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Abstract

The structure of finite groups in which permutability is transitive (PT-groups) is studied in detail.
In particular a finite /T-group has simple chief factors and the p -chief factors fall into at most two
isomorphism classes. The structure of finite T-groups, that is, groups in which normality is transitive, is
also discussed, as is that of groups generated by subnormal or normal P 7-subgroups.

2000 Mathematics subject classification: primary 20D35.

1. Introduction

A subgroup H of a group G is called permutable (or quasinormal) if HK = KH for
all subgroups K of G. Here we are interested in groups G in which permutability is
transitive, that is, H permutable in K and K permutable in G always imply that H
is permutable in G; such groups are called P T-groups. In the sequel all groups are
understood to be finite.

By a well-known theorem of Ore [11] a permutable subgroup is subnormal. Thus
the (finite) P T-groups are exactly the groups in which all subnormal subgroups are
permutable. A subclass of P T is the class of T-groups, or groups in which normality
is transitive, that is, H < K < G implies H < G.

T-groups have as long history going back to Dedekind [5], while FT-groups were
first studied by Zacher [16] in 1964. Soluble 7-groups were classified by Gaschiitz
[6], while Zacher [16] classified soluble PT-groups. Zacher's main result asserts that
a group G is a soluble P T-group if and only if it has a normal abelian Hall subgroup
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144 Derek J. S. Robinson [2]

L of odd order such that G/L is a nilpotent modular group and elements of G induce
power automorphisms in L. (A modular group is one whose subgroup lattice satisfies
the modular law: for the structure of modular groups see Schmidt [15, page 55]).
Gaschutz's theorem is obtained from Zacher's on replacing 'nilpotent modular group'
by 'Dedekind group'.

Soluble 7-groups and soluble P 7-groups have been characterized in terms of their
Sylow structure and also in terms of pronormality of subgroups by Peng [12], Robinson
[13], and by Beidleman, Brewster and Robinson [2] respectively. For survey of results
in the area see [14].

In the present work the emphasis is on insoluble P T-groups and T-groups. Since
all simple groups are T-groups, there was little activity in this area prior to the
classification of finite simple groups. Now that the CFSG is considered complete, and
in particular the Schreier Conjecture has been verified, one can hope to make progress
in determining the structures of P 7-groups and 7-groups.

We begin our study by showing in Section 2 that P T-groups have simple chief
factors, (that is, they are SC-groups), and describing the structure of SC-groups. The
more delicate task of identifying P T-groups and 7-groups within the class of SC-
groups is undertaken in Section 3 and Section 4, where two main structure theorems,
Theorem 3.1 and Theorem 4.1, are established. These show that insoluble P T-groups
and T-groups arise as extensions of covering groups of direct products of simple
groups by soluble groups, subject to certain restrictions on the p -factors.

In Section 5 it is shown that the p -chief factors of a PT-group G fall into at
most two G-isomorphism classes. This extends a previous result of Cossey [4]. In
Section 6 the structure of groups generated by their normal or subnormal P T- or
T-subgroups is investigated. In particular it is shown that a group generated by its
normal P T-subgroups has simple chief factors, which generalizes another result of
Cossey [3].

In Section 7 a number of counterexamples are described. These are designed to
show that no inclusions exist between the various classes of groups under consideration
other than the obvious ones, and also to shed light on differences between P 7-groups
and T-groups. In a final note we point out that the wider class of groups in which every
subnormal subgroup permutes with all the Sylow subgroups, the so-called PST-groups,
is amenable to a very similar treatment.

2. Groups with simple chief factors

DEFINITION. We will call a group an SC-group if all its chief factors are simple,
and an SNAC-grvup if its non-abelian chief factors are simple.

The connection with P T-groups is shown by our first result:
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[3] The structure of finite groups 145

PROPOSITION 2.1. Every P T-group is an SC-group.

In the proof we shall use the following result, which was proved in [2], (see
Lemma 2).

LEMMA 2.2. Let G be a P T-group. Then p'-elements of G induce power automor-
phisms in OP(G).

PROOF OF PROPOSITION 2.1. Let N be a minimal normal subgroup of a P T-group
G. We argue that N is simple. Suppose first that N is not abelian. Then N =
Si x S2 x • • • x S*, where each S, is a (non-abelian) simple group. Let g e G. Now 5, is
subnormal, and hence permutable, in G. Thus {g) S, = 5, (g) and SJs) = 5,(5,^>n<^».
Now S,-g> is a direct product of simple groups, yet S-s>/5, is cyclic. Hence 5-*' = 5,
and 5, < G. It follows that N is simple.

