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Abstract

Let {φ j(z) : j ≥ 1} be an orthonormal basis of Hecke–Maass cusp forms with Laplace eigenvalue 1/4 + t2
j .

Let λ j(n) be the nth Fourier coefficient of φ j and d3(n) the divisor function of order three. In this paper,
by the circle method and the Voronoi summation formula, the average value of the shifted convolution
sum for d3(n) and λ j(n) is considered, leading to the estimate∑

n≤X

d3(n)λ j(n − 1)� X29/30+ε,

where the implied constant depends only on t j and ε.
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1. Introduction

Let Γ = SL2(Z) be the modular group and let H denote the upper half-plane. Recall
that the non-Euclidean Laplace operator

∆ = −y2
(
∂2

∂x2 +
∂2

∂y2

)
acts on L2(Γ\H) and has a spectral decomposition

L2(Γ\H) = C ⊕ C(Γ\H) ⊕ E(Γ\H).

Here, C is the space of constant functions, C(Γ\H) the space spanned by Maass cusp
forms and E(Γ\H) the space spanned by the incomplete Eisenstein series.

Let U = {φ j} j≥1 be an orthonormal basis of Hecke–Maass forms with Laplace
eigenvalues 1/4 + t2

j in the space C(Γ\H). Here, t1, t2, . . . are real parameters which
satisfy

1
4

+ t2
j ≥

3π2

2
.
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Every φ j has a Fourier expansion

φ j(z) =
√

y
∑
n,0

ρ j(1)λ j(n)Kit j (2π|y|)e(x),

where ρ j(1) , 0, λ j(n) is the eigenvalue of the nth Hecke operator Tn, e(x) = e2πix and
Ks(y) is the K-Bessel function. Recall that λ j(n) satisfies the multiplicative property:

λ j(m)λ j(n) =
∑

d|(m,n)

λ j

(mn
d2

)
.

Furthermore, towards the Ramanujan conjecture, Kim and Sarnak [4] proved that

λ j(n)� n7/64+ε.

By the Rankin–Selberg theory, it is well known that∑
n≤x

|λ j(n)|2 �t j x. (1.1)

Let d3(n) be the divisor function of order three, that is, the coefficient of n−s in the
Dirichlet series for ζ3(s). In this paper, we mainly focus on the shifted convolution
sum of d3(n) and λ j(n). We define

S(φ j, x) =
∑

x≤n≤2x

d3(n)λ j(n − 1).

By the Voronoi summation formula for d3(n) and λ j(n) and the circle method, we get
the following result, which generalises and improves the result of Munshi [6], who
considered the same problem associated with the holomorphic Hecke eigenform.

Theorem 1.1. We have
S(φ j, X)� X29/30+ε,

where the implied constant depends only on t j and ε.

For the holomorphic Hecke eigenform f (z) corresponding to the nth Fourier
coefficient λ f (n), Pitt [8] considered the summation

Ψ( f , x) =
∑
n≤x

d3(n)λ f (n − 1).

By analytical continuation of the Dirichlet series

Φ( f , s) =

∞∑
n=1

d3(n)λ f (n − 1)
ns ,

he proved that
Ψ( f , x)� x71/72+ε.
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Recently, with the help of an idea based on shifted convolution sums for GL(3) ×
GL(2) [7], Munshi [6] improved the upper bound and obtained

Ψ( f , X)� X34/35+ε.

Note that our improved bound is also valid for the holomorphic Hecke eigenform.
A new difficulty we meet in proving Theorem 1.1 is that the Ramanujan conjecture
for λ j(n) has not yet been proved. This problem is circumvented by using the
estimate (1.1).

2. Outline of the proof

To prove the main theorem, we first give three lemmas. The first one is the Voronoi
summation formula for λ j(n) given by Kowalski et al. [5], the second is the Voronoi
summation formula for d3(n) proved by Ivić [2] and the third is a variant Jutila’s
version of the circle method.

