AFFINE SUBPLANES OF FINITE PROJECTIVE PLANES

J. F. RIGBY

Introduction. Let π be a finite projective plane of order n containing a finite projective subplane π^{*} of order $u<n$. Bruck has shown (1, p. 398) that if π contains a point that does not lie on any line of π^{*}, then $n \geqslant u^{2}+u$, while if every point of π lies on a line of π^{*} then $n=u^{2}$.

Let π be a finite projective plane of order n containing a finite affine subplane π_{0} of order $m<n$. Ostrom and Sherk have shown (5, p. 551) that if π contains a point that does not lie on any line of π_{0}, then $n \geqslant m^{2}-1$, while if every point of π lies on a line of π_{0}, then $m^{2}-1 \geqslant n \geqslant m^{2}-m+1$, except for the special case $m=3, n=4$.

In this paper we deal only with the case in which every point of π lies on a line of π_{0}, except in $\S 6$. If we write $n=m^{2}-1-k$, the above result states that $0 \leqslant k \leqslant m-2$, except when $m=3, n=4$. We prove here that

$$
k+1 \leqslant \frac{1}{2}(m+1) \quad \text { except when } \quad m=3, k=4, n=4
$$

and

$$
k+1 \geqslant(m+1)^{\frac{1}{2}} \quad \text { except when } \quad m=2, k=0, n=3
$$

We also slightly improve this second inequality in certain cases, after a deeper investigation of the structure of π (cf. § 1).

Examples of planes of this type are known to exist when $m=3, n=4$ and when $m=3, n=7$ (§ 1 , and $\mathbf{5}, \mathrm{p} .556$), also in the trivial case $m=2$, $n=3$. We find no new examples of such planes in this paper. However, the above inequalities show that n cannot be a square and the results of $\S 6$ (quoted in the next paragraph), show that π cannot be Desarguesian, except in the examples already known. This restricts the choice of π in any search for new examples.

In § 6 we assume that π is Desarguesian (finite or infinite) and we drop the restriction that every point of π lies on a line of π_{0}. We show that if π_{0} has order greater than 3, then π_{0} also is Desarguesian, that the lines of a parallel-class in π_{0} all meet at a common vertex in π, that the vertices of all parallel-classes are collinear in π, and that in the finite case n is a power of m. Ostrom and Sherk have shown (5, p. 556) that these results are not always true if $m=3$ (except that π_{0} must of course be Desarguesian).

Received July 9, 1964.

For ease of reference, results will be numbered consecutively, irrespective of whether they are called theorems or lemmas.

I should like to thank F. A. Sherk and the referee for their helpful suggestions.

1. Basic definitions and theorems. A projective plane is a system of elements called points and lines, together with a relation of incidence, satisfying the following axioms:
(i) Any two distinct points are incident with just one line.
(ii) Any two distinct lines are incident with just one point.
(iii) There exist four points, no three of which are incident with the same line.
An affine plane is a system of elements called points and lines, together with a relation of incidence, satisfying the following axioms:
(i) Any two distinct points are incident with just one line.
(ii) Given a line l and a point P not incident with l, there exists exactly one line l^{\prime} incident with P which does not meet l (two lines meet if they are incident with the same point).
(iii) There exist three points not all incident with the same line.

We shall use the usual terminology of incidence, namely "lies on," "passes through," "collinear," "concurrent," etc. With this terminology the axioms assume a more familiar look.

Two lines of an affine plane that do not meet are called parallel.
A projective or affine plane is finite if it contains only a finite number of points and lines.

Axiom (iii) in each case is used to exclude trivial uninteresting planes, such as that represented diagrammatically in Figure 1, which satisfies axioms (i) and (ii) for projective planes.

Figure 1
Theorem 1.1 (1, p. 348).
(a) If one line of a finite projective plane π contains $n+1$ points, then $n \geqslant 2$ and:

Every line of π contains $n+1$ points.
Through every point of π there pass $n+1$ lines.
The plane π contains $n^{2}+n+1$ points and $n^{2}+n+1$ lines.
(b) If one line of a finite affine plane π_{0} contains m points, then $m \geqslant 2$ and:

Every line of π_{0} contains m points.
Through every point of π_{0} there pass $m+1$ lines.
The plane π_{0} contains m^{2} points and $m^{2}+m$ lines.

The lines of π_{0} can be divided into $m+1$ mutually exclusive parallel-classes containing m lines each, two lines belonging to the same parallel-class if and only if they are parallel.

Only (a) is proved in (1), but (b) can be proved similarly.
If n and m are defined as in the above theorem, we call π a projective plane of order n and π_{0} an affine plane of order m. In an affine plane, a parallel class consists of a set of lines, every pair of which are parallel. Lines from distinct parallel-classes intersect.

Theorem 1.1 plays a fundamental part in any discussion of finite planes. It will not be quoted explicitly each time it is used.

An important question about finite planes is this. Given an integer n, how many types of projective or affine planes of order n exist (if any)? All the planes known at present have prime-power order, but the only restriction on the order up to now is given by

Theorem 1.2 (The Bruck-Ryser Theorem, 1, p. 394). If there exists a projective or affine plane of order n, and if $n \equiv 1$ or $2(\bmod 4)$, then n is expressible as the sum of the squares of two integers.

It follows that there are no finite planes of order 6 , but it is not known whether or not a finite plane of order 10 exists $(10 \equiv 2(\bmod 4)$, but $10=1^{2}+3^{2}$).

One method of trying to construct planes is to investigate subplanes. A subplane (projective or affine) of a plane π is a system consisting of a subset of the points of π and a subset of the lines of π which itself forms a projective or affine plane with respect to the incidence already defined in π.

It is well known that if we take a projective plane π of order n and remove a single line l and all the points on it, then the resulting system π_{0} is an affine plane of order n, a subplane of π. Lines of π (other than l) concurrent in a point of l form a parallel class in π_{0}.

