L2(k), · · · ), L≡ L(k) := L(k)
k

, (48)

12This is a only a visualisation, and not a technical definition. Imagine k strands of (directed) yarn, of different colours.
They are all tangled up, but the start and end of each strand protrude from the tangle, so one has 2k protruding ends (one
male, one female, in each colour). One only knows that inside the tangle, there arem instances of two different coloured yarns
being cut, and at each of thesem, both strands may be spliced back together in their original (no colour change) form, or else
they may be cross-joined.
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so that Li ≡ Li(k) := Li/k. We use notation analogous to the above, systematically: boldface gives
a process, and overline specifies normalising, so that the sum of the components is 1.

This paragraph, summarising the convoluted history of the limit distribution for the length
of the longest cycle, begins with Dickman’s 1930 study of the largest prime factor of a random
integer. Dickman proved that for each fixed u≥ 1,�(x, x1/u)/x→ ρ(u), where�(x, y) counts the
y-smooth integers from 1 to x. The function ρ is characterised by ρ(u)= 0 for u< 0, ρ(u)= 1
for 0≤ u≤ 1 and for all u, uρ(u)= ∫ u

u−1 ρ(t) dt. In modern language, writing P+ = P+(x) for the
largest prime factor of an random integer chosen from 1 to �x�, Dickman’s result is that

log P+

log x
→d X1, where P(X1 ≤ 1/u)= ρ(u) for u≥ 1. (49)

Later work by Goncharov (1944) and Shepp and Lloyd (1966) showed the corresponding result
for random permutations, that for every fixed u≥ 1, P(L1(k)< k/u)→ ρ(u). In modern language
this is

L1(k)/k→d X1, where P(X1 ≤ 1/u)= ρ(u) for u≥ 1. (50)

The random variable X1 appearing in (49) and (50) is the first coordinate of the Poisson–Dirichlet
process; the second coordinate corresponds to the second largest prime factor, or second largest
cycle length, and so on. For primes, the joint limit was proved by Billingsley (1972) [9], and for
permutations, the joint limit was discussed by Vershik and Shmidt (1977) and Kingman (1977).
In these early studies, the Poisson–Dirichlet process appears as the limit, but not in a form eas-
ily recognisable as either (54) or (55). A fun exercise for the reader would be to prove that the
distribution of X1, as given by the cumulative distribution function in (49), together with the inte-
gral equation characterising ρ, is the same as the distribution of X1 as given by its density, which
is the special case k= 1 of (54). See [2] for more on the Poisson–Dirichlet in relation to prime
factorizations and [4] for more on the Poisson–Dirichlet in relation to flat random permutations.

Returning to the process of longest cycle lengths in (48), the joint distribution is most easily
understood by taking the cycles in ‘age order’. Let

Aj ≡Aj(k) := size of j-th eldest cycle. (51)

Our notation convention has already told the reader that A≡A(k) := (A1(k),A2(k), · · · ), and
that A(k)=A(k)/k. Here, the notion of age comes from canonical cycle notation: 1 is written as
the start of the first (eldest) cycle, whose length is A1, then the smallest i not on this first cycle is
the start of the second cycle, whose length is A2, and so on — with Aj := 0 if the permutation has
fewer than j cycles.13 It is easy to see that A1 is uniformly distributed in {1, 2, . . . , k}, and for each
j= 1, 2, . . ., if there are at least j cycles, then

Aj(k) is uniformly distributed in {1, 2, . . . , k− (A1 + · · · +Aj−1)}.
This very easily leads to a description of the limit proportions: with U,U1,U2, . . . independent,
uniformly distributed in (0,1),

A := A(k)
k

→d ((1−U1),U1(1−U2),U1U2(1−U3), . . .). (52)

We write →d to denote convergence in distribution, and we note that U =d 1−U, where =d

denotes equality in distribution. The distribution of the process on the right side of (52) is named

13In contrast with permutations on {1, 2, . . . ,N}, similar to (51), where age order comes from the canonical cycle nota-
tion, for shift-register permutations πf , the oldest cycle is not the cycle containing the lex-first n-tuple, 00 · · · 0. In fact, in a
random FSR, the cycle starting from 00 · · · 0 has exactly a one-half chance to have length 1. For permutations of a set lack-
ing exchangeability, such as Fn

2 , the notion of age order requires auxiliary randomisation: the oldest cycle is picked out by a
random n tuple; conditional on this cycle, with length A1 <N, choose an n tuple uniformly at random from the remaining
(N −A1) n-tuples not on the first cycle, to pick out the second oldest cycle, whose length is A2, and so on.
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GEM, after Griffiths [18], Engen [15] and McCloskey [20]; its construction is popularly referred
to as ‘stick breaking’ although stick breaking in general allows U to take any distribution on (0,1),
not just the uniform.