Lemma 2.1. Let q be a positive integer and a an integer with (a, q) = 1. Let g be a
compactly supported smooth function on R+. Then

∞∑
m=1

λ j(m)e
(am

q

)
g(m) =

1
q

∞∑
m=1

λ j(m)e
(
−

ām
q

)
G1

( m
q2

)
+

1
q

∞∑
m=1

λ j(m)e
( ām

q

)
G2

( m
q2

)
,

(2.1)
where

G1(y) =

∫ ∞

0
g(x)Jφ j (4π

√
xy) dx, G2(y) =

∫ ∞

0
g(x)Kφ j (4π

√
xy) dx

with

Jφ j (x) =
−π

sin πit j
(J2it j (x) − J−2it j (x)), Kφ j (x) = 4εφ j cosh(πt j)K2it j (x)

and aā ≡ 1 (mod q) and εφ j = 1 or −1 according as φ j is even or odd.

If g is supported in [AY, BY] (with 0 < A < B), satisfying ykg(k)(y)�k 1, then, by
the asymptotic expansions of Jν(z) and Kν(z), the sums over m on the right-hand side
of (2.1) can be restricted to m� q2(qY)ε/Y . By partial integration, the contribution
from the tails m � q2(qY)ε/Y is negligibly small. Trivially, we have the bound
G1(m/q2),G2(m/q2)� Y .

A similar Voronoi-type summation formula for the divisor function d3(n) is as
follows.

Lemma 2.2. Let f be a compactly supported smooth function on R+ and f̃ (s) =∫ ∞
0 f (x)xs dx. Define

F±(y) =
1

2πi

∫
( 1

8 )
(π3y)−s Γ3( 1±1+2s

4 )

Γ3( 3±1−2s
4 )

f̃ (−s) ds.
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Then

∞∑
n=1

d3(n)e
(an

q

)
f (n) =

1
q

∫ ∞

0
P(log y, q) f (y) dy

+
π3/2

2q3

∑
±

∞∑
n=1

D3,±(a, q; n)F±
( n
q3

)
, (2.2)

where P(y, q) = A0(q)y2 + A1(q)y + A2(q) is a quadratic polynomial whose coefficients
depend only on q and satisfy the bound |Ai(q)| � qε, and the D3,±(a, q; n) are given by

∑
n1n2n3=n

q∑∑∑
b,c,d=1

{
e
(bn1 + cn2 + dn3 + abcd

q

)
∓ e

(bn1 + cn2 + dn3 − abcd
q

)}
.

Suppose that f is supported in [AX, BX] and xk f (k)(x)�k Hk. Shifting the line
of integration for F±(y) to the right and integrating f̃ (s) by parts, we see that the
sums over n on the right-hand side of (2.2) can be restricted to n� q3H(qX)ε/X. The
contribution from the tail n� q3H(qX)ε/X is negligibly small. For smaller n, we shift
the contour left to σ = ε and we obtain the bounds F±(y)� X and ykF(k)

± (y)� XH
(k ≥ 1) .

For any set S ⊂ R, we use IS to denote the indicator function of S , defined by
IS (x) = 1 for x ∈ S and 0 otherwise. Let Q be a subset of [1,Q] with integer elements
(which we call the set of moduli) and let δ be a positive real number in the range
Q−2 � δ� Q−1. Then we define the function

ĨQ,δ(x) =
1

2δL

∑
q∈Q

∑∗

a mod q

I[(a/q)−δ,(a/q)+δ](x),

which is an approximation for I[0,1]. Here, L =
∑

q∈Q φ(q) and the star over the sum
means that (a, q) = 1. For ĨQ,δ(x), Jutila [3] proved the following result.

Lemma 2.3. We have ∫ 1

0
|1 − ĨQ,δ(x)|2 dx�

Q2+ε

δL2 .

Proof of Theorem 1.1. Let ∆ > 1 and let 0 ≤ W(x) ≤ 1 be a smooth function of
compact support on [1, 2], which is identically equal to 1 on [1 + 1/∆, 2 − 1/∆] and
satisfies W (k)(x)�k ∆k for k ≥ 0. Clearly,

S(φ j, X) =

∞∑
n=1

d3(n)λ j(n − 1)W
( n

X

)
+ O

(X1+ε

∆
+

X4/5+ε

∆1/2

)
.
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Let V(x) be a smooth function supported in [1/2, 3] satisfying V(x) = 1 for x ∈
[3/4, 5/2], V ( j)(x)� j 1, and put Y = X. Then

D : =

∞∑
n=1

d3(n)λ j(n − 1)W
( n

X

)
=

∞∑
n=1

∞∑
m=1

d3(n)λ j(m)W
( n

X

)
V
(m

Y

)
δ(n − 1,m)

=

∫ 1

0
e(−x)

∞∑
n=1

d3(n)e(xn)W
( n

X

) ∞∑
m=1

λ j(m)e(−xm)V
(m

Y

)
dx,

where δ(m, n) = 1 if m = n and 0 otherwise. Suppose that |Q| � Q1−ε, so that

L =
∑
q∈Q

φ(q)�
∑
q∈Q

q
log log q

� Q2−ε.