Conversely, if we take an affine plane π_{0} of order n and add to it $n+1$ new points, each new point being incident with every line of a given parallelclass and with no other line of π_{0}, distinct new points being incident with distinct parallel-classes, and if we also add one new line incident with all the new points but with no point of π_{0}, then the resulting system is a projective plane π of order $n ; \pi_{0}$ is a subplane of π. Let us call this plane π the projective extension of π_{0}. We shall use this term in § 6 .

The following result is due to R. H. Bruck (1, p. 398):
Theorem 1.3. Let π be a projective plane of order n, containing a projective subplane π^{*} of order $u<n$. If π contains a point that does not lie on any line of π^{*}, then $n \geqslant u^{2}+u$. If every point of π lies on a line of π^{*}, then $n=u^{2}$.

Bruck also raised the question of what can be said in the case of affine subplanes. This question was first considered by Ostrom and Sherk, but
before quoting their results we shall consider some examples. These examples will help to clarify the situation we shall be considering, and will give some indication of the type of diagram to be used later on.

Table I gives an affine plane of order 3 consisting of the nine points A, B, C, D, E, F, G, H, K. The twelve lines have not been labelled, but the table signifies that there is a line containing just the three points A, B, C, etc. The lines have been divided into the four parallel-classes.

TABLE I

$A B C$
$D E F$
$\frac{G H K}{A D G}$
$B E H$
$\underline{C F K}$
$B D K$
$C E G$
$\underline{A F H}$
$B F G$
$A E K$
$C D H$

TABLE II

$A B C X Y$	$A M R V Z$
$D E F X Z$	$B L Q U Z$
$G H K Y Z$	$C N P W Z$
$A D G P Q$	$D N R U Y$
$B E H P R$	$E M Q W Y$
$C F K Q R$	$F L P V Y$
$B D K V W$	$G L R W X$
$C E G U V$	$H N Q V X$
$A F H U W$	$K M P U X$
$B F G M N$	
$A E K L N$	
$C D H L M$	

Figure 2 gives an incomplete representation of this plane. It is impossible to give a complete representation of the abstract points and lines of the plane by Euclidean points and lines. In fact A lies on $F H, C$ on $D H, G$ on $B F$, and K on $B D$. The other eight lines are completely represented. Do not be misled by the diagram. For instance, $A E$ and $B D$ meet at K, not at a non-existent point "inside the square $A B E D$."

Figure 2

We can embed this affine plane of order 3 in a projective plane of order 3 as described above. The result is illustrated in Figure 3, where the four new
points are denoted by $J_{1}, J_{2}, J_{3}, J_{4}$. Note that A still lies on the line $H F J_{3}$, etc.

Figure 3
Table II gives a projective plane of order 4 , consisting of $4^{2}+4+1=21$ points and 21 lines. If we consider only the nine points A, B, C, D, E, F, G, H, K and the first twelve lines of the plane, we obtain Table I. Thus our affine plane of order 3 is a subplane of our projective plane of order 4 . This is illustrated in Figure 4. All 21 points are shown, but we have given up

Figure 4
using straight Euclidean lines, and no attempt has been made to show the last nine lines of Table II. Note that A still lies on $H F U W$, etc.

Suppose now that the projective plane π of order n contains an affine subplane π_{0} of order m. If $m=n$, then π can be obtained from π_{0} only by the method already described. Clearly we cannot have $m>n$. Hence we shall assume from now on that $m<n$. Ostrom and Sherk (5, p. 551) have proved

Theorem 1.4. If π contains a point that does not lie on any line of π_{0}, then $n \geqslant m^{2}-1$. If every point of π lies on a line of π_{0}, then either $m=3$ and $n=4$ (the example considered above) or $m^{2}-1 \geqslant n \geqslant m^{2}-m+1$.

As we remarked in the Introduction, in this paper we deal only with the case in which every point of π lies on a line of π_{0}, except in $\S 6$.

We shall write $n=m^{2}-1-k$. Theorem 1.4 states that either $m=3$, $k=4, n=4$ or $0 \leqslant k \leqslant m-2$. We shall prove the following results:

Either $m=3, k=4, n=4$ or $k+1 \leqslant \frac{1}{2}(m+1)$, in $\S 2$.
Either $m=2, k=0, n=3$ or $k+1 \geqslant(m+1)^{\frac{1}{2}}$, in $\S 3$.
After further investigations of the structure of π in §4, we improve the results of $\S 3$ in $\S 5$, showing that:

Either $m=2, k=0, n=3$, or $m=3, k=1, n=7$, or $7 \leqslant m \leqslant 12$, $k \geqslant(m-3)^{\frac{1}{2}}$, or $m \geqslant 13, k \geqslant(m-4)^{\frac{1}{2}}$.

In § 6 we prove the result about Desarguesian planes mentioned in the first paragraph of the paper. The results of $\S 5$ serve to increase by 1 the lower bound obtained for k in $\S 3$, for most but not all values of m. One is tempted to say that the extra information obtained does not justify the amount of extra calculation used to obtain it, but these calculations do show, in the absence of examples for $m>3$, that if any significant improvement is possible in the lower bound for k, it must be obtained by using much stronger inequalities than we have used here.

It is useful to bear in mind that when $n=2,3,4,5,7,8$ there is just one type of projective (or affine) plane of order n, to within isomorphism, namely that which can be co-ordinatized by using the Galois field GF (n) of n elements ($2 ; 3 ; 4$). There is no projective or affine plane of order 6 (by the BruckRyser theorem, 1.2) or of order 1.

The symbol $\pi-\pi_{0}$ denotes the set of those points and lines of π that are not points or lines of π_{0}.
2. Initial results. If $m=2$, then $n=3$ by 1.4. When $m=2, \pi_{0}$ consists of a quadrangle and its six sides. This configuration is contained in every projective plane, so the case $m=2, n=3$ certainly exists. We shall assume henceforth that $m>2$.