Next suppose that N is an elementary abelian p-group. By Lemma 2.2 each p'-
element of G induces a power automorphism in N. Since power automorphisms
belong to the centre of Aut(G), it follows that ~G = G/ CG(N) is (abelian p')-by-p.
Let T be a Sylow p-subgroup of G. Then CN(F) ^ 1 and CN(P) is left fixed by
each p'-element of G. Therefore CN(P) is G-invariant and N = CN{P). Hence all
elements of G induce power automorphisms in N, so that \N\ = p. •

The next two results provide characterizations of SAMC-groups and SC-groups; in
particular they give information about the structure of P 7-groups.

PROPOSITION 2.3. A group G is SNAC if and only if it has normal subgroups S and
D such that S and G/D are soluble while D/S is a direct product of G-invariant
simple groups.

PROOF. Let G be an SAfAC-group and put D — G(0O), the limit of the derived series.
Thus D is perfect and G/D is soluble. Factoring out by the soluble radical of D, we
can assume that D ^ 1 is semisimple, that is, it has no non-trivial abelian normal
subgroups. Choose a minima^ normal subgroup N of G contained in D. Then N is
simple, and the truth of the Schreier Conjecture shows that D/N CD{N) is soluble.
Hence D = N x CD(A7). If CD(N) ^ 1, choose a minimal normal subgroup of G
contained in CD(N) and repeat the argument. After sufficiently many applications of
this procedure we will find that D is the direct product of minimal normal subgroups
of G each of which is simple.

Conversely, assume that G possesses normal subgroups 5 and D as described in
the statement. If N is a non-abelian minimal normal subgroup of G, then J V f l S = l
and N < D. Hence N ~ A'5/5 < D/S and it follows that N is simple. •

SC-groups can be characterized in a similar fashion.
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PROPOSITION 2.4. A group G is an SC-group if and only if there is a perfect
normal subgroup D such that G/D is supersoluble, D/Z{D) is a direct product of
G-invariant simple groups, and Z(D) is supersolubly embedded in G, (that is, there
is a G-admissible series in Z(D) with cyclic factors).

PROOF. Let G be an SC-group and put D = G(oo); thus G/D is supersoluble.
Denote by S the soluble radical of D and form a G-composition series in 5, noting
that its factors are cyclic and D is perfect. This implies that 5 lies in the hypercentre,
and hence the centre, of D. Thus 5 = Z(D). Evidently S is supersolubly embedded
in G, and by the proof of Proposition 2.3 D/S is a direct product of G-invariant simple
groups.

Conversely, let G have a normal subgroup D as indicated in the statement. If N
is a minimal normal subgroup of G, then N is G-isomorphic with a chief factor in
Z(D), D/ZiD) or G/D. In each case N is simple. •

COROLLARY 2.5. An SC-group G is an extension of a perfect T-group by a super-
soluble group.

PROOF. Let D = G(oo); we show that D is a T-group. If not, let H be a non-normal
subnormal subgroup of D with least order. Then// ^ Z := Z(D), so HZ/Z > U/Z,
a simple normal subgroup. Thus H' = (HZ)' > U'. Since U' ^ 1, we get H < G by
minimality. •

EXAMPLE. Let R be the Suzuki group Sz(8). Its multiplicator M(R) is a Klein
4-group, while Out(/?) has order 3 and acts fixed-point-freely on M(R). An automor-
phism of R with order 3 extends to an automorphism a of the covering group D of
R. Let G = (a) ix D, the semidirect product. Here Z(G) is minimal normal in G
and Z(G) ~ M(R). Thus G is not an SC-group, so that the condition of supersoluble
embeddability in Proposition 2.4 is essential.

Further structural information about SC-groups is contained in:

LEMMA 2.6. Let G be an SC-group, D = G(oo) and R - D/Z(D). Then

(i) CG(D) = CG(R) is the soluble radical S of G;
(ii) DS/D is the kernel of the coupling x '• G/D -> Out(D) of the extension

D >-* G -» G/D.

PROOF. (i) Let S be the soluble radical of G. Now [D, S] < Z(D) and
D = D', so [D, S] < [D, S, D] = 1 and S < CG(D) < CG(R). On the other hand,
CG(R) is evidently soluble; hence CG(R) = S.

(ii) This follows at once from (i). Ill
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Note that G/DS is isomorphic with a supersoluble subgroup of Dr Out(/?;), where
1=1

R = /?i x R2 x • • • x Rk and Rt is simple. Furthermore, Out(/?,) is a soluble group
of restricted type; for example, its derived length is < 3. Also Z(D) is a quotient of
M{R) ~ M(Ri) © M(/?2) © • • • © M(flt) and the M (/?,-) are known. Thus a rather
clear picture of the structure of an SC-group emerges.