Convergence of processes, such as (52) and (56), and our Theorem 1 and Lemmas 9 and 10,
are instances of convergence for stochastic processes with values in R

∞, with the usual compact-
open topology, and as such, convergence of processes is equivalent to convergence to the finite-
dimensional-distributions, of the first r coordinates, for each r = 1, 2, . . ..

Define

� = {(x1, x2, . . .) ∈ [0, 1]∞ : x1 + x2 + · · · = 1}.
The (usual subspace) topology on � is the same as the metric topology from the �1 distance,

d((x1, x2, . . .), (y1, y2, . . .))=
∑

|xi − yi|, (53)

We write RANK for the function on � which sorts, with largest first. An example shows some of
the subtlety of the preceeding considerations: let ei ∈ � be the ith standard basis vector — all zeros
apart from a 1 in the ith coordinate, and let 0 be the all zeros vector. Note that 0 ∈ [0, 1]∞ \ �,
and in the larger space [0, 1]∞, en → 0. But for i �= j, d(ei, ej)= 1, and the sequence e1, e2, . . . does
not converge in�. The closure of� is the compact set� = {(x1, x2, . . . ) ∈ [0, 1]∞ : x1 + x2 + · · ·
≤ 1}, and RANK is also defined14 on �; note that 0 ∈ �, and our en example shows that RANK is
not continuous on �. Donnelly and Joyce, [13, Proposition 4], proved that RANK is continuous
on �, observing that ‘. . .in parts of the literature some of these results seem already to have been
assumed’.

By definition, a random (X1, X2, . . .) ∈ � is the Poisson–Dirichlet process, or has the Poisson–
Dirichlet distribution,15 PD, if for each k= 1, 2, . . ., the joint density of the first k coordinates is
given by

fk(x1, x2, . . . , xk)= 1
x1x2 · · · xk ρ

(
1− x1 − · · · − xk

xk

)
(54)

on the region x1 > x2 > · · · > xk > 0 and x1 + · · · + xk < 1, and zero elsewhere. The Poisson–
Dirchlet process may be constructed from the GEM process, which appeared on the right side of
(52), by sorting, with

(X1, X2, . . .)=d RANK(((1−U1),U1(1−U2),U1U2(1−U3), . . .)). (55)

For the process of largest cycle lengths in a random permutation, (48), the combination of the
easy-to-see limit (52), and the continuity of RANK, and the characterisation (55) of the Poisson–
Dirichlet distribution, proves that as k→ ∞,

L(k)→d X := (X1, X2, . . .), with PD distribution. (56)

Our goal is to derive a new tool for proving the same PD convergence as in (56), but for non
uniform permutations, such as those arising from a random FSR. It might benefit the reader to
jump ahead a little, and read the statement of Lemma 10, and then the more technical Lemma 9,
which has the meat of the argument used to prove Lemma 10. We have stated Lemma 9 in a fairly
general form, hoping that it may be useful in the context of other combinatorial structures, and
perhaps with limits other than the Poisson–Dirichlet.

14RANK is not defined on [0, 1]∞ — for example x= (1/2, 2/3, 3/4, . . .) does not have a largest coordinate.
15This PD is PD(1); mathematical geneticists work with a family of distributions, PD(θ), indexed by θ ∈ (0,∞).
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5.2. The partition sampling lemma

Lemma 9. First, suppose that for each N along a sequence of N tending to ∞ we have a random
set partition π on [N] := {1, 2, . . . ,N}. Let Mj ≡Mj(N) be the size of the j-th largest block of π ,
with Mj := 0 for j greater than the number of blocks of π , so that M1 +M2 + · · · =N. LetM(N)=
(M1(N),M2(N), . . .) and letM(N)=M(N)/N.

Next, for each k≥ 1, take an ordered sample of size k, with replacement, from [N], with all Nk pos-
sible outcomes equally likely. Such a sample picks out an ordered (by first appearance) list of blocks
of π , say β1, . . . , βr, with r ≤ k. Let Cj ≡ Cj(N, k) be the number of elements of the k-sample landing
in the block βj, with Cj := 0 for j> r, so that C1 + C2 + · · · = k. Let C≡C(N, k)= (C1, C2, . . .).