We can draw a diagram showing the m^{2} points of π_{0} arranged in a square
and the $m^{2}+m$ lines of π_{0} in $m+1$ parallel-classes of m lines each. The remaining points of π all lie on the lines of π_{0} (since this is our assumption throughout $\S \S 2-5$). Each line of π_{0} contains $n+1$ points of π, and so contains $n+1-m$ points of $\pi-\pi_{0}$. The total number of points of $\pi-\pi_{0}$ lying on the lines of a particular parallel-class depends on how these lines intersect in π. (Parallel lines of π_{0} must meet in π, since π is a projective plane.) The m lines of a parallel-class may all meet in a single point of π, as in Figure 3, in which case we shall say that they form a pencil in π, or they may meet by twos in $\frac{1}{2} m(m-1)$ points of π, as in Figure 4, or an intermediate situation may occur. Various possibilities are shown in Figure 5 with $m=5$. Only three of the six parallel-classes are shown there. Figure 5 and some of the subsequent figures are intended only as helpful illustrations of various situations and should not be taken too literally. We shall show that $m=5$ is impossible in planes of the type under discussion, and in Figure 9, for example, which shows $m=5$, we must in fact have $m \geqslant 11$.

Figure 5

Lemma 2.1. $n \leqslant m^{2}-1$, with equality if and only if each parallel-class of π_{0} forms a pencil in π.

Proof. Consider the m lines of a parallel-class. The first contains $n+1-m$ points of $\pi-\pi_{0}$. The second (which must intersect the first in a point P of $\pi-\pi_{0}$) contains ($n+1-m$) - $1=n-m$ new points of $\pi-\pi_{0}$. The third (which must intersect the first two) contains at most $n-m$ new points, and contains exactly $n-m$ if and only if it passes through P. This last statement is also true for the remaining lines of the parallel-class. Hence the number of points of $\pi-\pi_{0}$ in a parallel-class is less than or equal to $m(n-m)+1$, with equality if and only if the parallel-class forms a pencil in π.

Lines of distinct parallel-classes have no point of $\pi-\pi_{0}$ in common. Hence the number of points of π is less than or equal to

$$
(m+1)[m(n-m)+1]+m^{2}
$$

with equality if and only if every parallel-class forms a pencil. But the number of points of π is $n^{2}+n+1$. Hence

$$
n^{2}+n+1 \leqslant(m+1)[m(n-m)+1]+m^{2}
$$

which reduces to

$$
(n-m)\left[n-\left(m^{2}-1\right)\right] \leqslant 0
$$

Since $n>m$, this gives $n \leqslant m^{2}-1$, with equality if and only if each parallelclass forms a pencil.

Lemma 2.2. If $m>2$, not every parallel-class can form a pencil; hence $n \neq m^{2}-1$.

Proof. Suppose the parallel-classes all form pencils, with vertices P_{0}, P_{1}, \ldots, P_{m}, say. Suppose there exists a line of π through P_{0} not containing any point of π_{0} and not passing through P_{1}, P_{2}, \ldots, or P_{m}. This line will meet the m^{2} lines of π_{0} through $P_{1}, P_{2}, \ldots, P_{m}$ in m^{2} distinct points of π, all distinct from P_{0}. The line will thus contain at least $m^{2}+1$ points, that is, $n+2$ points (by 2.1). This is impossible since a line of π contains just $n+1$ points. Thus every line of π through P_{0} must be one of the m lines of π_{0} through P_{0}, or must pass through P_{1}, P_{2}, \ldots, or P_{m}. Thus there are at most $m+m$ lines of π through P_{0}. But there are just $n+1$ lines of π through P_{0}. Hence by 2.1

$$
2 m \geqslant n+1=m^{2}, \quad \text { so } m \leqslant 2
$$

The result now follows by 2.1.
Note. The other case, besides $m=2, n=3$, when every parallel-class can and does form a pencil is the trivial case $m=n$ mentioned in § 1 .

Corollary. If $m>2$, then $n \leqslant m^{2}-2$ (i.e., $k \geqslant 1$).
Theorem 2.3. Either $m=3, n=4$, or $k+1 \leqslant \frac{1}{2}(m+1)$ so that

$$
n \geqslant m^{2}-\frac{1}{2} m-\frac{1}{2}
$$

Proof. (Cf. the proof of 2.1) Consider the m lines of a parallel-class. The first contains $n+1-m$ points of $\pi-\pi_{0}$. The second (which must intersect the first in a point of $\pi-\pi_{0}$) contains $(n+1-m)-1$ new points of $\pi-\pi_{0}$. The third contains at least $(n+1-m)-2$ new points (since it has at most two points in common with the previous lines). The r th line $(r=4,5, \ldots, m)$ contains at least $(n+1-m)-(r-1)$ new points. Hence the m lines contain at least

$$
m(n+1-m)-\frac{1}{2} m(m-1)
$$

points of $\pi-\pi_{0}$. Hence π contains at least

$$
(m+1)\left[m(n+1-m)-\frac{1}{2} m(m-1)\right]+m^{2}
$$

points. But π contains $n^{2}+n+1$ points. Hence

$$
n^{2}+n+1 \geqslant(m+1)\left[m(n+1-m)-\frac{1}{2} m(m-1)\right]+m^{2}
$$

which reduces to

$$
\begin{equation*}
n^{2}-\left(m^{2}+m-1\right) n+\frac{1}{2}\left(m^{2}-1\right)(3 m-2) \geqslant 0 \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
n \leqslant \frac{1}{2}\left\{\left(m^{2}+m-1\right)-\sqrt{ }\left[\left(m^{2}-2 m-\frac{1}{2}\right)^{2}+\left(2 m-\frac{13}{4}\right)\right]\right\} \tag{2}
\end{equation*}
$$

or
(3) $\quad n \geqslant \frac{1}{2}\left\{\left(m^{2}+m-1\right)+\sqrt{ }\left[\left(m^{2}-2 m-\frac{1}{2}\right)^{2}+\left(2 m-\frac{13}{4}\right)\right]\right\}$.