3. Characterizations of P T-groups

Consider the central product

G = SL2(5)YDih(8),

where the centres of SL2(5) andDih(8) are identified. Here G" = SL2(5), |Z(G")| =
2 and G/G" is a Klein 4-group. Certainly, G is an SC-group, but it is not a PT-
group since Dih(8) is not modular. This example shows that in a P T-group there
must be additional restrictions on normal p -subgroups beyond what is implied by
Proposition 2.4.

DEFINITION. Let p be a prime.

(i) A group G satisfies the condition Np if, for all soluble normal subgroups N,
the p'-elements of G induce power automorphisms in OP(G/N).

(ii) A group G satisfies the condition Pp if, for all soluble normal subgroups N,
each subgroup of OP(G/N) is permutable in a Sylow p-subgroup of G/N.

Clearly every PT-group satisfies Pp, and by Lemma 2.2 it also satisfies Np for all
primes p. Thus Np and Pp are necessary conditions if a group is to be a P T-group.
We shall show that these conditions on quotients are also sufficient for an SC-group to
be P T. On combining Np and Pp with other properties known to hold for SC-groups,
a characterization of P T-groups is obtained.

THEOREM 3.1. A group G is a PT-group if and only if it has a perfect normal
subgroup D such that:

(i) G/D is a soluble PT-group;
(ii) D/Z(D) = Ui/Z(D) x • • • x Uk/Z(D) where Ut/Z(D) is simple and [/, < G;
(iii) if {i,, i2 ir) C {1,2, . . . , jt}, where 1 < r < k, then G/ U'h U'l2...U'ir

satisfies Npforallp 6 n(Z(D)) and Pp for all p € n(D).

PROOF. Only the sufficiency of the three conditions is in doubt. So assume that
G satisfies the conditions but is not a P 7-group, and that of all such groups G has
smallest order. Let H be a subnormal subgroup of G which is not permutable.
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Case (a): H is insoluble. Then (H D D)Z/Z is non-trivial and subnormal in D/Z.
By (ii) it must contain some Ut/Z, and therefore H' > ( (# n D)Z)' > U[. Passing
to G/ U'i, which inherits the hypotheses on G, we conclude that H/ U- is permutable
in G/ U[, that is, H is permutable in G, a contradiction.
Case (b): H is soluble. Here H is contained in the soluble radical S of G. Put
K = Yoo(.S), the limit of the lower central series of 5. We claim that H n K < G.
Since G/D is a soluble P7-group, KD/D is abelian by Zacher's theorem. Also
K D D < Z(K) since [D, S] = [£>', 5] < [£>, 5, Z>] = 1. Hence K is nilpotent, and
it is enough to show that H f\Kp < G for all primes p.

If Kp < Z := Z(D), then [Kp, S] = 1 and [K, S] £ K. Hence Kp £ Z and
so ATP ^ D. We can assume that p e ^-(Z). For otherwise £ p n D = 1 and
Kp ~ KPD/D < ycoiG/D); therefore elements of G induce power automorphisms
in Kp and H n ATP < G.

Since 1 ?t KPD/D < Yoo(G/D), which is a Hall subgroup of G/D, we see that p
cannot divide |G/D : YX(G/D)\. NOW consider G/CC{KP); by Np the p'-elements
in this group form a normal subgroup V/CG(KP) and G/ V is a p-group. Therefore
Yoo(.G/D) < V/D and consequently V = G, so that H D Kp < G, as required.

Now pass to the group G/H C\ K and use minimality of order to conclude that
H fl K = 1. Hence / / is nilpotent, and obviously we can suppose it is a p -group. It
is enough to show that H (g) = (g) H where g is either a p-element or a p'-element.
Let g be ap'-element. If p e n(Z), the condition Np implies that Hg — H. If on the
other hand p £ n(Z), then HG D Z = 1, so that HG n D = 1 and //G ^ HGD/D.
Since g induces power automorphisms in Op (G/D), we again obtain // = Hs.

Finally, suppose that g is a p-element. Let P be a Sylow p-subgroup containing
g; then of course H < P. If p e n(D), we have {g) H = H {g) by condition Pp. If
p £ TT(D) on the other hand, P n D = 1 and P ~ PD/D, showing that P is modular
and H (g) = (g) H. •

There is a simpler, but weaker criterion for a group to be a P T-group.

THEOREM 3.2. A group G is a P T-group if and only if its non-abelian chief factors
are simple and each quotient of G satisfies Np and Ppfor all primes p.

