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STRUCTURE OF THE KERNELS ASSOCIATED WITH
INVARIANT SUBSPACES OF THE BERGMAN SHIFT

GEORGE CHAILOS

In this article we consider index 1 invariant subspaces M of the operator of multipli-
cation by C(z) = z, M^, on the Bergman space L^{p) of the unit disc D. It turns out
that there is a positive sesquianalytic kernel l\ defined o n l x i which determines M
uniquely. Here we study the boundary behaviour and some of the basic properties of
the kernel l\. Among other things, we show that if the lower zero set of M, Z_{M),
is nonempty, the kernel l\ for fixed A 6 ID has a meromorphic continuation across
T\2[(M), where T is the unit circle. Furthermore we consider some special types of
kernels l\ and by studying their structure we obtain information for the invariant
subspaces related to them. Lastly, and after introducing the general vector valued

m
setting, we discuss some analogous results for the case of 0 L%(1B)), where m is a

i=i
pos i t ive in teger .

1 . I N T R O D U C T I O N

L e t k b e a p o s i t i v e s e s q u i a n a l y t i c k e r n e l o n ID; t h a t i s for e a c h A e D t h e f u n c t i o n
n

k\ is an analytic function on D such that £) (kSjk^Xj) ^ 0 for all n 6 N, a ^ e C , Xj
e D, i , j e { l . . . n ) . It is well known that every positive sesquianalytic kernel k on D is
the reproducing kernel for a unique Hilbert space %(k) of analytic functions on D (see
[4]). In particular, if (,)w(fc) denotes the Hilbert space inner product, /(A) — (f,k\)n{k)
for every / € H(k), X € D.

Now denote by M^ the multiplication operator associated with the identity function
£(z) = z, z € D. Let also Lat(Mc,'H(A;)) be the lattice of the invariant subspaces of
(M(, %{k)). Set M 0 QM = M n (C^0 x and define the index of M to be the dimension
of M 0 CM. That is ind M — dim M e (,M. Furthermore for a subset 5 of H(k) write
[5] for the smallest invariant subspace which contains all of S. For a single nonzero
function / € %{k) write [/] for [{/}]• Such invariant subspaces are called cyclic and a
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446 G. Chailos [2]

function / € H(k) such that [/] = H is called a cyclic vector in /H{k). In this article we
are interested in the case of the classical Bergman space on the unit disc D; that is the
space L\{p) of all analytic functions on D that are square integrable with respect to the
Lebesque area measure on O. Suppose that M € Lat(M^, L^(D)), ind M = 1, and that G
is a unit vector in MQ(,M. Since M = [G] (see [3]) it is elementary to show that M/G is
the closure of the analytic polynomials in Z/J(|G|2d,4), where A is the normalised Lebesque
measure on the unit disc. Moreover, it is not hard to see that the point evaluations are
bounded on M/G, and hence M/G has a reproducing kernel which we denote by k%.
If k\(z) denotes the reproducing kernel for the Bergman space and if PM denotes the
projection onto M, then it is elementary to show that kf{z) = (PMk\(z)) / (G(\)G(z)).

• It is well known (see Theorem 9.5 [7]) that there is a positive sesquianalytic kernel I™
defined o n D x D such that

and (see [5] or for a more general result see Remark 3.3) that 1% determines the invariant
subspace M uniquely. We call l^ the associated kernel for M and if there is no ambiguity
we exclude the superscript in I™.

Since the kernel l^ defines the subspace M uniquely, it seems natural to ask about
the structural properties of l$f and relate them to common properties of the functions
in M. In this article we study the boundary behaviour of I™ and some of its proper-
ties. Moreover we consider the structure of certain types of kernels l$f and we provide
information for the structure of the cyclic vectors in M.

Now we introduce the appropriate notation and some definitions which are essential
for the development of this article. Let C^, = CU {oo} and De = C ^ O , where D is the
unit disc. Denote by T the unit circle and given a function / € L2

a{&), define its lower
zero set, Z_(f), to consist of all actual zeros of / inside D, and all points A on T for which
liminf \f{z)\ = 0. Extend this notion to collection of functions S in L2

a{B) by declaring
z—>A, z€lJ '

Z(S) = n{Z(f) • f e S}.
DEFINITION 1.1: Suppose that E denotes an open arc or a union of open arcs on

T. We say that a meromorphic function / o n D has a meromorphic continuation in B>e

across E, if there is a neighbourhood V of E and a meromorphic function F defined on
De U V such that F(z) = f(z) for every zeVnB.