Let δ = Y−1 and define

D̃ :=
∫ 1

0
ĨQ,δ(x)e(−x)

∞∑
n=1

d3(n)e(xn)W
( n

X

) ∞∑
m=1

λ j(m)e(−xm)V
(m

Y

)
dx.

Thus,

D̃ =
1
2δ

∫ δ

−δ

D̃(α)e(−α) dα,

where

D̃(α) =
1
L

∑
q∈Q

∑∗

a mod q

e
(
−

a
q

) ∞∑
n=1

d3(n)e
(an

q

)
e(αn)W

( n
X

)
×

∞∑
m=1

λ j(m)e
(
−

am
q

)
e(−αm)V

(m
Y

)
. (2.3)

Note that
D = D̃ + O(|D − D̃|)

and that the error term satisfies

|D − D̃| �
∫ 1

0

∣∣∣∣∣ ∞∑
n=1

d3(n)e(xn)W
( n

X

)∣∣∣∣∣ ∣∣∣∣∣ ∞∑
m=1

λ j(m)e(−xm)V
(m

Y

)∣∣∣∣∣|1 − ĨQ,δ(x)| dx

� Y (1/2)+ε
∫ 1

0

∣∣∣∣∣ ∞∑
n=1

d3(n)e(xn)W
( n

X

)∣∣∣∣∣|1 − ĨQ,δ(x)| dx,

where we have used the bound (see Pitt [9])
∞∑

m=1

λ j(m)e(−xm)V
(m

Y

)
� Y1/2+ε.

By Cauchy’s inequality and Lemma 2.3,∫ 1

0

∣∣∣∣∣ ∞∑
n=1

d3(n)e(xn)W
( n

X

)∣∣∣∣∣|1 − ĨQ,δ(x)| dx� X1/2+εY1/2+εQ2ε

Q
,
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where we have used∫ 1

0

∣∣∣∣∣ ∞∑
n=1

d3(n)e(xn)W
( n

X

)∣∣∣∣∣2 dx =

∞∑
n=1

d2
3(n)W2

( n
X

)
� X1+ε.

Taking Q = YX−(1/2)+γ,∆ = Xγ for any γ > 0,

S(φ j, x) = D̃ + O(X1−γ+ε + X4/5−γ/2+ε).

For D̃, we have the following result, which will be proved in the next section.

Proposition 2.4. For γ ≤ 1
30 ,

D̃� X9/10+2γ+ε.

Hence, taking γ = 1
30 , we finally complete the proof. �

3. Proof of Proposition 2.4

Let
g(y) = V

( y
Y

)
e(−αy) and f (x) = W

( x
X

)
e(αx).

Inserting (2.1) and (2.2) into (2.3) gives exactly six terms. In fact, by the properties of
the functions G1,G2,D3,±, F± given by Lemmas 2.1 and 2.2, it suffices to investigate
the following two summations:

D̃1(α) =
1
L

∑
q∈Q

1
q2

∞∑
m=1

λ j(m)S (1,m; q)G1

( m
q2

) ∫ ∞

0
P(log x, q) f (x) dx

and

D̃2(α) =
π3/2

2L

∑
q∈Q

1
q4

∞∑
m=1

λ j(m)
∞∑

n=1

S?(m, n; q)G1

( m
q2

)
F+

( n
q3

)
,

where S (1,m; q) is the Kloosterman sum and

S?(m, n; q) :=
∑∗

a (mod q)

e
(
−a + ām

q

) ∑
n1n2n3=n

q∑∑∑
b,c,d=1

e
(bn1 + cn2 + dn3 + abcd

q

)
.