PROOF. Again only sufficiency is in question. Let G satisfy the condition and be
a counterexample of smallest order. Suppose that N is an abelian minimal normal
subgroup, and say it is an elementary abelian p-group. By Np the group G/CG(N)
has a p'-subgroup of power automorphisms with p-power index. Let P be a Sylow
p-subgroup of G. Choose a ^ 1 from TV n Z(P). Then (a) < G, and hence \N\ = p.
It follows that G is an SC-group.

Next apply Proposition 2.4 to get a perfect normal subgroup D such that G/D is
soluble and D/Z(D) is a direct product of G-invariant simple groups. By Theorem 3.1
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we reduce to the case D = 1. Hence G is supersoluble.
Let H be subnormal but not permutable in G. Put K = Yoo(G), which is nilpotent

since G is supersoluble. We will argue that H n K < G. If this is false, H D Kp is
not normal in G for some p. Let L be a minimal normal subgroup of G contained
in Kp. Thus \L\ = p. Now G/L is a soluble PT-group. By Zacher's theoremp does
not divide \G/L : Yoo{G/L)\ since Kp ^ L, (otherwise H C\ Kp < G). Now argue
as in the proof of Theorem 3.1 that each element of G induces power automorphisms
in Kp, so that H n Kp < G.

We have reached the stage where H n K < G and so H n K — 1. The rest of the
argument is the same as for Theorem 3.1. •

EXAMPLE. An SC-group with Np and Pp for all p need not be a P T-group.

Thus in Theorem 3.1 and Theorem 3.2 it is not sufficient to assume that the group
satisfies Np and Pp.

Let £>! = SL3(4) and D2 = PSL2(S). Then D\ and D2 have field automorphisms
ai, a2 of orders 2 and 3 respectively. Let G, = (a,) K Dh the semidirect product, and
put G = Gi x G2- Clearly G is an SC-group. Note that G" = D = Di x D2 and
Z(D) = Z(D,) has order 3, while G/D ~ 16. Hence G satisfies Np and Pp for all p .
However even G/D2 is not a PT-group since it does not satisfy N3.

4. Characterizations of 7-groups

To obtain characterizations of T-groups corresponding to Theorem 3.1 and Theo-
rem 3.2 the conditions Np and Pp are replaced by a single stronger condition.

DEFINITION. Let p be a prime. A group G satisfies the condition Tp if, for all
soluble normal subgroups N, elements of G induce power automorphisms in every
G-invariant p -factor X/N of nilpotent class < 2.

v
Clearly every T-group satisfies Tp for all p . Using this condition we formulate our

characterization of T-groups.

THEOREM 4.1. A group G is a T-group if and only if it has a perfect normal
subgroup D such that:

(i) G/D is a soluble 7 -group;
(ii) D/Z(D) = Ui /Z(D) x • • • x Uk/Z{D), where Ui/Z{D) is simple and £/, < G;

(iii) if {ii, i2,..., ir] £ {1,2 , . . . , k), where 1 < r < n, the group G/ U'h ... U'ir
satisfies Tp for all p en(Z(D)).
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PROOF. Only the sufficiency requires a proof. This is quite similar to the proof
of Theorem 3.1, so we only indicate the differences. Let G be a counterexample
of minimal order and let H be a non-normal subnormal subgroup of G. If H is
insoluble, then argue as before that H contains some U',; a contradiction to minimality
then ensues. Thus H is soluble and hence is contained in the soluble radical 5.

Let K = y3(S) and note that KD/D is abelian, so that K is nilpotent of class at
most 2. Argue as before that H D K < G\ hence H D K — 1 and H is nilpotent of
class < 2. We can assume H is a p-group. If p g n{Z), then HG HZ = 1 and
HG £ nGD/D; this implies that H < G since G/D is a T-group. Hence p e n(Z).

Next / /G < HD since f/D < G, and therefore # G < HD (IS = HZ. Hence
Yi(HG) - Y3(H) = 1- By m e condition Tp elements >̂f G induce power automor-
phisms in HG and thus H < G. •

There is a simpler version of the criterion, just as in the case of P T-groups.

THEOREM 4.2. A group G is a T-group if and only if its non-abelian chief factors
are simple and each quotient ofG satisfies Tpfor all primes p.

PROOF. TO prove sufficiency, let G be a counterexample of smallest order. By
the proof of Theorem 3.2 the group G is supersoluble. Let H be a non-normal
subnormal subgroup of G and put K = y3(G). Reduce to the case H n K = 1 as in
Theorem 3.2. Hence H is nilpotent of class at most 2. Assume that H is a p-group.
Now K T̂  1, so there is a minimal normal subgroup L of G contained in K. Hence
HL < G and HG < HL. But [H, L] = 1 since / / lies in the Fitting subgroup. Hence
y3(H

G) = y3(H) = 1; now apply Tp to HG to get H < G. •

An essentially equivalent result has been found by Cossey [4, Theorem 1]. Char-
acterizations of some special types of 7-group can be found in the same paper.