It is worthwhile to note that whenever a meromorphic continuation exists, it is
unique. Additionally we assume that T\Z(Af) is nonempty.

In our first result (see Corollary 2.7) we show that the kernel function l^f for
fixed A € P has a meromorphic continuation across T\Z_(M). Our next result (see
Theorem 2.8) considers the boundary behaviour of the kernel l\{z). Particularly we
show,
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[3] Structure of kernels 447

THEOREM 1 . 2 . Let V be an open subset of C such that V n T ^ 0. If there is
a nonzero element of M which extends to be analytic in V, then the kernel I™ satisfies
the following boundary conditions:

(i) lim(l - |A|2/A(A))|G(A)|* = 1 for every ( G
A-+£

(ii) lim ^- [(1 - Xzlx(z))G{X)G(z)\ I = 0 for every C 6 V n T,
A—>£ £/>Z I- J I z = A

where G is a unit cyclic vector in M.

Moreover, in Theorem 2.8 we prove,

THEOREM 1 . 3 . Suppose that a given positive kernel l\(z) o n D x D is the kernel
function which appears in the expression for the reproducing kernel of M/G for some
nonzero index 1 invariant subspace M with T \Z(M) ^ 0. Then G is the unique (up to
a constant unit multiple) solution of

(i) lim(l - |A|2/A(A)) |G(A)|2 = 1 for every C 6 T \Z(M);

(ii) lim | - [(1 - AzlA(z))G(A)G(z)l I = 0 for every C € T\Z(Af).
A—•£ 0Z L J I z=A

Furthermore we consider certain types of kernels l%*(z) and we obtain information
for M and its cyclic vectors. In Theorem 2.13 we show,

THEOREM 1 . 4 . If there is a constant c € (0,1) such that lim /A(A) < c < 1
for every ( € T, then any unit cyclic vector G factors as G(z) = B(z)F(z), where B is a
Blaschke product, which is a Suite product of interpolating Blaschke products, and F(z)
is an outer function which is bounded above and below.

Our next result considers rotationally invariant sesquianalytic kernels o n i x D , and
in Theorem 2.17 we prove

THEOREM 1 . 5 . Suppose that l\(z) is a rotationally invariant sesquianalytic ker-
nel on D x D. Then the following holds: k%(z) = (l — \zlx{z))k\(z) is a reproducing
kernel for M/G, where M e Lat(Mf,L

2(D)), indM = 1 with G a unit cyclic vector in
M, if and only if lx{z) = k/{k + 1) for some k € Z+ U {0}.

In the last section we set V to be a separable Hilbert space and 7i(k) to be a
Hilbert space with reproducing kernel A;. We consider H{k,T>), which is the space of 23-
valued H(k) functions. After discussing this general setting, one easily concludes that an
analogous result as in (*) holds. In this sense, and in contrast with the above theorem,
where V is C, we show that if k is the Bergman kernel and if V is C2, then for all

2

c € [0,1), lx(z)=c is an associated kernel for some index 1 invariant subspace of 0 L 2 ( D )
(see Theorem 3.5).
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448 G. Chailos [4]

2. SOME PROPERTIES AND THE BOUNDARY BEHAVIOUR OF THE KERNELS

In this section we let M € Lat(Mc,Z,2(D)), indAf = 1 and T\Z(M) ^ 0 and
with G we denote any unit cyclic vector in M. First we show that the kernel 1% has
a meromorphic continuation in De across T\Z_(M), and then we study its boundary
behaviour. In order to show our main results we need the following facts. The first of
them is due to Hedenmalm (see [6, lemma 1.4]).

LEMMA 2 . 1 . T\Z_(M) ^ 0 if and only if M contains a (nonzero) function which
extends to be analytic in a neighbourhood V of a point Co € T.

The main idea of the following lemma is due to Aleman and Richter (see [1,
Lemma 3.1]).

LEMMA 2 . 2 . Let V be an open subset of C such that V n T ^ 0. If there is a
nonzero element f of M which extends to be analytic in V, then any cyclic vector G in
M and every g € M x have a meromorphic continuation in De across V n T.

