
A SYMPLECTIC MAPPING MODEL AS A TOOL TO UNDERSTAND 

THE DYNAMICS OF 2/1 RESONANT ASTEROID MOTION 

JOHN D. HADJIDEMETRIOU 
Department of Physics, University ofThessaloniki, Thessaloniki, Greece, 

E-mail: hadjidem @physics.auth.gr 

Abstract. We present a 3-D symplectic mapping model that is valid at the 2:1 mean motion resonance 
in the asteroid motion, in the Sun-Jupiter-asteroid model. This model is used to study the dynamics 
inside this resonance and several features of the system have been made clear. The introduction of the 
third dimension, through the inclination of the asteroid orbit, plays an important role in the evolution 
of the asteroid and the appearance of chaotic motion. Also, the existence of the secondary resonances 
is clearly shown and their role in the appearance of chaotic motion and the slow diffusion of the 
elements of the orbit is demonstrated. 
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1. Introduction 

The explanation of the Kirkwood gaps in the asteroid belt is an old and famous 
problem in the study of the solar system, which is related to the stability of resonant 
motion in a nonlinear dynamical system. The interest in this problem was revived 
after the work of Wisdom (1982,83,85), who showed that the observed gap at the 
3:1 mean motion resonance of the asteroid with Jupiter can be explained by purely 
gravitational forces. 

The study of the Kirkwood gaps was extended by Sidlichovsky (1988,92) for 
the 5:2 resonance, by Moons and Morbidelli (1995) for the for the 4:1, 3:1, 5:2 
and 7:3 resonances and by Yoshikawa (1991) for the 5:2 and 7:3 resonances, and 
similar results were obtained for the depletion of asteroids from these regions. 
Much work has been done recently on the 2:1 gap, and the basic features are 
now well understood (Henrard et al. 1995, Henrard and Lemaitre 1987, Moons 
and Morbidelli 1993, Lemaitre and Henrard 1990, Ferraz-Mello 1996, Morbidelli 
1996, Morbidelli and Moons 1995, Ferraz-Mello et al. 1998a,b, Moons et al. 
1998, Ferraz-Mello and Michtchenko 1997, Michtchenko and Ferraz-Mello 1998, 
Nesvorny and Ferraz-Mello 1997, Gallardo and Ferraz-Mello 1998, Yoshikawa 
1989,1991). A slow diffusion takes place at this resonance, from low to high 
values of the eccentricity. An extended review on recent work on the Kirkwood 
gaps was made by Moons (1997). 

The problem of the Kirkwood gaps, apart from its particular interest in the study 
of the solar system, is an interesting problem of nonlinear dynamics, related to the 
stability of resonant motion and the generation of chaos and its long term effect 
on the evolution of the system. To understand the dynamics of the system, one can 
consider a hierarchy of perturbations, starting with the simplest model and going 
gradually to more complicated models, adding more features and consequently 
more degrees of freedom. The increase of the degrees of freedom introduces new 
resonances to the system, the secondary resonances and the secular resonances, 
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which play an important role in the evolution inside the 2:1 resonance. These 
resonances may overlap and thus form a bridge to connect low and high eccentricity 
and inclination regions in phase space (Yoshikawa, 1989, Franklin, 1994, Moons 
and Morbidelli, 1995 and Henrard et al. 1995). 

The purpose of this paper is to contribute to the study of the 2:1 resonant asteroid 
motion in three dimensions, by making use of a suitable symplectic mapping model. 
The underlying physical system is the Sun-Jupiter-asteroid system, with Jupiter in 
a fixed orbit. This mapping model can be used to understand the dynamics at this 
region and guide us on where to focus our attention in numerical simulations. 
In particular, we address several aspects of the problem as: (a) The effect of 
introducing the third dimension in the model, (b) The appearance of the secondary 
resonances and the generation of chaotic motion through their overlap, (c) The 
effect of the initial phase on the evolution of the system. This mapping model 
compares well with other models used in the study of the 2:1 resonance, as we 
shall see in the following. 