We are assuming that $m>2$, so

$$
m^{2}-2 m-\frac{1}{2}>0 \quad \text { and } \quad 2 m-\frac{13}{4}>0
$$

Hence from (2)

$$
n<\frac{1}{2}\left\{\left(m^{2}+m-1\right)-\left(m^{2}-2 m-\frac{1}{2}\right)\right\}=\frac{3}{2} m-\frac{1}{4},
$$

which is impossible since we have $n \geqslant m^{2}-m+1$ (by 1.4), unless $m=3$, $n=4$.

Alternatively, from (3)

$$
n>\frac{1}{2}\left(m^{2}+m-1\right)+\left(m^{2}-2 m-\frac{1}{2}\right)=m^{2}-\frac{1}{2} m-\frac{3}{4} .
$$

Since n is an integer, we deduce that

$$
n \geqslant m^{2}-\frac{1}{2} m-\frac{1}{2} .
$$

Note. Although we have neglected the term $2 m-\frac{13}{4}$ in (2) and (3) it is easy to check that the final inequality is the best that can be obtained from (1).
3. The structure of parallel-classes. A point of π where just $s+1$ lines of π_{0} meet will be called a point of valency s or an s-point. (The standard name here would be a point of valency $s+1$, but I feel that the gain in compactness produced in many of the subsequent expressions justifies this departure from the standard name.) We see that the points of π_{0} are m-points, the vertex of a pencil of parallels is an ($m-1$)-point, and a point lying on just one line of π_{0} is a 0 -point.

We define the valency of a line as the sum of the valencies of the points of that line.

Lemma 3.1. Every line of $\pi-\pi_{0}$ has valency $m+k$.

Proof. Consider a line l of π which is not a line of π_{0}. Each of the $n+1$ points of l lies on a line of π_{0}. Each of the $m^{2}+m$ lines of π_{0} meets l, and $s+1$ lines of π_{0} pass through an s-point on l. Let A_{s} denote the number of s-points on l. Then

$$
\sum(s+1) A_{s}=m^{2}+m
$$

and

$$
\sum A_{s}=n+1=m^{2}-k
$$

Hence $\sum s A_{s}=m+k$.
Note. A better geometrical insight can perhaps be obtained by presenting the above proof in a more informal way. If l met all the $m^{2}+m$ lines of π_{0} in distinct points, then l would contain $m^{2}+m$ points. But l contains only $n+1=m^{2}-k$ points, so somehow we have to "lose" $m+k$ points. We lose s points whenever l passes through an s-point, since the $s+1$ lines meet l in one point instead of $s+1$ points. Thus the total number of points lost is the valency of l. Hence the valency of l is $m+k$.

This result does not apply to lines of π_{0}, which are easily seen to have valency $m^{2}+m-1$.

Lemma 3.2. If $m>3$, then at most one parallel-class of π_{0} can be a pencil in π.
Proof. Suppose we have two pencils with vertices P_{0} and P_{1}, each of valency $m-1$. The line $P_{0} P_{1}$ has valency at least $2 m-2$. But $P_{0} P_{1}$ is clearly not a line of π. Hence $2 m-2 \leqslant m+k$ (by 3.1). Thus $k \geqslant m-2$. But $k \leqslant \frac{1}{2} m-\frac{1}{2}$ (by 2.3), so $\frac{1}{2} m-\frac{1}{2} \geqslant m-2$. Thus $m \leqslant 3$.

Lemma 3.3. A parallel-class of π_{0} that is not a pencil in π cannot contain points of $\pi-\pi_{0}$ of valency greater than k (i.e., if the parallel-class contains an s-point of $\pi-\pi_{0}$, then $s \leqslant k$).

Proof. Let S be an s-point of $\pi-\pi_{0}$ belonging to a parallel-class that is not a pencil. Then there is a point Q of π_{0} not lying on any of the $s+1$ lines of π_{0} through S. (See Figure 6.) The valencies of S and Q are s and m respec-

Figure 6
tively, so $S Q$ has valency $s+m$ at least. But $S Q$ is clearly not a line of π_{0}. Hence $s+m \leqslant m+k$ (by 3.1). Hence $s \leqslant k$.

Notes. (a) Since, in a parallel-class that is not a pencil, there must exist an s-point with $s \geqslant 1,3.3$ shows that $k \geqslant 1$, so we have an alternative proof
of the corollary to 2.2 , when $m \geqslant 3$ (by 3.1). But we still need 2.2 to show that when $m=3$ not every parallel-class is a pencil.
(b) Unless $m=3, n=4$, we have $k<m-1$ (by 2.3) so a k-point cannot be the vertex of a pencil.

Lemma 3.4. If the points of intersection (in $\pi-\pi_{0}$) of the m lines of a parallelclass consist of $B_{s} s$-points $(s=1,2, \ldots, m-1)$, then

$$
\sum s(s+1) B_{s}=m(m-1)
$$

Proof. If the m lines met by twos, they would have $\frac{1}{2} m(m-1)$ points of intersection, but if $s+1$ lines meet together (at an s-point), then $\frac{1}{2} s(s+1)$ of these points of intersection are absorbed into a single point. Thus

$$
\sum \frac{1}{2} s(s+1) B_{s}=\frac{1}{2} m(m-1) .
$$

Note. This formula is true for any m lines, each of which meets every other.
For a given value of k, the number of points of $\pi-\pi_{0}$ in a parallel-class depends on how the lines of the parallel-class intersect, as we remarked in $\S 2$. From the results of $\S 2$ it seems reasonable to suppose that the lower the valencies of the intersections, the fewer the number of points in the parallel-class. This turns out to be so.