5. Chief factors

A distinguishing feature of P7-groups, as against SC-groups in general, is the
behaviour of the abelian chief factors. In any PT-group the p -chief factors fall into
at most two G-isomorphism classes.

THEOREM 5.1. Let G be a PT-group and let p be any prime. Then all p-chief
factors covered by G" are G-isomorphic, as are all p -chief factors avoided by G".
Hence there are at most two G-isomorphism classes of p-chief factors.

Recall here that G" is said to cover a chief factor H/KiiH G" = K G" and to avoid
H/K if H D G" = K n G". On the other hand, it is easy to construct supersoluble
groups G with p — 1 chief factors of order p no two of which are G-isomorphic.
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COROLLARY 5.2. In a soluble PT-group Gall the p -chieffactors are G-isomorphic.

(For G" = 1 if G is a soluble PT-group.)

PROOF OF THEOREM 5.1. Recall that p-chief factors of G have order p . Suppose
first that G is soluble and put L = Yoo(G). Then L is abelian, n(L) n n(G/L) is
empty, and elements of G induce power automorphisms in L. If p e n(L), then
all p -chief factors are G-isomorphic since an element of G induces the same power
automorphism in each factor. If p <£ n(L), all p-chief factors are central.

Now for the general case. Let D = G". A p-chief factor that is avoided by D
is G-isomorphic to one of G/D. All such are G-isomorphic by the last paragraph.
Consider a p-chief factor H/K which is covered by D, and hence by Z(D). By
Lemma 2.2 each p'-element induces a power automorphism in Z(D)P, and hence
in H/K. Of course p-elements centralize H/K. Consequently all such H/K are
G-isomorphic. •

EXAMPLE (J. G. Thompson; see Cossey [4]). There is an insoluble 7-group with
two isomorphism classes of p-chief factors.

Let p be an odd prime and let q be a prime such that q = l(modp). Put
D — SLp(q

p), and define two automorphisms r, u of D as follows: Ar = (A~l)T,
while <p arises from the field automorphism a i - > a ' . Then X = <r, <p) is cyclic of
order 2p, and the semidirect product G = X x D is a 7-group by Theorem 4.1. But
Z(D) and {<p D) are non-G-isomorphic p-chief factors.

On the other hand, for certain primes p all the p-chief factors of an insoluble
P T-group are isomorphic. The following result was established by Cossey [4] for
T-groups.

THEOREM 5.3. Let G be a P T-group with soluble radical S, and let p be a prime
dividing \S : Z(G")|. Then all p-chieffactors are G-isomorphic.

PROOF. We can assume thatvOp-(G) = 1. PutD = G". Since p divides \SD : D\,
there is a p-chief factor H/K of G such that D < K < H < SD. Let L/M
be another p-chief factor. If D avoids L/M, then L/M ~ LD/MD and hence
L/M ~ H/K by Corollary 5.2. Assume therefore that D covers L/M, so that
L/M ~LC\ D/M n D ~ L n Z/Af n Z where Z = Z(D). Note that Z is a p-group.

Next OP'(S/Z) — 1; thus the Fitting subgroup of S/Z is a non-trivial p-group and
contains a minimal normal subgroup N/Z of G/Z. Then N — (a, Z) is an abelian
p-group since [Z, S] = 1. Further JV/Z ~ #£>/£> ~ / / / .£ . Since p'-elements of G
induce power automorphisms in N, while p-elements centralize N/Z and L/M, we
deduce that L/M ~ N/Z. Hence L/M ~ / / / £ . •
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6. Groups generated by subnormal P 7-subgroups

We will now broaden the investigation to include groups which are generated by
their subnormal P T-subgroups. Although such groups need not be SC-groups, it will
be seen that they are quite close to SC-groups. This has already been observed by
Cossey [3] in the case of soluble groups generated by subnormal T-subgroups.

A special role is played by the subnormal perfect T-subgroups of a group: notice
here that perfect SC-groups are T-groups by Corollary 2.5. We recall a theorem of
Kegel [9]— see also [10, page 152]: a subnormal perfect T-subgroup of a group G
normalizes every subnormal subgroup, and so is contained in the Wielandt subgroup
co(G). Since co(G) is a T-group, it follows that there is a unique largest subnormal
perfect T-subgroup in G.

This subgroup admits other descriptions, as is perhaps known.