2. The Mapping Model 

The symplectic mapping model that we shall use is based on the averaged Hamil­
tonian at the 2:1 resonance and corresponds to the elliptic restricted three body 
problem, in three dimensions, with the Sun and Jupiter as primaries. The planar 
part of this averaged Hamiltonian has been used in Hadjidemetriou and Lemaitre 
(1997) and contains all the high eccentricity resonances of the Sun-Jupiter-asteroid 
model. This was achieved by the introduction of suitable correction terms to the 
averaged Hamiltonian obtained by the usual perturbation methods. In the present 
paper we use the averaged Hamiltonian at the 2:1 resonance, in three dimensions, 
obtained by Sidlichovsky (1991). The planar part is the same as that used in the 
paper by Hadjidemetriou and Lemaitre (1997), and we applied the same correction 
terms to make the model realistic. We kept first order terms in ej in the expansion 
of the averaged Hamiltonian and also first order terms in sin21. Since i' is fixed 
and of the order of 1°, we ignored all terms of third order in e, sin | and sin j . 

2.1. THE AVERAGED HAMILTONIAN 

The averaged Hamiltonian is expressed in the resonant action-angle variables 
(Moons 1997) S, Sz, N a, az and v, given by 

S = L-G, SZ = G- H, N = 2L-H, 
a = 2A' - A - w, az = 2A' - A - Q, v = -2A' + \ + w'. (1) 

where 

L = y/(l-n)a, G = Ly/l-e2, H = Gcosi, (2) 
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and a is the semimajor axis of the asteroid, e the eccentricity, i the inclination, A 
the mean longitude, w the longitude of perihelion and Q, the longitude of the node, 
and the primed quantities refer to Jupiter. 

The averaged Hamiltonian is 

H = H0{S, Sz, N) + iieHi(a) + fie2H2(a) + ne7H7(a) + [ie7Hc (3) 

+fj,ejHj(S, Sz, N, a, az, v) + fi sin2 -zHfa, az) + fiej sin2 -Hij(a, az, v), 

where 

"o—^-V-S,?-^-8-^ (4) 

Hi = A cos a, H2 = C + D' cos 2a, (I?': corrected value) (5) 

H7 = Pcosa+ Qcos3a + Rcos5a+ Tcosla, (6) 
Hc - T' cos 8<T, (correction term) (7) 

hs 
Hj = Jcosv + \ —(Fcos(cr -f */) -f Gcos(<7 - z/)) + ejif cos2v 

+e2(F1 cos(2cr + i/) + G\ COS(2<J - i/) + Jx cos */), (8) 

Hi = Ci + DiCOs2az 

+e(Ai cos a + A2 cos(cr - 2<rz) + A3 cos(a + 2«7Z), (9) 

Hij = J2 cos 1/ + F2 cos(2az + v) + G2 COS(2CT^ - v) 

e{F-s COS(CT + v) + G3 COS(CT - z/) 

+j?i COS(2CT^ + a + 1/) + B2 COS(2CT^ + <r - v) (10) 

+.03 cos(2cr^ - a + v) + B4 COS(2CTZ - a - v)). 

The eccentricity e and the inclination i that appear in the above expressions is a 
function of S, Sz and N, obtained from the equations (1) and (2). The coefficients 
are given by Lemaitre and Henrard (1990) for the planar part and by Sidlichovsky 
(1991) for the three dimensional part as: A = 1.189,5 = 2.00084, C - -0.3866, 
P = 1.598, Q = 6.964, R = -52.95, T = 51.95, / = -0.4273, F = 0.5739, 
G - 4.955, H = -3.588, Fi = 0.7523, Gt = -13.0959, Jx = -2.188, Cx = 
1.5483, Dx = -0.8182, Jz = 10.0508, F2 = -0.2138, G2 = -5.1823, Aj = 
-10.7994, A2 = 3.4926, A3 = 3.1456, F3 = -23.7199, G3 = -70.5988, 
Bx = -2.2339, B2 = 30.8721, B3 = 12.1473, B4 = 14.2990. The coefficient of 
the correction term is I" = -20.0. We have also corrected the coefficient D in the 
second order term H2 of the expansion of the Hamiltonian, taking D' = -0.30 
instead of D = -1.691. The value of the mass of Jupiter (in normalized units) is 
taken equal to // = 0.00095387535 and the value of the eccentricity of Jupiter is 
taken equal to ej = 0.048. 
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2.2. THE MAPPING EQUATIONS 