In the proof of 2.1 we found an upper bound for the number of points of $\pi-\pi_{0}$ in a parallel-class. We shall now decrease this upper bound (except for pencils) by using 3.3 . In $\S 5$ we shall decrease the upper bound still further.

Lemma 3.5. The lines of a parallel-class that is not a pencil contain at most

$$
m\left(m^{2}-m-k\right)-m(m-1) /(k+1)
$$

points of $\pi-\pi_{0}$.
Proof. Each line of such a parallel-class contains $n+1-m=m^{2}-m-k$ points of $\pi-\pi_{0}$. Using two different ways to count the number of point-line pairs (P, l), where P is a point of $\pi-\pi_{0}$ lying on a line l of the parallel-class, we have (with the notation of 3.4)

$$
\begin{equation*}
m\left(m^{2}-m-k\right)=\sum(s+1) B_{s} \tag{4}
\end{equation*}
$$

Hence the number of points in the parallel-class is

$$
\begin{equation*}
\sum B_{s}=m\left(m^{2}-m-k\right)-\sum s B_{s} \tag{5}
\end{equation*}
$$

where the summation goes from 0 to k only (by 3.3). (As in 3.1 , we can obtain this expression in a more informal way. If the lines of the parallel-class did not meet, they would contain a total of $m\left(m^{2}-m-k\right)$ points of $\pi-\pi_{0}$; but for each s-point we must subtract s from this total. Hence the parallelclass contains

$$
m\left(m^{2}-m-k\right)-\sum s B_{s}
$$

points of $\pi-\pi_{0}$.)

Now

$$
\begin{aligned}
m(m-1) & \left.=\sum_{s=0}^{k} s(s+1) B_{s} \quad \text { (by } 3.4 \text { and } 3.3\right) \\
& \leqslant \sum_{s=0}^{k} s(k+1) B_{s}=(k+1) \sum_{s=0}^{k} s B_{s} .
\end{aligned}
$$

Hence

$$
\sum_{s=0}^{k} s B_{s} \geqslant m(m-1) /(k+1)
$$

The result now follows from (5).
Note. This inequality is the best possible one at present, since for suitable values of m and k (e.g., $m=7, k=2$) there seems to be no reason why the lines of a parallel-class should not meet entirely in k-points. If this occurs, the above inequality becomes an equality. We shall show in 4.1 , however, that when $m>3$ we cannot have equality occurring in every parallel-class that is not a pencil.

Theorem 3.6. Either $m=2, k=0, n=3$, or $k+1 \geqslant(m+1)^{\frac{1}{2}}$ so that

$$
n \leqslant m^{2}-(m+1)^{\frac{1}{2}}
$$

Proof. We have already dealt with $m=2$. When $m=3$ the result follows from the corollary to 2.2 . Assume then that $m>3$.

By 3.2, m of the parallel-classes are not pencils. By 3.5, these contain at most $m\left[m\left(m^{2}-m-k\right)-m(m-1) /(k+1)\right]$ points of $\pi-\pi_{0}$. The remaining parallel-class, which may be a pencil, contains at most

$$
m(n-m)+1=m\left(m^{2}-1-k-m\right)+1
$$

points of $\pi-\pi_{0}$. (See proof of 2.1.)
Since π_{0} contains m^{2} points and π contains $n^{2}+n+1$ points, we deduce that

$$
\begin{align*}
& n^{2}+n+1 \leqslant m^{2}+m\left[m\left(m^{2}-m-k\right)-m(m-1) /(k+1)\right] \tag{6}\\
&+m\left(m^{2}-1-k-m\right)+1 \\
&=(m+1) m\left(m^{2}-m-k\right)+m^{2}-m+1-m^{2}(m-1) /(k+1)
\end{align*}
$$

Putting $n=m^{2}-1-k$, we obtain

$$
\begin{equation*}
m^{3}-m^{2}\left(k^{2}+2 k+2\right)+m(k+1)^{2}+k(k+1)^{2} \leqslant 0 \tag{7}
\end{equation*}
$$

The last two terms on the left-hand side are strictly positive (since $k \geqslant 1$ by the corollary to 2.2), so $m^{3}-m^{2}\left(k^{2}+2 k+2\right)<0$. Hence $k+1>(m-1)^{\frac{1}{2}}$.

There is no integer strictly between $(m-1)^{\frac{1}{2}}$ and $m^{\frac{1}{2}}$, and $k+1$ is an integer, so $k+1 \geqslant m^{\frac{1}{2}}$.

If we put $k+1=m^{\frac{1}{2}}$ on the left-hand side of (7) we obtain

$$
m^{3}-m^{2}(m+1)+m^{2}+m\left(m^{\frac{1}{2}}-1\right)=m\left(m^{\frac{1}{2}}-1\right)
$$

which is greater than zero, so the inequality is not satisfied. Hence

$$
k+1>m^{\frac{1}{2}}
$$

Again, there is no integer strictly between $m^{\frac{1}{2}}$ and $(m+1)^{\frac{1}{2}}$, so

$$
k+1 \geqslant(m+1)^{\frac{1}{2}} .
$$

This is the best we can do, since (7) is satisfied if $k+1=(m+1)^{\frac{1}{2}}$.
Note. It is worth considering whether we can improve this inequality if none of the parallel-classes forms a pencil. In this case, instead of (6) we obviously get

$$
n^{2}+n+1 \leqslant m^{2}+(m+1)\left[m\left(m^{2}-m-k\right)-m(m-1) /(k+1)\right] .
$$

We deal with this as with (6), but it turns out that we can still obtain nothing better than $k+1 \geqslant(m+1)^{\frac{1}{2}}$.