Finally, let X= (X1, X2, . . .) be any random element of �, with X1 ≥ X2 · · · ≥ 0, and let A(k) :=
(A1(k),A2(k), · · · ) be any random elements of Z∞+ for which A1(k)+A2(k)+ · · · = k, and such
that A(k) := A(k)/k has

as k→ ∞, RANK(A(k))→d X. (57)

Then, if for each fixed k, as N → ∞, we have

C(N, k)→d A(k), (58)

it follows that

as N → ∞, M(N)→d X.
Proof. Here is an outline of our proof. We begin with an analysis of ‘sampling using k probes’,
leading to (61), which gets coordinatewise nearness, with exceptional probability O(1/k), uni-
formly over set partitions, which are indexed by N. This is the crux of our proof; the remainder is
similar to Donnelly and Joyce, [13, Proposition 4], on the continuity of RANK. For an overview,
with D defined in the following paragraph, and writing whp to mean ‘with high probability’, and.= to mean ‘approximately equals, in �1’:

X (by 57) .=whp RANK(A) (by 58)=whp RANK(C)= RANK(D) .=whp RANK(M)=M.

Write the blocks of π as b1, b2, . . ., listed in nonincreasing order of size, so thatMi = |bi|. Write
pi := Mi/N, so that p := (p1, p2, . . .)≡M is a random probability distribution on the positive
integers. LetDj be the number of elements of the k-sample in bj; the listsC1, C2, . . . andD1,D2, . . .
represent the same multiset, apart from rearrangement, so that

RANK((C1, C2, . . .))= RANK((D1,D2, . . .)). (59)

Write D≡D(N, k) := (D1,D2, . . .), and D≡D(N, k) := D/k, so that D= (D1,D2, . . .) and Di =
Di/k.

Conditional on the value of p, the joint distribution of (D1,D2, . . .) is exactlyMultinomial(k, p).
Wewant to establish a form of uniformity for the convergence ofD(k) to p. The first step is to recall
the usual proof that for Binomial sampling, with a sample of size k and true parameter p ∈ [0, 1],
the sample mean p̂ converges to the true parameter p— because the proof provides a quantitative
bound. Specifically, Chebyshev’s inequality gets used, with

P(|p̂− p| ≥ δ)= P((p̂− p)2 ≥ δ2)

≤ E (p̂− p)2

δ2

= Var p̂
δ2
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= p(1− p)
kδ2

≤ p
kδ2

. (60)

In particular, conditional on any value for p, for i= 1, 2, . . ., with pi =Mi =Mi(N)/N in the role
of p for (60),

P(|Di −Mi| ≥ δ | (p1, p2, . . .))≤ pi
kδ2

.

Hence, taking expectation to remove the conditioning on p, and then using
∑

i pi = 1 to analyse
the union bound, we have a good event G (proximity in �∞) whose complement

Gc := (∃i, |Di −Mi| ≥ δ) has P(Gc)≤ 1
kδ2

. (61)

For x ∈ �, j≥ 1 write Sj(x) for the sum of the j largest coordinates of x. Obviously

for ω ∈G, Sj(M)≥ Sj(D)− j δ. (62)

Let ε > 0 be given and fixed for the remainder of this proof.
Let

R(j, ε) := {y= (y1, y2, . . .) ∈ � : RANK(y)= x= (x1, x2, . . . ) has x1 + · · · + xj > 1− ε}, (63)

the set of points in � where some set of j coordinates sums to more than 1− ε. Note that R(j, ε)
is invariant under permutations of the coordinates, including RANK. Since � = ∪jR(j, ε), and X
from (57) is a random element of �, there exists j= j(ε)≥ 1, depending on the distribution of X,
such that

P(X ∈ R(j, ε))> 1− ε; (64)

fix such a value for j. [When used in Lemma 10, where the distribution of X is Poisson–Dirichlet,
(55) can be used to show that the minimal such j is asympotically log (1/ε).]

Using the hypothesis (57), and observing that R(j, ε) is an open set, (the open set part of the
Portmanteau Theorem on weak convergence implies that) we can pick and fix a finite k0 such that
for all k≥ k0,

P(A(k) ∈ R(j, ε))> 1− ε. (65)

Using the hypothesis (57) again, we can pick and fix a finite k1 ≥ k0 such that for each k≥ k1, there
exists a coupling (see Dudley [14], Real Analysis and Probability, Corollary 11.6.4) such that the
�1 distance has

P(d(RANK(A(k)), X)≥ ε)< ε. (66)

Next, intending to use (61) with ε/j used in the role of δ, the upper bound is 1/(kδ2)= j2/(kε2).
To have this upper bound be at most ε, and also be able to apply (66), we take k to be themaximum
of k1 and the ceiling of j2/ε3.