We consider the mapping which is derived from the generating function 

+TH0(S, N) (two-body problem) 
+fj,TWl(S, N, a) (2D circ. restr. problem) 
+fj,ejTW2(S, N, a, v), (2D ell. restr. problem) 

+fi sin2 -TW3 (er, erz), (3D circ. restr. problem) (11) 

+fiej sin2 -Tlf4((T, az, u), (3D ell. restr. problem) 

where T is the period of the 2:1 resonant periodic orbit, which is equal to T = 2-K 
in the normalized units we are using and 

Wl = fieH^a) + iie
1E2{a) + /(/ie7H7(a) + fie7 Hc), 

W2 = Hj(S,N,a,v), W3 = Hi(a,az), W4 = H{j(a,az,u). (12) 

through the equations 

an+1 = dW/dSn+1, az,n+i = dW/dSz<n+i, vn+i = dW/dNn+1, 

Sn = 8W/dan, Sz,n = dW/daZin, Nn = dWjdvn. (13) 

This mapping is symplectic and it can be proved (Hadjidemetriou 1993) that it has 
the same fixed points with the same stability index, as the averaged Hamiltonian 
H. Consequently, it has the same fixed points as the Poincar6 map of the real 
system (elliptic restricted problem). This is so because H is corrected in such a 
way that its fixed points correspond to the families of the periodic orbits of the 
real system. In addition, we have multiplied the high eccentricity terms H7 and 
Hc in the generating function W by the coefficient / = 0.02, in order to reduce 
the chaotic regions of the mapping and make them comparable with the chaotic 
regions of the real system when ej = 0. 

The mapping obtained by the generating function (11) has the same topology as 
the Poincar6 map of the real system. Thus, we consider it as a good model to study 
the long term behaviour of an asteroid close to the 2:1 resonance, because similar 
dynamical systems have the same generic properties and are expected to behave in 
the same way. 

The equations of the complete mapping are obtained from the generating func-
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tion W, given by (11), by making use of the transformation equations (13) 

"n+i = *n + T ^ + 1 > [ ( ^ + e A ) + W + c , - ^ ) ^ sin2 | / 

5 B = 5B+1 +?> [($£ + e« ) + sin^^t^l] 

ff*,n+i = o-2n +T/i(iy3 + ejW4)as^n+i sin2 | , 

5,lB = 5,,B+1 + T / x s i n 2 | ^ g ^ 

"n+i = "« + T J ^ +7> [ ( ^ f L + e , ^ ) + (HVhy w W a ^ sin2 £ 

(14) 

iVn = 7Vn+i + l > e j 

From these mapping equations it is clearly seen how the different degrees of 
freedom interact. For example, it is readily seen that if ej = 0 (circular orbit of 
Jupiter), the action N is constant and for i = 0 (planar motion), the action Sz is 
constant. These equations are in implicit form and at each step we have to solve 
(by the method of Newton-Raphson) the second, fourth and sixth equations (14) to 
obtain the values of Sn+1, Sz,n+1 and JVn+i in terms of a„, oz,n, vn, Sn, Sz,nNn 

and then proceed to the computation of o-n+i, &z,n+i, vn+\ from the first, third and 
fifth equations (14). This however does not present any numerical difficulty. 