PROOF: Suppose that g € M x and fix a point Co € V n T . We use standard Duality
Theory, see [2, Section 5], to find an analytic function ^ with JD |*' |2 dA < oo such that
(ztf (*))' = g(z), z e D.

An easy calculation with power series leads to:

*(2.3) lim / h(rOWO^r- = / h(*)(**(z))'dA, h e Z£(D).
r-H- Jo Zn JD

Without loss of generality we assume /(Co) ¥" 0- Indeed, if /(Co) = 0, one shows
easily that [f/(z - Q] = [/].

By (2.3), for A in some ©-neighbourhood of Co, we have

_
Note that 1/(1 - Xz) is the Szego kernel, thus

Hence,

(2.4) /(1/A)«(A) = - / ffMX) gJz)dA.
JD 1 — Xz

For A € V, write
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[5] Structure of kernels 449

Since / extends to be analytic in a neighbourhood V of £,, then (2.5) implies that F
has a meromorphic continuation in De across V D D. Since F = f on V n D and since
g(z) = ( z ^ z ) ) , z € B>, then g also has a meromorphic continuation in B>e across VC\T.
Now observe that any cyclic vector G of M is an element of {(,M)X. Since indM = 1, it
is easy to see that

(2.6) ( C ) (
\M± V {zp} if 0 e Z(M), with multiplicity p,

where for a set S, V{5} denotes the closed linear span of 5. Hence, G has also a
meromorphic continuation in De across V C\T. D

Considering the above, it is not hard to show the following

COROLLARY 2 . 7 . T ie kernel function If, for fixed A € O, has a meromorphic
continuation in De across T\Z_(M).

P R O O F : Write PM — Id- PMx, where Id is the identity operator on Ll(B), and use

(*) to get lx(z) - (l - (1 - (1 - Xz)2PMxkx(z))/(G(z)GlXJ)y/Xz.

Now observe that PM±k\(z) is a function in ML\ thus the result follows from Lemma
2.2 and Lemma 2.1. D

Next we consider the boundary behaviour of the associated kernel l\, and we relate
it with the cyclic vectors in M.

THEOREM 2 . 8 . Let V be an open subset ofC such that V f~l T ^ 0. If there is
a nonzero element f of M which extends to be analytic in V, then the kernel l\ satisfies
the following boundary conditions:

(i) l im(l- |A|2/A(A)) |G(A)|2 = 1 for every ( €
A—•£

(ii) lim ^- [(1 - Xzlx{z))GjXJG(z)\ I = 0 for every
A—tQ OZ L J I z=A

In the case where G is continuous on D, condition (i) was proved in [7, Theorem
9.8]. It is also worthwhile to observe that by Lemma 2.1 the above conditions hold on
T\Z(M).

P R O O F : Fix a point ( o e V n T . By (*),

and

d_( PMi.kx{z)\ _ PM±kx(z) 0 _
dzV k(z) ) - (k(zW dz*x{Z)
dz v kx(z) J (kx(z)y dz M ' kx(z)
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Since

= hm( l - |A | 2 ) 2 = 0,

= lim -2A(l - |A|2) = 0,

to conclude the proof of the theorem, it is enough to show that PMi.k\{\) and —

PM±k\(z)\ are bounded as A approaches („, A 6 V n D. The proof depends on
lz=A

Lemma 2.2 and more precisely on equation (2.5).
In what follows, C is a positive constant depending on V and it may vary depending

on the estimates. We denote by || • || the norm in L%(D). We write equation (2.5) as

z - I/A A /(I/A) ,/B\K Z - I/A

where 5 € M"1-, A € V and g{z) = (2:^(2))', z £ D . In addition, there is a compactly
contained neighbourhood V of £o inside V where we may suppose that / has no zeros.
Suppose that f/i is any neighbourhood of (0 which is compactly supported in V and U2

is another neighbourhood of Co which is compactly supported in U\. If (I/A) € C/2, then

I z-l/X l'"v "

because (f(z) - /((l/A)) )/(z — (l/A)) is uniformly bounded for z e £A and for (l/A)
€ U2. Furthermore, _

/ - / ( l / A ) 1 , - 7 - T I , , .