To estimate D̃1(α), D̃2(α), we choose Q to be the product set Q1Q2, where

Qi = {qi ∈ [Qi, 2Qi] | qi is a prime}, i = 1, 2.

Here, Q1 ∩ Q2 = ∅ and Q1, Q2 satisfy Q1Q2 = Q, which will be chosen later.
In addition, the construction implies that L � Q2−ε. For D̃1(α), recall that the
contribution of m� q2(qY)ε/Y is negligible, so that

D̃1(α)�
1
L

∑
q∈Q

1
q2

∑
m�(Q2Yε/Y)

|λ j(m)|q1/2d(q)YX1+εqε + X−B
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for any B > 0, where we have used the Weil bound for the Kloosterman sum, namely,

S (1,m; q)� q1/2.

By Cauchy’s inequality, (1.1) and the choice of Q,

D̃1(α)�
X1+ε

√
Q
� X3/4+ε. (3.1)

For D̃2(α), we firstly estimate S ?(m, n; q). Assume that q = q1q2 with qi ∈ Qi. Then

S ?(m, n; q) = S ∗(m, n, q2; q1)S ∗(m, n, q1; q2)

with

S∗(m, n, q2; q1) =

q1−1∑
a=1

e
(
−q2

3a + q2ām
q1

) ∑
n1n2n3=n

q1∑∑∑
b,c,d=1

e
(bn1 + cn2 + dn3 + abcd

q1

)
.

To compute S∗(m, n, q2; q1), we consider two cases: q1 | n and q1 - n. For the first case,
suppose that q1 | n1; then

q1∑∑∑
b,c,d=1

e
(bn1 + cn2 + dn3 + abcd

q1

)
= q1

q1∑
d=1

e
(dn3

q1

)
+ q1

q1∑
c=1

e
(cn2

q1

)
− q1

� q1(q1, n2n3)

by an elementary argument. Hence,

S∗(m, q1n, q2; q1)� q3/2
1 (q1, n)d3(n).

For q1 - n, the sum over b, c, d is

q1

q1−1∑
b=1

e
( b
q1

) q1−1∑
c=1

n̄abc≡−1(mod q1)

e
( c
q1

)
= q1

q1−1∑
b=1

e
( b
q1

)
e
(
−nab

q1

)
= S (1,−na; q1).

Thus,

S∗(m, n, q2; q1) = d3(n)q1

q1−1∑
a=1

e
(
−q2

3a + q2ām
q1

)
S (1,−na; q1)� d3(n)q2

1,

where we have used Corollary 4.3 of Adolphson and Sperber [1] to estimate the inner
sum. Similar bounds can be obtained for S∗(m, n, q2; q2). Therefore,

S ?(m, n; q) � q3/2q1/2
2

(
q1,

n
q1

)
d2

3(n) for q1|n, q2 - n,

S ?(m, n; q) � q3/2q1/2
1

(
q2,

n
q2

)
d2

3(n) for q1 - n, q2|n,

S ?(m, n; q) � q3/2
(
q1,

n
q1

)(
q2,

n
q2

)
d2

3(n) for q1|n, q2|n.
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Recall that the contribution of n� q3H(qX)ε/X is negligible, so it suffices to consider

1
L

∑
q∈Q

1
Q4

∑
m�Q2Yε/Y

|λ j(m)|
∑

n�Q3HXε/min{Q1,Q2}X

Q3/2
√

max{Q1,Q2}XY

for (n, q) , 1. Cauchy’s inequality and (1.1) lead to the estimate

O
( Q2HXε

min{Q1,Q2}
3/2

)
.

So, we obtain

D̃2(α) =
π3/2

2L

∑
q∈Q

1
q3

M∑
m=1

λ j(m)
N∑

n=1
(n,q)=1

d2
3(n)S](m, n; q)G1

( m
q2

)
F+

( n
q3

)

+ O
( X1+3γ+ε

min{Q1,Q2}
3/2

)
,

where M = Q2+εY−1 = X2γ+ε,N = Q3+εHX−1 = X1/2+4γ+ε and

S](m, n; q) =
∑∗

a (mod q)

e
(
−a + ām

q

)
S (1,−na; q).