The value k has been fixed, in the previous paragraph. Now, the convergence in hypothesis (58)
involves the topologically discrete space Zk+, so the distributional convergence can be metrized by
the total variation distance, hence there exists a finite N0(k) such that for all N ≥N0(k), the total
variation distance between distributions is at most ε, and there exists a coupling with

P(C(N, k) �=A(k))≤ ε.

https://doi.org/10.1017/S0963548323000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000020


Combinatorics, Probability and Computing 591

Of course this same coupling and exceptional event yields P(RANK(C) �= RANK(A))≤ ε, and using
also (65),

P(RANK(C)= RANK(A) and C(N, k) ∈ R(j, ε))> 1− 2ε.

But then (59), and the permutation invariance of R(j, ε) converts the above into

P(RANK(D)= RANK(A) and D(N, k) ∈ R(j, ε))> 1− 2ε. (67)

Next, observe that D(N, k) ∈ R(j, ε) and G from (61) with δ = ε/j imply that, each of the
j indices i for D(N, k) ∈ R(j, ε) has |Mi −Di| < δ, so the sum of those j coordinates of M
is at least Sj(D)− j δ = Sj(D)− ε > 1− 2ε (as observed in (62))), and the sum of the other
(outside the chosen j) coordinates of M is at most 2ε, while the sum of the other (outside the
chosen j) coordinates of D is at most ε. Hence, the �1 distance is at most 4ε, accounted for by
jδ = ε, from the |Mi −Di| with i among the chosen j, plus 2ε + ε using |Mi −Di| ≤Mi +Di on
the other coordinates, outside the chosen j. This result was that d(M,D)< 4ε. NowM = RANK(M)
by construction, but due to sampling noise, maybe D �= RANK(D). However, since RANK is a
contraction, we have d(M, RANK(D))< 4ε.

Putting it all together, for anyN ≥N0, the union of the exceptional events from (61) (M nearD,
coordinatewise, with P(Gc)≤ ε), from (66) (RANK(A) near X), and from (67) (D equals RANK(A),
in R(j, ε)) has probability at most 4ε, and outside this exceptional event,M is at most 4ε away from
RANK(D)= RANK(A), which in turn is at most ε away from X. In summary, there are couplings so
that

∀N ≥N0, P(d(M, X)> 5ε)< 4ε. �

5.3. The permutation version of the sampling lemma

Lemma 10. Suppose that for a sequence of N tending to ∞ we have a random permutation π on
[N] := {1, 2, . . . ,N}. Let Mj ≡Mj(N) be the size of the j-th largest cycle of π , with Mj := 0 for j
greater than the number of cycles of π , so that M1 +M2 + · · · =N.

Given k≥ 1, take an ordered sample of size k, with replacement, from [N], that is, e1, . . . , ek with
all Nk possible outcomes equally likely. Let σ be π relativised to e1, . . . , ek, as defined at the start of
Section 4.10.

Now suppose that, for each fixed k≥ 1,

∀τ ∈ Sk, as N → ∞, P(σ = τ )→ 1/k!. (68)

Then, as N → ∞,

(M1(N)/N,M2(N)/N, . . .)→d X= (X1, X2, . . .), (69)

where X has the Poisson–Dirichlet distribution, as in (55) and (56).

Proof. Take the processesA(k) of cycle lengths, in age order, as given by (51), for uniform random
permutations in Sk, to serve as the random elements in the hypotheses (57) and (58) of Lemma 9.
This requires using the Poisson–Dirichlet distribution, for X in (57).

Fix k. Then (68) holding for each τ ∈ Sk implies that the distribution of σ is close, in total
variation distance, to the uniform distribution on Sk. On the event, of probability N−1

N · · ·
N−(k−1)

N → 1, that the k-sample with replacement from the N population has k distinct elements,
the counts C(N, k) from Lemma 9 agree exactly with the cycle lengths in σ . Hence hypothesis (68)
implies the hypothesis (58). �
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6. Putting it all together: The Proof of Theorem 1
We now have established all the ingredients needed for our proof of Theorem 1. First, the
conclusion (4) of Theorem 1 is exactly the conclusion (69) from Lemma 10.16 To prove
Theorem 1, it only remains to establish that the random FSR model (3) satisfies the hypothesis
(68) of Lemma 10.