JO\Ui z - l / A

because \z — (l/A)| is bounded away from 0 and |/(1/A)| remains bounded.

Suppose that U = {A <= C : (l/A) e U2}. Then \F{\)\ < C||ff|| for all A € U. Since
F(z) — ̂ {z) for z 6 D> n V, \z^(z)\ ^ C||5|| for every z € D D U. We now apply the
Cauchy integral formula for the derivatives and we obtain

(2.9) \g(z)\ 5

(2.10) \g'{z)\ ••

where C depends only on the neighbourhood V and the function / , but not on g € Mx.

If we choose g to be PM±k\, considering PM±kx as a function of z, the proof is

complete. Indeed, |PMxfcA(A)| = ||PMxA;A|2, A 6 D, and hence by (2.9), | | iV* A | | ^ C

for every A G D n U.

In view of (2.9) and (2.10), |PM±*A(A)| ^ C and \^-PM±kx{z) _^ |< C, for
A e D n U, with C depending only on the neighbourhood V and the function / . That is
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[7] Structure of kernels 451

the end the proof, since Co is an arbitrary point i n T n V and U is a neighbourhood of

Co- D

LEMMA 2 . 1 1 . Suppose that r\(z) is a positive definite sesquianalytic kernel on
D x D and / is an open set on T such that lim rA(A) is defined for C € I and

A-+C

(a ) r c (C) < 1 for every C € / ,

(8) lim -^-( l — AzrA(z)) exists for every C £ I.
\->(ldz v ' Z=AJ

Then there is at most one analytic function G (modulo a unit constant multiple) on
D such that
(A) l im( l - |A | 2 r A (A) ) |G(A) | 2 = l (el,

(B) lim^[(l-A^rA(z))G(A)G(Z)]|2=A-0 C 6 J.

P R O O F : Suppose that Gt, i = 1,2 are two analytic functions on D which satisfy
and (B). From (a) and (A) we conclude that |Gi(C)[ = lim|Gj(A)| exists on I,

|Gi(C)| = |G2(C)|, C G J- We apply (a) , (£) and (A), on (£ ) and we get that

exists on /, and

Now by setting Ht(z) = (G'i(z))/(Gi(z)), z e D, i = 1,2, we conclude eas-
ily that Hi(C) = H2((), C € / . Since if,-, i - 1,2, are meromorphic in D, ^ ( 2 )
= fyiz), for every 2 G D. Now choose an open simply connected region U in D such
that U n Z(Gj) n Z(G-) = 0, i = 1,2. In £/, since Hj is the logarithmic derivative of G{,
[log Gi(z)] ' = [log G2(z)] ' , 2 € ( / . This leads to GY(z) = kG2{z), z € U,k € C with
|/c| = 1, hence Gi(z) = G2(z) for all z € D, modulo a unit constant multiple. D

Now it is not hard to show the following theorem.

THEOREM 2 . 1 2 . Suppose that a given positive kernel l\(z) on i x D is the
kernel function which appears in the expression for the reproducing kernel of M/G for
some nonzero index 1 invariant subspace M with T\Z_(M) ^ 0. Then a unit cyclic vector
G is the unique (modulo a unit constant multiple) solution of (A) and (B) in the above
lemma with I = T \ Z ( M ) .
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452 G. Chailos [8]

P R O O F : Since there is a cyclic vector G such that k%(z) = (l — \zl\(z))k\(z) and
T\Z_(M) ^ 0, in light of Theorem 2.8, it is not hard to prove that l\(z) satisfies (a) and
(/3) of the above lemma; hence G satisfies (A) and (B). The above lemma concludes the
proof. D

In the rest of this section by studying certain types of kernels l^(z) we obtain
information for M and its cyclic vectors.

THEOREM 2 . 1 3 . If there is a constant c G (0,1) such that fim ZA(A) ^ c < 1

for every £ G T, then any cyclic vector G factors as G(z) — B{z)F{z), where B is a
Blaschke product, which is a finite product of interpolating Blaschke products, and F(z)
is an outer function which is bounded above and below.