Lemma 3.7. If $m>3$, then $m \geqslant 7$.
Proof. If $m=4$, then (by 2.3 and 3.6), $5 / 2 \geqslant k+1 \geqslant \sqrt{ } 5$, which is impossible since k must be an integer. If $m=5$, then $3 \geqslant k+1 \geqslant \sqrt{ } 6$, so $k=2$. This gives $n=22$, which is impossible by the Bruck-Ryser Theorem (1.2). Also $m=6$ is impossible by the Bruck-Ryser Theorem.
4. Further structure of parallel-classes. Let C_{s} denote the number of s-points in the whole plane π. Then $C_{m}=m^{2}$ (the points of π_{0} are the only m-points) and $C_{m-1}=0$ or 1 (by 3.2). Apart from these two cases, $C_{s}=0$ if $s>k$ (by 3.3). We can easily show that 0 -points (points lying on only one line of π_{0}) must exist on every line of π_{0}, except when $m=3, n=4$.

By 2.3 and 3.6 we see that if $m=3$ then $n=4$ or 7 . Ostrom and Sherk (5) have shown that both these cases exist. We shall assume from now on that $m \geqslant 7$ (using 3.7). It follows by 3.6 that $k \geqslant 2$.

Lemma 4.1. There exists a point of positive valency less than k (i.e., there exists an $s, 0<s<k$, such that $\left.C_{s}>0\right)$. Furthermore, if there exists a pencil (i.e., if $C_{m-1}=1$) and if there exists a k-point, then there exists a 1 -point.

Proof. We deal first with the last part. Suppose π contains P, the vertex of a pencil, of valency $m-1$, and K, a k-point, of valency k. (See Figure 7.) Then P and K, which are distinct since $m-1 \neq k$ (by 2.3), contribute $m+k-1$ to the valency of $P K$. But $P K$ is clearly not a line of π_{0}, so its valency is $m+k$ (by 3.1). Hence $P K$ must contain a 1 -point, to contribute the extra 1 to the total valency.

We have now only to exclude the case when there is no pencil and where the lines of every parallel-class meet entirely in k-points. In this case (see 3.5 and the notes following 3.5 and 3.6) we have

$$
n^{2}+n+1=m^{2}+(m+1)\left[m\left(m^{2}-m-k\right)-m(m-1) /(k+1)\right]
$$

Figure 7
which reduces to $f(k+1)=0$, where

$$
f(x)=x^{3}-\left(m^{2}-m+1\right) x^{2}-(m-1) x+\left(m^{3}-m\right)
$$

Now $f(0)>0$,

$$
\begin{array}{ll}
f\left((m+1)^{\frac{1}{2}}\right)=(m+1)^{\frac{1}{2}}\left[2-(m+1)^{\frac{1}{2}}\right]<0 & \text { since } m \geqslant 7 \\
f\left(\frac{1}{2}(m+1)\right)=-\frac{1}{8}(m+1)(m-1)\left(2 m^{2}-7 m+3\right)<0 & \text { since } m \geqslant 7 \\
f(x) \rightarrow \pm \infty & \text { as } x \rightarrow \pm \infty
\end{array}
$$

Hence $f(x)=0$ has three roots, one negative, one between 0 and $(m+1)^{\frac{1}{2}}$, and one greater than $\frac{1}{2}(m+1)$. Hence it has no root between $(m+1)^{\frac{1}{2}}$ and $\frac{1}{2}(m+1)$ or equal to either, so $f(k+1)$ is never zero in the possible range of values for $k+1$. This excludes the case under discussion.

Let g denote the least positive value of s for which $C_{s}>0$. Thus π contains no points with valency between 0 and g. We can restate 4.1 as follows:

Lemma 4.1*. $g<k$, and if $C_{m-1}=1$ and $C_{k}>0$, then $g=1$.
Lemma 4.2. $g \leqslant \frac{1}{2} k$.
Proof. Let S be a g-point, and let Q be a point of π_{0} not lying on any of the $g+1$ lines of π_{0} through S. (See Figure 6.) The line $S Q$ is clearly not a line of π_{0}, so its valency is $m+k$ (by 3.1). The points S and Q contribute $g+m$ to this valency. The remaining contribution to the valency, namely $k-g$, must come from the other points of $S Q$. Now $k-g>0$ (by 4.1^{*}) and no point can have positive valency less than g; hence $k-g \geqslant g$.

Lemma 4.3. There exist no s-points if $k>s>k-g$ (i.e., $C_{s}=0$ for values of s in this range).

Proof. Let S be an s-point, where $s<k$, and let Q be a point of π_{0} not lying on any of the $s+1$ lines of π_{0} through S. (See Figure 6.) The line $S Q$ is not a line of π_{0}, so its valency is $m+k$ (by 3.1). The points S and Q contribute $s+m$ to this valency. The remaining contribution to the valency, namely $k-s$, must come from the other points of $S Q$. Now $k-s>0$ (by
our assumption) and no point can have positive valency less than g; hence $k-s \geqslant g$. Hence if $s<k$, then $s \leqslant k-g$.

Note. We can use 4.3 to prove 4.2 , putting $s=g$.
This last lemma does not imply the existence of $(k-g)$-points.
Denote by $k-z$ the greatest value of $s(<k)$ for which there actually exists an s-point.

Lemma 4.4. $g \leqslant z \leqslant k-g$.
Proof. The first inequality is simply a restatement of 4.3. For the second, observe that $k-z \geqslant g$ by the definition of g.

Lemma 4.5. If $g>\frac{1}{3} k$, then $z=g$.
Proof. Using the notation of 4.2 , the points of $S Q$ other than S and Q must have total valency $k-g$. If $z>g$, there are no $(k-g)$-points, so this valency cannot come from a single $(k-g)$-point. Hence it must come from at least two points, each of valency greater than or equal to g. Hence $k-g \geqslant 2 g$, so $g \leqslant \frac{1}{3} k$. Hence if $g>\frac{1}{3} g$, we must have $z=g$.

