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REGULARIZERS OF CLOSED OPERATORS

BY
C.-S. LIN

1. Introduction. Let X and Y be two Banach spaces and let B(X, Y) denote the
set of bounded linear operators with domain X and range in Y. For T € B(X, Y),
let N(T) denote the null space and R(T) the range of T. J. I. Nieto [5, p. 64] has
proved the following two interesting results. An operator T € B(X, Y) has a left
regularizer, i.e., there exists a Q € B(Y, X) such that QT=1I+4, where I is the
identity on X and 4 € B(X, X) is a compact operator, if and only if dim N(T)< co
and R(T)has a closed complement. Also, T has a right regularizer, i.e., TQ=I1+4,
where 4 € B(Y, Y) is compact, if and only if dim Y/R(T)<co and N(T) has a
closed complement. Incidentally, we note that if R(7T) has a closed complement
(in particular dim Y/R(T)< o), then R(T) is closed. This is true even if T is a
closed operator with domain D(7T) < X [2, p. 100]. With a different approach the
same assertions have been proved by B. Yood [6, p. 609]. In particular, he has
shown the following characterizations:

¢ (G = {T € B(X, X): T has a left regularizer}
and

¢(G") = {T € B(X, X): T has a right regularizer},
where ¢ is the canonical homomorphism of the Banach algebra B(X, X) onto the
Banach algebra B(X, X)/K(X, X), K(X, X) is the closed two-sided ideal of com-
pact operators on X and G’ (resp. G”) denote the set of left (resp. right) invertible
elements in B(X, X)/K(X, X).

The purpose of this note is to consider different types of regularizations for an

unbounded operator T with D(T)SX and to characterize T in terms of its
regularizers.

2. Regularizers of closed operators. Let C(X, Y) denote the set of closed linear
operators with domain contained in X and range in Y. For T e C(X, Y), if there
exists an S € B(Y, X) such that

ST = I—A on D(T) with R(S) = D(T)
(resp. TS = I—A on Y and R(S) is closed),
where I is the identity on X (resp. Y) and A4 is a strictly singular operator on

D(4), X=D(A)=2 D(T), into D(T) (resp. in B(Y, Y)). Then S is said to be a
left (resp. right) s-regularizer of T. In particular, if 4 € B(X, X) (resp. B(Y, Y))
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is compact, degenerate or degenerate projection (for definitions of these operators
see, e.g., [2, 3, 4]), S is said to be a left (resp. right) c-, d- or dp-regularizer of T
respectively.

THEOREM 1. For T € C(X, Y), the following statements are equivalent.

(1) dim N(T)=a(T)< 0 and R(T) has a closed complement.

(2) T has a left dp-regularizer.

(3) T has a left d-regularizer.

(4) T has a left c-regularizer.

(5) T has a left s-regularizer and R(T) has a closed complement.

(6) T+K has a left s-regularizer for any strictly singular operator K from X
into Y with D(T)< D(K), and R(T) has a closed complement.

(7) There exists an Se€B(Y,X) with R(S)<=D(T) such that o(ST)=
dim D(T)/R(ST)< co.

(8) T is decomposible in the form T=E+J on D(T), where E € C(X, Y), D(E)=
D(T), R(T)SR(E), N(E)Y=N(T) and Je B(X, Y) is degenerate. Moreover, E
has a left dp-regularizer.

(9) Same as (8), but where J is compact.

Proof. (1)=-(2). We have that R(T) is closed, X=N(T)& X, and Y=R(T)D Y,
where X, and Y, are some closed subspaces of X and Y respectively. D(T)=
N(T)®&(X, N D(T)). Let Ty=T| (X, N D(T)), then T, € C(X, ¥) which is one-to-
one with the closed range R(T) or, equivalently, T, has a bounded inverse T, by
the closed-graph theorem. Let Q be the projection of Y onto R(T) and S=T, 0.
Also let 4 be the projection of X onto N(T). Then A is degenerate and ST=I/—A4
on both N(T) and X, N D(T), and hence on D(T).

(2)=-(3)=-(4) trivially.

(4)=-(5): The first part is clear. Now, ST=I—A4 on D(T) and 4 is compact,
hence «(ST) and dim D(T)/R(ST) are finite by the theory of F. Riesz [1, p. 315].
N(S) is closed since S e B(Y, X), dim T(N(ST))< o and T(N(ST))<S N(S), so
we may let Y; be a closed subspace of N(S) such that N(S)=T(N(ST))@Y;. Also
let M be a closed subspace of X such that X=N(ST)@M. That T(N(ST)) N
T(M N D(T)={0}=Y, N T(M N D(T)) is easily verified. Let

Yo=(T(NST) @ TM N D(T))© Y, =R(T)® 1y,
and Y, be a subspace of Y such that Y=Y,®Y,. Since N(S)< Y,
D(T) 2 R(S) = S(Y,) @ S(Yz) = R(ST) @ S(Yy).

On Y, the operator S is one-to-one, and dim S(Y,) < oo since dim D(T)/R(ST)< o,
it follows that dim Y,<oo and hence Y;®Y, is closed in Y. The relation Y=
R(T)®(Y,®Y,) implies the result.

(5)=(6): That T+K e C(X, Y) is easily verified. Since ST=I—A4 on D(T),
S(T+K)=I—(4A—SK) on D(T) and A—SK is strictly singular [3, p. 286].
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(6)=-(1): Take K=0, then ST=I—A4 on D(T). N(ST)={x € D(T):Ax=x},
hence || Ax|| =]x|| for x € N(ST), i.e., the strictly singular operator 4 has a bounded
inverse on N(ST) and thus «(ST)< 0. a(T)< oo since N(T) < N(ST).