LEMMA 6.1. In any group G the following subgroups coincide:

(i) the unique maximum subnormal perfect T-subgroup;
(ii) co"(G) where co(G) is the Wielandt subgroup;

(iii) the layer E(G), that is, the limit of the lower central series of the generalized
Fitting subgroup.

PROOF. Let T(G) denote the subgroup in (i); then T(G) < co{G). Also co"(G) <
r(G) because soluble 7-groups are metabelian. But r(G) is perfect, so T(G) =

Next E(G) is perfect and £1(G)/Z(£(G))isa direct product of simple groups; thus
E(G) is a T-group and E(G) < T (G) . (For these and other facts about the subgroup
£(G) see [7, Section 13].) On the other hand, the structure of r(G) shows that its
elements induce inner automorphisms in chief factors of r(G)—see Proposition 2.4
and Theorem 4.1. Hence r(G) is quasinilpotent and r (G) < F*(G), the generalized
Fitting subgroup; thus r(G) < Yoo(F*(G)) = E(G). •

The main result on groups that are generated by subnormal P T-subgroups depends
on work of Cossey [3].

THEOREM 6.2. Let G be a group which is generated by subnormal P T-subgroups.
Then

(i) non-abelian chief factors of G are simple, that is, G is a SNAC-group;
(ii) G := G/E(G) is metanilpotent, Sylow p-subgroups o/G/Fit (G) are abelian

for odd p, and O2(G) is supersoluble of odd order.

We precede the proof with two auxiliary results.
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LEMMA 6.3. A soluble PT-group is generated by its subnormal T-subgroups.

PROOF. Let G be a soluble PT-group and put L = yoo(G). Then L is an abelian
Hall subgroup of G and elements of G induce power automorphisms in L. If g € G,
then {g, L) is a T-group, and it is subnormal in G. Thus G can be generated by
subnormal 7-subgroups. •

LEMMA 6.4. If a group G is generated by subnormal SNAC-subgroups, then G is
a SNAC-group.

PROOF. By a standard induction on the subnormal defect it is enough to show that if
G = HK where H and K are normal SAWC-subgroups, then G is SNAC. To this end
suppose that N is a non-abelian minimal normal subgroup of G which is not simple.
If N £ H, then [N, H] = 1 and so [N, K] ^ 1. Hence N < K and N is minimal
normal in K, which is impossible. This argument shows that N < H n K.

Now choose a minimal normal subgroup N{ of H contained in N. Then Nx is
simple and N = A7,0 = Nf is a direct product of simple groups. Choose a minimal
normal subgroup A^ of K contained in A'. Then N2 is also simple and N2 = A7,* for
some k € K, that is, N2 = A7! and Ni = N is simple. •

PROOF OF THEOREM 6.2. Put E = E(G) and let H i , . . . , Hr be subnormal P T-
subgroups generating G. Now E(Ht) = H- and Hj/E(Hj) is a soluble PT-group
by Corollary 2.5 and Lemma 6.1; thus £(H,) < E. It follows that G := G/E is
generated by the subnormal soluble PT-subgroups HtE/E, so that G is soluble. By
Lemma 6.3 G is even generated by subnomal T-subgroups. The rest of the statement
now follows from Theorem 2 of Cossey [3]. •

We turn our attention next to groups that are generated by normal P T-subgroups.
Here one should keep in mind that a product of normal supersoluble subgroups need
not be supersoluble. Our aim is to show that, despite this negative result, a product of
normal P 7-subgroups is always an SC-group. We will in fact prove something more
general.

THEOREM 6.5. Let G = HK where H is a normal PT-subgroup and K is a
subnormal SC-subgroup of the group G. Then G is an SC-group.

PROOF. First of all consider the case where K < G. By Lemma 6.4 it is sufficient
to prove that an abelian minimal normal subgroup N of G is cyclic. If N Pi H = 1 =
N D K, then N < Z(G) and all is clear. UNHH = l^NHK, then [N, H] = 1
and N is minimal normal in K and hence is cyclic. Therefore we reduce to the case
whereN < HHK.
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Put D = H". Suppose first of all that AT n D = 1, so that N ~ ND/D and we can
assume that H is soluble. Put L — yoo(H). If N n L — 1, then [N, H] = 1, so that
N is minimal normal in K and hence is cyclic. Otherwise N < L, and elements of H
induce power automorphisms in L. Again N is minimal normal in K.