3. The Evolution of the Asteroid obtained by the Mapping Model 

We shall use now the mapping (14) to study the evolution of a fictitious asteroid 
which starts inside the 2:1 resonance. The purpose of these computations is to study 
the different types of evolution and the factors that affect the appearance of chaotic 
motion. Several interesting aspects of the properties of motion inside this resonance 
will be made clear and help us to understand the dynamics inside this resonance. 
The initial conditions of the asteroid are compared with the a - e diagrams, for 
the inclinations ?o = 0 and i0 = 20°, respectively, given by Moons et al.,1998, 
(Figures la,b), where the regions of secondary resonances and secular resonances 
are shown. A diagram similar to Figure 2a was also given by Michtchenko and 
Ferraz-Mello (1997). 

3.1. EVOLUTION FOR DIFFERENT ECCENTRICITIES 

We compute different asteroid orbits, keeping the semimajor axis and the inclination 
fixed, equal to a0 = 3.3 AU and io = 1 degree, and taking three values for the initial 
eccentricity: eo = 0.02, eo = 0.12 and eo = 0.16. In all cases we take <J0 = 0, 
az0 = 0 and fo = 0. These initial conditions are on the line a0 = 3.3 AU in Figure 
la (this Figure is for i = 0 but the regions of secondary and secular resonances do 
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3.20 3 25 3.a) 3.is 3.25 3 .X 

Fig. 1. The regions of secondary and secular resonances: (a) i = 0, (b) i = 20° (From 
Moons et al. 1998). The secondary resonances are situated below the dotted line, in the 
lower part. 
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A. ~-**^^r°*^***J$my 

Fig. 2. The evolution of the eccentricity and the inclination, for ao = 3.3 AU, to = 1° and 
(a)e0 = 0.02, (b) e0 = 0.12. 

not change much for the value i = 1° that we are using). The first two are inside 
the region of secondary resonances and the third is just outside this region. The 
evolution of the eccentricity and the inclination is given in Figures 2a,b and Figure 
3a. In these computations we give the values of e and i at the points where a = 0 
and da/dt < 0. We note that chaotic motion appears when we start inside the 
region of secondary resonances in Figure la, (Figures 2a,b) and the eccentricity 
and inclination jump eventually to high values. On the contrary, the third orbit, 
which starts outside the secondary resonance region of Figure la is ordered and 
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Fig. 3. The evolution of the eccentricity and the inclination, for a0 = 3.3 AU, e0 = 0.16 
and(a)i0 = l o , ( b ) t 0 = 16°. 

Fig. 4. The evolution shown in Figure 2b for t = 4.2 x 107y. The "fountain" pattern is 
clearly seen. 

no significant change takes place (Figure 3a). The chaotic and stable nature of 
the orbits for e0 = 0.12 and e0 = 0.16, respectively, has been also observed by 
Michtchenko and Ferraz-Mello (1997), by direct numerical computations. 

We note that the third dimension plays an important role in the evolution of the 
system and cannot be ignored in a realistic model, even if the initial eccentricity 
is close to zero. From Figures 2a,b we see that it is the inclination that starts 
first to change in a chaotic way and increase while the eccentricity remains small. 
It is only after the increase of the inclination to a relatively large value that the 
eccentricity is excited and starts to increase chaotically, and both the eccentricity 
and the inclination obtain very high values. This is clearly seen in Figure 4, where 
we plotted the evolution shown in Figure 2a in the axes e-i. This type of evolution 
is typical in many cases and was also found by Michtchenko and Ferraz-Mello 
1997 and was called the "fountain pattern". 

The case e0 = 0.16, i'o = 1° of Figure 3a corresponds to ordered motion, as we 
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1 (a):e=0.16, i=17 deg 
eccentricity 

0 A 
40 
~ inclination 

J^ 
0 t=40My|lQ 

(b): e=0.16, i=20 deg 
eccentricity 

60 
- inclination 

t=l.5My 

Fig. 5. The evolution of the eccentricity and the inclination, for a0 = 3.3 AU, e0 = 0.16 
and (a) i0 = IT, (b) to = 20°. 

explained before. We now investigate the effect of increasing the initial inclination. 
We found that for a0 = 3.3 AU and e0 = 0.16, the motion is the same as that 
of Figure 3a for inclinations up to ?o = 16° (Figure 3b). For larger inclinations 
chaotic motion appears, as we show in Figures 5a,b. 