(D=-(7): We see from “(1)=-(2)” that R(ST)=T, Q(R(T))=X, N D(T) and
N(ST)=N(T,T)=N(T). Hence a(ST)=a(T)=dim D(T)/R(ST) which is finite.

(D=-(1): It remains to show that R(T) has a closed complement, but this follows
exactly the same as (4)=-(5).

(1)=-(8): Notation as in “(1)=-(2)”". By using a known method we may construct
a bounded linear operator G on the finite dimensional space N(T) into Y. Say,

G(x) = z o

where f; is a bounded linear functional on X such that f;(x;)=4;; and {x,, . . . , x,,}
is a basis of N(T'), and {y,, . . ., y,} is a linearly independent subset (resp. a set of
n arbitrary elements) of Y, if dim Y,>n=dim N(T) (resp. dim Y,<n). On D(T)
let E=T—J and J=GA, then R(T)=T|(X, N D(T))=E| (X, N D(T))< R(E),
and if x € N(E), Tx=GAx € Y,, Tx=0 and hence N(E)< N(T). Since SE=ST—
SJ=8ST—Ty'QGA=ST=I—A on D(T), the last part follows.

(8)=(4): If SeB(Y, X) is a left dp-regularizer of E, SE=I—A, then ST=
SE—SJ=I—(SJ+A4) on D(T).

Now, that (1)=>(9)=-(4) is clear. Q.E.D.

THEOREM 2. For T € C(X, Y), the following statements are equivalent.

(1) dim Y/R(T)=p(T)< © and D(T) is a direct sum of N(T) and a closed sub-
space of X.

(2) T has a right dp-regularizer.

(3) T has a right d-regularizer.

(4) T has a right c-regularizer.

(5) T has a right s-regularizer.

(6) T+K has a right s-regularizer for any strictly singular operator K from X
into Y with D(T)< D(K).

(7) There exists an S € B(Y, X) with the closed range R(S)< D(T) such that
B(TS)=a(TS)< .
(8) T is decomposible in the form T=E+J on D(T), where E € C(X, Y), D(E)=
D(T), R(T)SR(E), N(E)Y=sN(T) and Je B(X, Y) is degenerate. Moreover, E
has a right dp-regularizer.

(9) Same as (8), but where J is strictly singular.

Proof. (1)=>(2). D(T)=N(T)®X, and Y=R(T)®Y,, where X, is some closed

subspace of X and dim Y,< oo by assumption. Note that R(T) is closed. If Ty=
T| X,, then T, € C(X, Y) which is bounded as well, and it has a bounded inverse
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T;'. Let Q and S be as in Theorem 1 “(1)=-(2)”” and 4 be the projection of Y onto
Y,, then R(S)=X, and TS=7—A4 on Y.

@)=-(3)=(4)=-(5) trivially.

(5)=-(6) similarly as in Theorem 1.

(6)=-(7): Take K=0, then TS=I—A4 on Y, and f(TS)=a(TS)< by either the
Riesz-Schauder theorem for a strictly singular operator [3, p. 321] or a stability
theorem perturbed by a strictly singular operator [2, p. 117].

(N=(1): Since R(TS)SR(T), B(T)=f(TS)< . Let Y=N(TS)®M, where
M is some closed subspace of Y, then R(S)=S(N(TS))®S(M) since N(S)=
N(TS). Since R(S) is closed and dim S(N(T'S))< o, S(M) is closed by a remark
in the section 1. Obviously N(T) N S(M)={0}, so let Xo=N(T)®S(M)< D(T)
and X; be a subspace of X such that X=X,@X;. Then D(T)=N(T)oS(M)®
(X; N D(T)) and hence

Y2 R(T) = TS(M) ® T(X; N D(T)) = R(TS) ® T(X, N D(T)).
But on X; N D(T) the operator T is one-to-one and G(7'S)<co, so dim (X; N
D(T))< o and hence S(M)®(X; N D(T)) is closed in X.

(1)=>(8): Let X; be a finite dimensional subspace of N(T) and let X=X,®X,,
where X, is some closed subspace. Let P be the projection of X onto X;. Notation
as in “(1)=-(2)”, as before we may construct a bounded linear operator G on X,
into Y,. On D(T) let E=T—J and J=GP. Then the desired result follows as in

Theorem 1.
(8)=-(5) as in Theorem 1 “(8)=-(4)"" and that (1)=-(9)=-(5) is easily seen. Q.E.D.

3. REMARKS. Let us consider operators in B(X, Y), now, the condition that
R(T) has a closed complement in Y in (5) and (6) of Theorem 1 may be omitted,
because in this case a(ST)=p(ST)<co by a remark in the proof (6)=-(7) of
Theorem 2. Accordingly, the operator J in (9) of Theorem 1 may be strictly
singular. The closedness of R(S) in the definition of a right regularizer may also
be omitted, since we may regard T as a left regularizer of S and hence R(S) is
closed. In the proof (7)=-(1) of Theorem 2 we need the closedness condition of
R(S), however, from (7) we see that S has a left regularizer and hence R(S) is
automatically closed.

Finally, we note that if both X and Y are Hilbert spaces and T € B(X, Y), the
statement (5) of Theorem 1 and 2 is superfluous, since T is compact if and only if
T is strictly singular [3, p. 287]. Also, the second condition in (1) of Theorem 1 is
equivalent to the closedness of R(T), and that of Theorem 2 is superfluous.

The author is grateful for referee’s suggestions.
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