PROOF: We define the linear transformation T : L\ i-> M/G on the finite lin-
ear combinations of the reproducing kernels of L2JJ#) by Tk\(z) = k^(z) = (l
— \zl\(z))k\(z), A, z G D. Note that we have T densely defined with dense range (since
finite linear combinations of kernels k\ are dense in L\, and finite linear combinations
of kernels k% are dense in M/G). Consequently, since Xzl\(z)k\(z) is positive definite,

for every n e N and A* 6 D>, a* € C, 1 < i < n, and hence
i=l || i=l

71! < 1- _
If we write \zl\(z) — X) fnWfn(z) for some H°° functions /„ , n G N, and if we

use the hypothesis and the subharmonicity of X) | /n( z) | > w e obtain X^ | /n(2) | ^ c < 1

for every z G ED. Since ||/n||oo ^ 1 for every n G N, it is clear that M/n:L^(D) 1-4 L2
a{p)

is bounded. Furthermore, one has M*jnk\ = fn(^)k\, A G D. By setting L — J2 MfnM]n

and considering the above, it is elementary to show that the adjoint of T, namely T", is
the inclusion map and that T*T = I - L. Furthermore, if h G Lj(D),

= sup ^2 < M}nh, M'Jnh >^ sup / ^2 \fn\
2 \h\2dA < c < 1.

This implies that T'T is invertible, and thus T is bounded below. Additionally,
cl range T = M/G, and now using well known results from Functional Analysis,
it is not hard to conclude that T is invertible. Since T* is also invertible, it is
possible to choose some positive numbers Ci,c2, such that CI||<7/G||G < ||T*(<7/G)||
^ C2 | |5 /G | |G for every g G M. Moreover, and since T* is the inclusion map, by taking
g — pG with p an arbitrary analytic polynomial in D we get

(2.14) ci||pG|| ^ ||p|| ^ C2||pG||.

The next argument shows that G G H°°.

CLAIM. The cyclic vectors G are multipliers of Ll(D) and hence elements in H°°.
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[9] Structure of kernels 453

If we choose {pn}neN to be a sequence of analytic polynomials converging in L^(D)
to / , we can get at least pointwise convergence of {pnG}neN to fG. We use Fatou's
lemma and (2.14) to get

II/GH ^ lim \\PnG\\ < lim l/d| | f t , | | = l / d | | / | | ,
n—foo n—too

which implies that G is a multiplier of Ll(B), that is equivalent of G being an H°°
function.

The above claim implies that G factors as G(z) = k$(z)F(z) where A; is a constant
and $, F are H°° inner and H°° outer functions respectively.

In what follows, k and k' denote positive numbers which may vary at each step of
the proof depending on the estimates.

If \F(z)\ O , « € D, then \\pG\\ < k\\p$\\, and by (2.14)

(2.15) IIPII ^ ^IIP^II f°r every analytic polynomial p in D.

A result due to McDonald and Sundberg, see [10, Proposition 22], forces $ to be a
Blaschke product B and in fact, a finite product of interpolating Blaschke products (see
also Horowitz [8, p. 202]).

To complete the proof it remains to show that 1/F is an element in H°°. To. this
end, if h £ H2 and since by Beurling's Theorem F is a cyclic element in H2, then there
exists a sequence of analytic polynomials in D, {pn}neN, such that pnF —¥ h in H2 norm,
and hence in L2

a{p) norm. Particularly, pn(z) -> (/i(z))/(F(z)) pointwise in D. Since
$ € H°°, lim ||pnG — /i<3>|| = 0. We put everything together and we use Fatou's lemma

n—>oo

to get
: lim ||pn|| < k lim \\pnG\\ =

Thus, choosing h to be an analytic polynomial p in D, we get

\\p/F\\ < fc||p*|| < A'||p||.

A similar argument as in the claim shows that 1/F € H°°. D

LEMMA 2 . 1 6 . Suppose that M € Lat(Mc,L^(D)), indM = 1 and lx(z) is the
associated kernel for M. If in addition l\(z) is rotationally invariant; that is l\.((z • Q
— l\(z) for every A . z e l , ( £ T , then any unit cyclic vector G in M, is of the form
G(z) - ckz

k for some keZ+U {0}, where \ck\ = y/k + 1.