The appearance of chaotic motion as the initial eccentricity increases can be 
explained by making use of the a-e diagram of Figures lb. For i0 < 17° we are 
outside the secondary resonance zone, but as soon as the initial inclination increases 
further, we enter the secondary resonance region and chaotic motion appears. 

3.2. THE TRANSITION FROM THE PLANAR TO THE THREE DIMENSIONAL MOTION 

As we have mentioned before, the introduction of the third dimension brings new 
features to the system and may change dramatically the evolution. We present in 
Figure 6 such a typical case, corresponding to the initial conditions a0 = 3.276AU, 
e0 = 0.32 and i0 = 0° (Figure 6a), IQ = 1° (Figure 6b). In both cases the angles 
were taken as a0 = 0, az0 = 0 and vo = 0. We note that the planar orbit is 
ordered, but as soon as the initial inclination is nonzero, i0 = 1°, chaotic motion 
develops. It is worth mentioning that it is the inclination that starts first to change 
irregularly and increase, while the eccentricity stays at low values, and after a long 
time interval the motion is driven into a chaotic zone and both e and i increase to 
high values. 

3.3. THE EFFECT OF THE INITIAL PHASE 

In all previous cases we have started with initial values of the angles a0 = 0, 
az0 = 0 and VQ - 0. We will keep now all other initial conditions fixed and change 
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1 (a): i=0 deg 
-eccentricity 

mmmrm 
0 t=120My 

(b): i=l deg 

eccentricity 

0 

HINIlhlWmVt" 

t=6My 

Fig. 6. The transition from planar to 3-D motion, ao = 3.276, eo = 0.32 and: (a) io = 0, 
(b) i0 = 1°. 

( a ) : o=0 
eccentricity 

S»*"»"<»H«W"n""*l^"»W"*»»HW«*"«»"W«***" 

0 t=1.2My 

(a) : a=n 
eccentricity 

0 , , t=1.5My 

Fig. 7. The effect on the evolution of the eccentricity of changing the initial value of a. 
a0 - 3.281, e0 = 0.254 and: (a) ao - 0, (b) <r0 = TT. 

the initial value of the angle a. We consider planar motion and we use the initial 
conditions a0 = 3.281 AU, eo = 0.254, i0 = 0°, az0 = 0, VQ = 0 and ao = 0 or 
<70 = 7r. The evolution is shown in Figure 7, where we see that for a0 = 0 we have 
ordered motion but for er0 = TT the motion becomes chaotic. The sensitivity of the 
evolution to the initial values of the angular elements has been also observed by 
Ferraz-Mello and Michtchenko (1997). 

3.4. THE POSITION OF THE SECONDARY RESONANCES 

From the results presented in the previous sections, it became clear that the sec­
ondary resonances play an important role in the long term evolution of an asteroid 
inside the 2:1 mean motion resonance. 

The secondary resonances correspond to commensurable motion of the averaged 
Hamiltonian (3) between the libration of the resonance angle a and the rotation of 
the longitude of perihelion w-w'. These resonances correspond in fact to doubly 
periodic orbits of the original, nonaveraged, system. Inside the 2:1 mean motion 
resonance it is known that there appear the secondary resonances 2:1, 3:1,4:1 and 
5:1. The existence of the secondary resonances and their role in the evolution of 
the system have been explored by Wisdom (1985), Henrard and Lemaitre (1987) 
and Lemaitre and Henrard (1990), using semianalytic methods: In the averaged 
Hamiltonian, the frequency of the libration of the angle a is much larger, in most 
cases, than the frequency of rotation of the longitude of perihelion w. So, a second 
averaging can be performed over the "fast" angle a. The new averaged Hamiltonian 
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Fig. 8. (a) The secondary resonances, (b) trapping into the 5:1 resonance 

contains now all the secondary resonances. 
In the present work we use a different, but equivalent, method to find the 

secondary resonances. We use the mapping (14) and consider a further mapping by 
taking the points of intersection at a = 0 and a < 0. In this way we obtain a two-
dimensional mapping, which we present in the axes e cos(a + v) and e sin(a + v). 
Note that a + v - -w. Since the mapping (14) is discreet, the value of a is 
never equal exactly to 0, and an interpolation would be needed. Since however the 
frequency of a is much larger than the frequency of w, in practice it was enough, 
for the plot, to take the closest value of a to 0. 