Following the argument used above for S ?(m, n; q), we can get an exact bound for
S](m, n; q) for (q, n) , 1. So, the restriction (n, q) = 1 can be removed with the error
term unchanged. Define

D̃3(α) =
π3/2

2L

∑
q∈Q

1
q3

M∑
m=1

λ j(m)
N∑

n=1

d2
3(n)S](m, n; q)G1

( m
q2

)
F+

( n
q3

)
.

By Cauchy’s inequality,

D̃3(α)�
M1/2N1/2

Q5

∑
q2∈Q2

D̃4(α)1/2,

where we have used the definition of L,Q and

D̃4(α) =

M∑
m=1

N∑
n=1

∣∣∣∣∣ ∑
q1∈Q1

S](m, n; q1q2)G1

( m
q2

1q2
2

)
F+

( n
q3

1q3
2

)∣∣∣∣∣2.
Let h be a nonnegative smooth function on (0,∞), supported on [1/2, 2N], and
satisfying h(x) = 1 for x ∈ [1, N] and xkh(k)(x)� 1. By expanding the square for the
sum over q1,

D̃4(α)�
M∑

m=1

∑
q1∈Q1

∑
q̃1∈Q1

G1

( m
q2

1q2
2

)
Ḡ1

( m
q̃2

1q2
2

)
×

∑
n∈Z

h(n)S](m, n; q1q2)S̄](m, n; q̃1q2)F+

( n
q3

1q3
2

)
F̄+

( n
q̃3

1q3
2

)
.
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For the sum over n, we use the Poisson summation formula with modulus q1q̃1q2 to
get

D̃4(α) �
1
q2

M∑
m=1

∑
q1∈Q1

∑
q̃1∈Q1

1
q1q̃1

G1

( m
q2

1q2
2

)
Ḡ1

( m
q̃2

1q2
2

)
×

∑
n∈Z

T (m, n; q1, q̃1, q2)I(n; q1, q̃1, q2),

where

T (m, n; q1, q̃1, q2) =
∑

a (mod q1q̃1q2)

S](m, a; q1q2)S̄](m, a; q̃1q2)e
( an
q1q̃1q2

)
and

I(n; q1, q̃1, q2) =

∫
R

h(x)F+

( x
q3

1q3
2

)
F̄+

( x
q̃3

1q3
2

)
e
(
−

nx
q1q̃1q2

)
dx.

For |n| , 0,

I(n; q1, q̃1, q2)�
X2Hq1q̃1q2

|n|
by using the bounds F+(y)� X, yF

′

+(y)� XH and partial integration. Trivially,

I(0; q1, q̃1, q2)� X2N.

For T (m, n; q1, q̃1, q2), following the argument of Lemmas 10 and 11 of Munshi [7],
we arrive at the following result.

Lemma 3.1. For q1 , q̃1,

T (m, n; q1, q̃1, q2) =

O
(
q3/2

1 q̃3/2
1 q5/2

2 (n, q2)1/2
)

if (n, q1q̃1) = 1,

0 otherwise.
For q1 = q̃1,

T (m, n; q1, q1, q2) =

{
O(q5/2

1 q5/2
2 (n/q1, q2)1/2) if q1|n,

0 otherwise.

Using these bounds for T (m, n; q1, q̃1, q2),I(m, n; q1, q̃1, q2),

D̃4(α)� X2Y2
∑

q1∈Q1

∑
q̃1∈Q1

{ ∑
1≤|n|≤X2015

H
|n|
|T (m, n; q1, q̃1, q2)| +

N
QQ1

|T (m, 0; q1, q̃1, q2)|
}

+ X−B

� X2+εY2M(HQ5
1Q5/2

2 + NQ2),

where B > 0 is arbitrarily large. Finally,

D̃2(α)�
X1+εY MN1/2Q2

Q5

(
H1/2Q5/4

1 Q5/4 + N1/2Q
)

+
X1+3γ+ε

min{Q1,Q2}
3/2 � X9/10+2γ+ε

(3.2)

provided that Q1 = X1/10+γ, Q2 = X2/5, γ ≤ 1
30 . Combining the estimates (3.1) and

(3.2), we finally complete the proof. �
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expresses his thanks to the Institute for the pleasant working conditions.

References
[1] A. Adolphson and S. Sperber, ‘Exponential sums and Newton polyhedra, cohomology and

estimates’, Ann. of Math. (2) 130 (1989), 367–406.
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