PROOF: The reproducing kernel property of fcj, the fact that the Lebesgue measure
on D is rotationally invariant, and the hypothesis of the lemma, imply that

p(\)= f P(z)kC(z)\G(z0\2dA(z)
Jv
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for every analytic polynomial p in D, and every £ in T. Since M/G is the closure of the
analytic polynomials in L\(\G\2dA), the above equation implies that |G(z£)| — \G{z)\
for z 6 1 , C € T. Hence, G(zQ = c(C)G(z) for some function c(Q. By taking the
derivative with respect to £ we see that zG'(z) = aG(z) for every z e D and for some
constant a.

Furthermore, if we write G(z) = £] CnZn, c,, e C, n € N, and use the above

equation, we have J2 ncnz" = J2 aCnZn, a, c,, € C, n ^ 0. This implies that there is a

unique k £ Z+ U {0} such that G(z) = ckz
k. Moreover, since ||G|| = 1, \ck\ = Vk + l. D

THEOREM 2 . 1 7 . Suppose that l\{z) is a rotationally invariant sesquianalytic
kernel on D x D, Then the following holds: k%(z) = (l - \zl\(z))k\(z) is a reproducing
kernel for M/G, where M e Lat(Mc, L^D)), ind M = 1, if and oniy if, lx(z) =k/{k+l)
for some k € Z+ U {0}.

PROOF: We suppose that k^{z) = (l — Azl\(z))k\(z) is a rotationally invariant
reproducing kernel for M/G. If {en}^_0 is an orthonormal basis of M/G, then k%(z)
— Y2 en(A)en(z), and for every n € N, en(z) = anz

n, n G N for some an € C.
n>0

By the previous lemma there is a k € Z+u{0} such that G{z) - ckz
k, \ck\ = y/k + 1.

Therefore, en(z) = ^(71 + *;+ l)/(& + l)zn, n € N. Hence,

Thus, /A(z) = fc/(Jfc + 1) for some A; € Z + U {0}.

For the converse we suppose that lx{z) = k/(k + 1) for some k e Z+U{0}. We write

, , , . In + k + l _
), where en(z) = \ —-—-—z , n € N.

V /c ~t~ J.

If M = {/ 6 L^(3) : /(O) = 0, where 0 has multiplicity at least k}, then for any
unit cyclic vector G in M, G(z) = ckz

k with |cjt| — y/k + 1. Now it is easy to
verify that {en}^Lo ' s indeed an orthonormal basis of M/G, which is equivalent of
(l - Xz(k/(k + l))kx(z) being a reproducing kernel for M/G. D

3. EXTENSIONS TO THE VECTOR VALUED CASE

.For the needs of this section we will use the results and the notation as in [9]. If k
is a Bergman type kernel (for the definition we refer to the defining property [9, 0.13]),
with 7i(k) we denote the associated reproducing Hilbert space. Let also V be a separable
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[11] Structure of kernels 455

Hilbert space. Now consider %{k) ® V = H(k, V) and think of it as a space of V-valued

analytic functions. It is the set of all analytic functions / : D —¥ V such that for all x € V,

the function fx{\) = (f{X),x)v defines a function in U{k) with | |/ | |2 = £ ||/en||2 < oo
n=l

for some orthonormal basis {en}n^i of V. It can be easily shown that the above expression
is independent of the choice of the orthonormal basis. In particular, for / € 'H(k), i g J ) ,
the function fx : A -»• f(X)x is in H(k,V) and | | /x| | = ||/||||a;||p. If / € U{k,V), x € V
and A € B>, we have (f(\),x)v = (/, kxx)-H(k,v)- There is an obvious identification of the
elementary tensors / <g> x with the functions fx.

An analytic function <j> on D is a multiplier of ft(fc) if 0 / € ft(A) for all / € ?{(*). We
shall write M{k) for the collection of all multipliers. A standard use of the closed graph
theorem shows that each <f> € M{k) defines a bounded linear operator M^ : / —> <j>f
on %{k). Thus we define the multiplier norm by ||<^||M = IIM^H- Each scalar valued
multiplier cj> e M(k) defines also an operator on H(k,T>) of the same norm, and we
shall denote this operator by M^. Again we will say that a subspace M of 'H(k,'D) is
multiplier invariant, if M^M C M for each <j> e M. The index of an invariant subspace
M C W(k,T>) is defined in the same way as in the scalar case. Moreover, for the rest of
this section we also suppose that indM — 1 and that G is a unit vector in M © C,M.