The "mapping" of the mapping that we are considering is in fact equivalent 
to the second averaging of the Hamiltonian (3) over the angle a, because by the 
second mapping we eliminate the Vibration of a. 

In Figure 8a we show a typical case of the mapping mentioned above, for the 
initial conditions a0 = 3.298, e0 = 0.122, i0 = 1°, and <JQ = az0 = VQ = 0. 
The secondary resonances 5:1, 4:1, 3:1 and 2:1 are clearly seen as "islands". 
These resonances overlap and thus form a chaotic sea, which makes possible the 
diffusion inside the secondary resonance zone. The same pattern is obtained for all 
other initial conditions inside the secondary resonance zone (Figure 1 a). For special 
initial conditions, we may have a trapping into a secondary resonance, as is shown 
in Figure 8b for the case a0 = 3.298, e0 = 0.115, i0 = 0°,and<70 = az0 = v0 = 0. 

4. Discussion 

A realistic symplectic mapping model has been constructed, which is used as a 
model of the Poincar6 map of the three dimensional restricted three body problem 
Sun-Jupiter-asteroid, valid near the 2:1 mean motion resonance of the asteroid with 
Jupiter. This is a relatively simple model, which contains all the basic resonances 
of the physical system. We used this mapping to study the dynamics inside the 

74 

0.2 

JOHN D. HADHDEMETRJ 

0.0 

.n ? 

^ 
iUflH 

- ^ 

& U , 

5:1 
1 

21 

Ei 

21 -

P*r 

9 L S S I 

V^qEB ^B 

|^E/s : l 

^ * C O S 
1 

0.2 

+ 

c 
• H 
01 

-K 
Q) 

0.0 

a+v) 
n o 

https://doi.org/10.1017/S0252921100072420 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072420


A SYMPLECTIC MAPPING MODEL 75 

2:1 resonance, focusing our attention to the basic features, without being lost in 
unnecessary details. 

Several features of the motion have been made clear. It was demonstrated how 
the third dimension, through the variation of the inclination, plays an important 
role in the evolution of the system. It is the inclination that first starts to behave 
in an irregular way, and this makes, later on, the eccentricity to behave irregularly 
also. In many cases the orbit is regular in the plane, but chaotic motion appears as 
soon as the initial inclination takes a small nonzero value. 

The role played by the secondary resonances in the dynamics of the system 
were made clear. The appearance of chaotic motion inside the secondary resonance 
zone, by the overlap of these resonances, and the slow diffusion of the elements of 
the orbit, is clearly demonstrated by the mapping model. 

The initial phase, as given by the values of the angles a, az and v, plays an 
important role in the evolution of the system. The change from a = 0 to a — -K 
may change the orbit from ordered to chaotic. This is so, because there exist two 
2:1 mean motion resonant periodic orbits, one stable, corresponding to a — 0 and 
one unstable, corresponding to a — ir (Hadjidemetriou and Lemaitre, 1997). In 
several cases, not presented here, it was shown that even in the case where the 
motion is already chaotic for a = 0, the change to o = -K makes the chaotic motion 
much stronger and the effects appear in a much shorter time interval. 

The main aim of the present work is to understand the basic dynamics inside the 
2:1 resonance and not to make a complete exploration of the phase space. However, 
the results obtained throw much light on the evolution inside this resonance and 
can be used as a guide for simulations of the actual physical model. A complete 
exploration will be made in a future work, where the gravitational effect of Saturn 
on the elements of the orbit of Jupiter will be introduced in the model. 
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