We are left with the case N < D, when of course N < Z := Z(D). Suppose that
iVi is a minimal normal subgroup of H contained in N. Thus \N\\ = p, a prime,
and N = N*. If k e K, then Nf < H and N* is minimal normal in H. But H
is a PT-group, so all the p -chief factors that are covered by D are isomorphic, by
Theorem 5.1. Consequently an element of H induces the same power automorphism
in each TV*, and thus induces a power automorphism in N. Hence N is minimal
normal in K.

Finally, consider the general case. Here a familiar argument applies. Let K =
Kr < Kr-{ < •• • < Kl < Ko = G be the series of successive normal closures of K in G.
Then AT, = (H n K,)K and Ki+X = (H D Ki+l)Kt. Suppose that AT, is an SC-group.
Since H n AT,+1 is a normal PT-subgroup of Ki+U we deduce from the special case
that Ki+l is an SC-group. Hence G is an SC-group. •

From this result we deduce at once:

THEOREM 6.6. A group which is generated by normal P T-subgroups is an SC-
group.

7. Diagram of group classes

The eight classes of groups which feature in our investigation are displayed in the
diagram (see Figure 1). Here, for example, {sn PT) is the class of groups generated
by their subnormal P T-subgroups.

THEOREM 7.1. There are no further inclusions between the eight classes of groups
in the diagram.

PROOF. It is sufficient to disprove four inclusions:
(i) SC£ {snPT).
Let N = (a, b) be a non-abelian group of order 53 and exponent 5. An automor-

phism x of N with order 4 is defined by aT — a2, bx = b3. Then G = (T> IX N is a
supersoluble group of order 500. We show that G cannot be generated by subnormal
PT-subgroups.

Let H be a subnormal PT-subgroup of G and suppose that H ^ (T2, N). Then H
contains an element xc with c € N, and hence H > [N, mxc] for some m > 0. But
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snPT)

(snT)

T

FIGURE 1. The eight classes of groups

N = [N, re], so H > N, and thus H — G. This is false since G is not P7-group.
Therefore, all subnormal PT-subgroups are contained in (r2, N).

(ii) {sn T) g SC.
Let N = (a, b) be an elementary abelian group of order 9, and define automor-

phisms f and y of N by

a*=b, tf=a and a" = a~\ bn = b.

Then X = {£, r}) is dihedral of order 8. Let G — X K N. Since N is minimal normal,
G is not an SC-group. On the other hand, H = (£, [N, £]) and K = (r), [N, r}])
are subnormal in G and H ~ 53 ~ K. Thus G is generated by two subnormal
T-subgroups.

(iii) (< T)£PT.
This is shown by the non-abelian group of order 27 and exponent 3.
(iv) PT£(snT).
This is the most difficult non-inclusion to establish. Choose primes p and q such

that q = l(modp) but q f£ Mmodp2), and let R = PSLpi(q
p). Since p2 divides

qp — 1, the subgroup Z(SLp2(qp)) has an element of order p2, and there is a stem
extension (a) >—> D -» fl, where |a| = p2. •

The automorphism / )->• f of GF{qp) gives rise to an automorphism a of
SLp2(qp), and hence of D, with order p . Since a" = aq •£ a and <? s 1 (mod/?), we
can assume that aa = al+p, so that (ap)° = a?.

Let (x) be a cyclic group of order p1 where pl~l exceeds the exponent of the
Sylow p-subgroups of D. Then let x act on D via the automorphism a, and form
the semidirect product (x) x D. Now factor out by the central subgroup {xp'~'ap)
to obtain a group G = {x) D where xp' ' = a~p. The soluble radical of G is
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S = OP(G) = (xp,a). Note that G/D is cyclic of order p'~l and Z(£>) = (a) has
order p2. Our aim is to establish:

LEMMA 7.2. G is a P T-group, but it cannot be generated by subnormal T-sub-
groups.

PROOF. There is a Sylow p-subgroup P of D such that Px = P. Then Px = (x) P
is a Sylow p -subgroup of G. We shall prove that every subgroup of 5 is permutable
in Pi, thus verifying the condition Pp.

Since [a,x] = a", we have x" = xa~" = xl+p'~'. Let d e P. Then (xd)a =
xl+p'~ld. Now

'1 = xp'-'dx'>'-'->+x>>'-i->+-+x+\

— xp'~' (dx"~'+xl'~2+~+*+1\f

= xp ,

since [D,xp] = 1 and Pp'~2 = 1. Hence

(xd)a =xl+p'~ld =

and xp'a normalizes {xd) for/ > 0. Since xp'a € Z((xp, P)), it follows that (xp'a) is
permutable in Pi. Since all subgroups of (xp, ap) are normal in Pu the condition Pp

is verified.
Next all p '-elements of G lie in D and therefore centralize 5. Thus the condition Np

holds in G. It follows from Theorem 3.1 that G is a PT-group.
Finally, let H be a subnormal T-subgroup of G. If / / is insoluble, then D < H.