The situation now is this. If $k-z \geqslant s \geqslant g$, then s-points can exist, and there exist at least one g-point and at least one $(k-z)$-point. Apart from such points, π contains only 0 -points, k-points (perhaps), at most one ($m-1$)-point, and $m^{2} m$-points. Conditions and inequalities satisfied by g and z are given by $4.1,4.2,4.4$, and 4.5 .

Lemma 4.6. $g \neq \frac{1}{2} k$, unless $g=1, k=2$.
Proof. If $k=2 g$, then π contains only 0 -points, g-points, $2 g$-points, at most one ($m-1$)-point, and m-points.

If there exists a pencil and if there exists a $2 g$-point (i.e., a k-point), then $g=1$ by 4.1^{*}.

If there exists a pencil with vertex P, but no $2 g$-point, let l be any line of $\pi-\pi_{0}$ through P. Apart from P, l can contain only g-points and 0 -points. The total valency of points of l other than P is

$$
(m+k)-(m-1)=2 g+1 \quad(\text { by } 3.1)
$$

But we cannot obtain a total valency $2 g+1$ from g-points if $g>1$. Hence $g=1$.

If there is no pencil, the lines of every parallel-class contain

$$
m\left(m^{2}-m-2 g\right)-g B_{g}-2 g B_{2 g}
$$

points of $\pi-\pi_{0}$, using equation (5) of 3.5 and the notation of 3.4 . Summing this expression over the $m+1$ parallel-classes and adding the m^{2} points of π_{0} to obtain the number of points of π, we obtain

$$
n^{2}+n+1=(m+1) m\left(m^{2}-m-2 g\right)-g C_{g}-2 g C_{2 g}+m^{2}
$$

Putting $n=m^{2}-1-2 g$ and simplifying, we obtain

$$
\begin{equation*}
g C_{g}+2 g C_{2 g}=2 g m^{2}-2 g m-4 g^{2}-2 g+m^{2}-1 \tag{8}
\end{equation*}
$$

Also in a parallel-class we have (by 3.4)

$$
\begin{equation*}
g(g+1) B_{g}+2 g(2 g+1) B_{2 g}=m(m-1) \tag{9}
\end{equation*}
$$

Summing over the $m+1$ parallel-classes, we obtain

$$
\begin{equation*}
g(g+1) C_{g}+2 g(2 g+1) C_{2 g}=(m+1) m(m-1) . \tag{10}
\end{equation*}
$$

Now any line of π_{0} is met by the remaining $m-1$ lines of the same parallelclass in g-points or $2 g$-points. Hence g divides $m-1$. Write $m-1=r g$. Dividing (8) and (10) by g, we have

$$
C_{g}+2 C_{2 g}=2 m^{2}-2 m-4 g-2+(m+1) r
$$

and

$$
(g+1) C_{g}+2(2 g+1) C_{2 g}=m(m+1) r .
$$

Converting these to congruences modulo g, we have, since $m \equiv 1$,

$$
C_{g}+2 C_{2 g} \equiv-2+2 r \quad \text { and } \quad C_{g}+2 C_{2 g} \equiv 2 r .
$$

Hence $0 \equiv 2$. So g divides 2 , giving $g=2$ or $g=1$.
If $g=2$, then (8) and (10) become

$$
2 C_{2}+4 C_{4}=5 m^{2}-4 m-21 \quad \text { and } \quad 6 C_{2}+20 C_{4}=m^{3}-m .
$$

Hence $8 C_{4}=m^{3}-15 m^{2}+11 m+63$, so

$$
0 \equiv m^{3}+m^{2}+3 m-1 \quad(\bmod 8)
$$

Hence m must be odd; $m=2 p+1$ say. But

$$
\begin{aligned}
(2 p+1)^{3}+(2 p+1)^{2}+3(2 p+1)-1 & =8 p^{3}+16 p^{2}+16 p+4 \\
& \equiv 4(\bmod 8) .
\end{aligned}
$$

Hence $0 \equiv 4(\bmod 8)$, which is impossible. So $g \neq 2$ and hence $g=1$.
This exhausts all possible cases, leaving us with $g=1$ each time.
Lemma 4.7. We cannot have $g=1, k=2$.
Proof. Suppose $g=1, k=2$. From the inequalities

$$
(m+1)^{\frac{1}{2}} \leqslant k+1 \leqslant \frac{1}{2}(m+1)
$$

we see that $5 \leqslant m \leqslant 8$, so that $m=7$ or 8 (by 3.7). When $m=7$,

$$
n=7^{2}-1-2=46
$$

which is impossible by the Bruck-Ryser Theorem (1.2). We are left with $m=8, n=8^{2}-1-2=61 \quad\left(=6^{2}+5^{2}\right)$.

If π contains no pencil, then equations (8) and (10) of 4.6 apply. Putting $g=1, m=8$ we obtain

$$
C_{1}+2 C_{2}=169, \quad 2 C_{1}+6 C_{2}=504
$$

giving $C_{1}=3, C_{2}=83$.
If π contains a single pencil, this pencil contains 425 points of $\pi-\pi_{0}$ (see proof of 2.1). The remaining eight parallel-classes each contain (as in 4.6)

$$
m\left(m^{2}-m-k\right)-g B_{g}-2 g B_{2 g}=432-B_{1}-2 B_{2}
$$

points of $\pi-\pi_{0}$. Thus π contains

$$
8 \times 432-C_{1}-2 C_{2}+425+8^{2}
$$

points. But π contains $61^{2}+61+1$ points. Hence

$$
3945-C_{1}-2 C_{2}=3783, \quad \text { so } \quad C_{1}+2 C_{2}=162
$$

Summing (9) over the m parallel-classes that are not pencils, we have

$$
g(g+1) C_{g}+2 g(2 g+1) C_{2 g}=m^{2}(m-1) \quad \text { or } \quad 2 C_{1}+6 C_{2}=448
$$

Solving the two equations, we find that $C_{1}=38, C_{2}=62$.
Finally we show that both values for C_{1} are impossible. Let S be a 1-point (see Figure 8). There are $6 \times 8=48$ points of π_{0} such as Q, of valency 8 ,

Figure 8
not lying on a line of π_{0} through S. Each line such as $S Q$ has valency $m+k=10$ (by 3.1) and S and Q contribute 9 to this valency. Hence each line such as $S Q$ must contain a single 1-point apart from S, to bring the valency up to 10. The 48 lines such as $S Q$ are all distinct, so π must contain at least 49 1 -points (counting S as well). Thus $C_{1} \geqslant 49$, so we cannot have $C_{1}=3$ or $C_{1}=38$. Hence we cannot have $g=1, k=2$.