Considering the above, it can be easily shown that [9, Corollary 0.8] and [9, Wan-
dering Subspace Theorem] hold in this general vector valued setting. Here we present
the versions of these theorems that we shall use in the sequel.

THEOREM 3 . 1 . Let k be any Bergman type kernel and M any index 1 invariant

subspace oCH(k, V). Let also G denote a unit vector in MQQM. Then there is a positive

kernel lx on® such that (pM(fcA(z)i))/(<G(z),G(A))T,) = (l-Xzlx{z))(kx(z)x), for

all x G 23.

THEOREM 3 . 2 . (Wandering Subspace Theorem) If k is a Bergman type kernel
and M is a multiplier invariant subspace ofH(k,V), then the span of the set {£"/ : n
^ 0 , / € M Q CM} is dense in M.

In the sequel we will apply the above results in the case of the Bergman kernel

where V = C", n = 2 , 3 . . . . Hence, H(k,V) = 0 L 2 ( © ) , n = 2 , 3 . . . . We consider

the operator Mc : ® ^ ( D ) »-> 0 L 2 ( D ) such that~( / i , / 2 ) . . . ) »-»• {zfi,zf2,...). Since
i=l i=l

indM = 1, the Wandering Subspace Theorem implies that M = [G], where G is a unit
vector in M 0 CM. Denote with M/G the closure of the C"-valued analytic polynomials

)

Furthermore, using Theorem 3.1, we conclude that there is a positive sesquianalytic
kernel, l^, defined on 1 x U, which is the reproducing kernel of M/G. The following
remark shows that I™ defines the invariant subspace M uniquely.

REMARK 3.3. If Mlt M2 are index 1 invariant subspaces of 0 Ll(B>), n — 1,2,..., with
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Indeed, if GMi are unit vectors in Mi © C,MU i — 1,2, then Mi/GM l = M2/GM2,

with equality of norms, since the kernel defines the space uniquely. Recall that Mi/GMi

is the closure of the analytic polynomials in L\ (\\GMi (z) \\^dA), i = 1,2, and hence the

result follows from [11, Theorem 1].

We would like to note that the proofs of Lemma 2.2 and Theorem 2.8 can be
n

easily modified to hold in the case of 0 L2
a(B), n = 2,3, For example, Theorem 2.8

t=i
becomes:

THEOREM 3 . 4 . Let V be an open subset of C such that V n T ^ 0. If tiere is a
nonzero element F of M which extends to be analytic in V, then the kernel If satisfies
the following boundary conditions:

(i) lim(l - |A|2ZA(A))||G(A)||2n = l for every < G V n T ;
A—•£

(ii) lim ^ [(1 - Xzlx(z))(G(z),G(X))Cn] [ ^ - 0 for every

where G is a unit cyclic vector in M.

Our last result demonstrates that Theorem 2.17 regarding rotationally invariant
2

kernels, does not extend to the case of

THEOREM 3 . 5 . Ifk is the Bergman kernel, then for all c € [0,1), the rotationally
invariant kernel l\(z)=c is an associated kernel for some index 1 invariant subspace of

t=i

P R O O F : Let c e [0,1). Let G(z) — (#1,02), where gx(z) = VS, g2(z)
= y^(l — S)(n + l)zn, with 0 < < 5 < l , n e N . An elementary calculation shows that

(3.6) llGH©Li^(D) = l j a n d t h a t / zk iL, \9i\2^^- = 0, Jfc > 1.

Additionally observe that G is continuous on D, and by forcing G to satisfy the equation

in condition (i) of Theorem 3.4, we get (l - |A|2ZA(A))||G(A)|£2 = 1, A € T. Hence,

(1 - c(S + (1 - 6){n + 1))) = 1 and 6 = 1 - (c/n(l - c)), c € [0,1),. n € N. Thus,

by choosing n > c/( l — c), we get 0 < 5 < 1, and therefore by (3.6) and the Wandering

Subspace Theorem, l\{z) — c is indeed an associated kernel for M = [G]. This concludes

the proof. D

The above analysis reveals that the study of the structural properties of If in the
n

case of © ^ ( U ) , n ^ 2 is of particular interest for the determination of the structure
of M. Even though some results from the one dimensional case extend to this case,
(compare Theorem 2.8 with Theorem 3.4) some other (compare Theorem 2.17 with
Theorem 3.5) do not.
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