Since * does not induce a power automorphism in 5, the group G is not a 7-group.
Hence H < {xp, D). This is also true if H is soluble. Consequently, G cannot
be generated by subnormal 7-subgroups. (The smallest example is for p = 2,
q = 3). •

By Lemma 6.3 the classes {sn P T) and {sn T) coincide for soluble groups, so
there are just seven classes of groups if we restrict attention to soluble groups. In fact
no further inclusions hold amongst these seven classes. To see this just one further
example is needed.

(v) There is a soluble P T-group which is not generated by normal T-subgroups.

For let G be the modular p-group (x, a \ ax — al+p ,ap = 1 = xp ), where p is an
odd prime. Every normal T-subgroup is contained in {xp, a).
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Further examples

Our main theorems in Section 3 and Section 4 show that P T-groups and T-groups
have very similar structures. We conclude with two examples of P T-groups that are
not 7-groups to illustrate the differences between these types of group.

(I) There is a P T-group which is generated by its normal T-subgroups but which
is not a T-group.

This is shown by the modular 2-group of order 16 with presentation [x, a \ ax = a5,
x2 = 1 = a8). This is not a 7-group but it is the product of two normal T-subgroups
(x,a4)and (a).

It is a conspicuous feature of a T-group G that group elements induce power
automorphisms in each normal nilpotent subgroup, and in particular in Z(G"). We
show by a more elaborate example that this last property may fail in a PT-group.

(II) There is a P T-group G with an element which does not induce a power auto-
morphism in Z(G").

Let R be a simple group of Lie type whose multiplicator M(R) has a subgroup
of type 12 © 22. Then there is a subgroup V such that M(/?)/ V ~ 22 © Z2, and
hence there is a stem extension Z >—> D -» R with Z ~ Af (/?)/ V. Assume that R
has an automorphism a of order 2 which leaves V invariant and acts non-trivially on
M(/?)/ V. Then a lifts to an automorphism of D.

Since a has a fixed point in Z, we can write Z = (a) x (b) where

a" = a and b" = ab.

Next choose / so that 2'"1 exceeds the exponent of a Sylow 2-subgroup of D. Let (x)
be a cyclic group of order 2' and form (x) K D where x acts on D according to a.
Identify x2'' with a to obtain a group G = (x) D where (x) D D = (a). The soluble
radical of G is O2(G) = (x2) Z.

Let P be a Sylow 2-subgroup of D such that Px = P. Then Pi = (x) P is a Sylow
2-subgroup of G. By computations similar to those in the proof of Lemma 7.2, it can
be shown that every subgroup of O2(G) is permutable in Pi. Hence G satisfies P2.
Since N2 is obviously satisfied, G is a P T-group. Finally, conjugation by x in Z is
not a power automorphism.

For example, one can take R to be PSL3(4) and V ~ Z3 © Z2 © I2.

Postscript: Sylow permutability

Let us say that a subgroup H of a group G is Sylow permutable, or S-permutable,
if HP = PH for all Sylow subgroups P of G. Kegel [8] proved that S-permutable
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subgroups are always subnormal. Therefore S-permutability is transitive in a group
G if and only if every subnormal subgroup is 5-permutable in G. We will call groups
of this type PST-groups. Thus every P T-group is a PST-group.

It turns out that the theory of P ̂ -groups extends readily to PST-groups, and in fact
the proofs are very similar. In the first place the structure of soluble PS7*-groups has
been determined by Agrawal [1], as follows.

(i) A group G is a soluble PST-group if and only if it has a normal abelian Hall
subgroup L of odd order such that G/L is nilpotent and elements of G induce power
automorphisms in L.

This, of course, is the analogue of Zacher's theoreHj. By arguments essentially
identical to those given above, one can establish the following facts.

(ii) There are characterizations of PST-groups corresponding to Theorems 3.1
and 3.2 which are obtained by omitting the conditions Pp in these results.

Thus the difference between P 7-groups and PST-groups is quite simply the prop-
erty Pp. Since Pp is valid in any modular p-group, we deduce at once:

(iii) A PST-group with modular Sylow subgroups is a PT-group.

The theorems on p -chief factors of PT-groups and on groups generated by sub-
normal P T-subgroups also generalize to PST-groups.

(iv) In a PST-group G all p -chieffactors covered by G" are G-isomorphic, as are
all p -chieffactors avoided by G".

(v) A group which is generated by normal PST-subgroups is an SC-group.

(I am grateful to J. C. Beidleman for bringing the class of PSjT-groups to my
attention.)
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