Fix k for use in (68). The uniform choice of (f , e) ∈ Sn,k determines πf and the random sample
e1, . . . , ek — for convenience in Lemma 10 we labelled the set Fn

2 with the integers 1,2,. . . ,N.
Let an arbitrary ε > 0 be given. Fix m=m(k, ε) as per Lemma 7, so that with high probability, a
random schedule of lengthm over the alphabet of size

(
k
2

)
is ε-good.

We will take t =N .6, recalling that N = 2n. By Theorem 6, for sufficiently large n, on a good
event G(k,t) of probability at least 1− ε, the two-dimensional process X(v) of indicators of vertex
repeats, in Seg(f , e1, k(t + n)), agrees with the two-dimensional process X of indicators of left-
most (n− 1)-tuple repeats for coin tossing; and cutting, to produce e and k segments, causes no
unwanted side effects. Then, by the Chen–Stein method as given by Theorem 3 of [6] (with a sur-
vey of applications to sequence repeats given by Section 5 of [7], and details for the sequence
repeats problem given in (39)–(40) of [8]), for sufficiently large n the total variation distance
between X and X′ is at most ε, where X′ has the same marginals as X, but all coordinates mutually
independent. Combined, the total variation distance between X(v) and X′ is arbitrarily small, at
most 2ε.

The indicator of the happy event H is a functional of the process X(v), so we can approximate
P(H), with an additive error of at most 2ε, by evaluating the same functional, applied to X′. The
required estimates for this independent process are routine, via computations of the expected
number of arrivals in various regions as in Section 4,17 and we have already provided most of
the details, in discussing (32) and (34). Additionally, one must check that the schedule resulting
from use of (40) is close, in total variation distance, to the flat random choice in the hypothesis of
Lemma 7; we omit the relatively easy details.

To summarise, we picked k for use in Lemma 10, then fixed an arbitrary ε > 0, then picked
m via Lemma 7.18 For large n, the process of vertex repeats among the k segments of length t
is controlled, via comparison of X(v), X, X′, showing that most (f , e) lie in H, and furthermore,
the event H∗ ≡H∗(ε)⊂H, that the chosen potential toggle vertices v#1, . . . , v#m pick out a ε-good
schedule, has P(H∗)> 1− 4ε. (Attributing 2ε to dTV(X(v), X′), ε to P(Hc) and ε to P(H \H∗) .)
Section 4.9 shows that, on H∗, the settings of f at its toggle vertices induce a nearly flat random
matching between segment starts and ends, and (47) in Section 4.10 lifts this to show that πf rel-
ativised to e1, . . . , ek is a nearly flat random permutation in Sk. Thus the combination of Section
4.9 and 4.10 shows that, onH∗, on each equivalence class [(f , e)] ∈H∗, the total variation distance
to the uniform distribution on Sk is at most ε. Hence, averaging over the classes inH∗, and allow-
ing distance 1 for the at most 4ε of probability mass outside of H∗, we get that for our fixed k,

16There is a small shift of notation; in Section 5 we had to deal with both FSR permutations and flat random permutations.
So in Section 5, instead of L for the process of largest FSR cycles lengths,M names the process of largest cycle lengths for an
FSR permutation and L names the corresponding process for flat random permutations.

17These arguments take two forms: 1) if the expected number of arrivals is small, specifically, less than δ, then the prob-
ability of (no arrivals) is large, specifically, greater than 1− δ, and 2) if the expected number of arrivals is sufficiently large,
specifically, some λ > 1, and the indicators of arrivals are mutually independent, then the probability of (no arrivals) is small,
specifically, at most e−λ. It is precisely the role of the Chen–Stein method to provide the required independence.

18In a sense, Lemma 10 encapsulates a relation between an arbitrary ε > 0, and k, hiding the full programme: given ε > 0
to govern being close with high probability, pick a single k large enough that the k-sampled-and-relativized permutation being
close to uniform in Sk would imply that the large cycle process for FSR permutation is close to the PD, then pick a singlem to
work for this k and ε, then finally pick n0, the notion of sufficiently large n, to work for this k,m and ε. The briefest summary
is: given ε, pick k, thenm, then n0.
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for arbitrary ε, for all sufficiently large n, dTV(σ , uniform(Sk))= 1
2

∑
τ∈Sk

|P(σ = τ )− 1
k! | < 5ε,

which establishes (68). This completes the proof.
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