We can combine 4.2, 4.6, 4.7 into a single result, namely
Lemma 4.8. $g<\frac{1}{2} k$.
Lemma 4.9. If $g>\frac{1}{3} k$, there cannot be a pencil, except possibly when $g=$ $\frac{1}{3}(k+1)$.

Proof. If $g=1$, then $g>\frac{1}{3} k$ implies that $k=2$. This is impossible (by 4.7). Hence we may assume that $g>1$.

Suppose P is the vertex of a pencil. Then P is an $(m-1)$-point. Let G be a g-point (see Figure 7, with K replaced by G). $P G$ is not a line of π_{0}, so its valency is $m+k$ (by 3.1). P and G contribute $m-1+g$ to this valency, so the remaining points of $P G$ must have total valency

$$
(m+k)-(m-1+g)=k-g+1
$$

Now $k>k-g+1>k-g$ (since $g>1$), so there can be no single point of valency $k-g+1$ (by 4.3). Thus the valency $k-g+1$ must come from at least two points of positive valency, each of which must have valency g or more. Thus $k-g+1 \geqslant 2 g$, so $g \leqslant \frac{1}{3}(k+1)$. Since $g>\frac{1}{3} k$ and g and k are integers, we must therefore have $g=\frac{1}{3}(k+1)$.

Lemma 4.10. If $g=\frac{1}{3}(k+1)$ there cannot be a pencil, except possibly when $g=2$.

Proof. We may assume that $g>1$; for if $g=1$, then $k=2$, which is impossible (by 4.7). Suppose there is a pencil, with vertex P. We show first that a line of $\pi-\pi_{0}$ through a point of π_{0} cannot contain more than two other points of positive valency, nor can a line of $\pi-\pi_{0}$ through P, except in the case of three points of valency g. For if a line of $\pi-\pi_{0}$ through a point π_{0} contained three or more other points of positive valency (i.e., of valency g at least) the valency of this line would be at least $m+3 g=m+k+1$, which is impossible by 3.1. A similar argument holds for lines through P, except when we have three g-points on the line, when the valency is

$$
(m-1)+3 g=m+k
$$

Next we show that there must be at least one point of valency s for every s such that $g \leqslant s \leqslant k-g=2 g-1$. Let A_{0} be a g-point (such a point certainly exists). Let Q_{0} be a point of π_{0} not lying on a line of π_{0} through A_{0} (see Figure 9, with $i=0$). On $A_{0} Q_{0}$ there must be just one more point B_{0}

Figure 9
of positive valency. The valency of B_{0} is $(m+k)-g-m=2 g-1$. On $B_{0} P$ there must be just one more point A_{1} of positive valency ($2 g-1>g$, since $g>1)$. The valency of A_{1} is $(m+k)-(2 g-1)-(m-1)=g+1$. Let Q_{1} be a point of π_{0} not lying on a line of π_{0} through A_{1}. On $A_{1} Q_{1}$ there is a point B_{1} of valency $2 g-2$. On $B_{1} P$ there is a point A_{2} of valency $g+2$; and so on. Continuing in this way (by induction) we obtain the required result.

Now let S be a $(2 g-1-r)$-point, where $0 \leqslant r \leqslant g-1$. There are $2 g-r$ lines of π_{0} through S, so there are $m(m-2 g+r)$ points of π_{0}, such as Q in Figure 6, not lying on these lines. Joining these points to S, we obtain $m(m-2 g+r)$ distinct lines through S that are not lines of π_{0}. Each of these lines must contain another point of positive valency

$$
(m+k)-(2 g-1-r)-m=g+r
$$

distinct from S. (We must say "distinct from S " here, since $g+r=2 g-1-r$ if $r=\frac{1}{2}(g-1)$.) Hence π contains at least $m(m-2 g+r)$ points of valency $g+r$, so

$$
\begin{equation*}
C_{g+r} \geqslant m(m-2 g+r) . \tag{11}
\end{equation*}
$$

We now show that there are too many points in the plane. There are no k-points (by 4.1*). Through P there are $n+1-m=m^{2}-m-k$ lines of $\pi-\pi_{0}$. Every point of valency $g, g+1, \ldots, 2 g-1$ must lie on exactly one such line, and as we saw earlier, each such line contains (in addition to P) just three points of valency g or just two points of valency greater than g. Thus

$$
\frac{1}{3} C_{g}+\frac{1}{2} \sum_{r=1}^{g-1} C_{g+r}=m^{2}-m-k
$$

Hence from (11)

$$
\frac{1}{3} m(m-2 g)+\frac{1}{2} \sum_{\tau=1}^{q-1} m(m-2 g+r) \leqslant m^{2}-m-k=m^{2}-m-(3 g-1)
$$

This reduces to

$$
\begin{equation*}
(3 g-7) m^{2}-\frac{1}{2}\left(9 g^{2}-g-12\right) m+6(3 g-1) \leqslant 0 \tag{12}
\end{equation*}
$$

Now $k=3 g-1$ and $k+1 \leqslant \frac{1}{2}(m+1)$, so $m \geqslant 6 g-1$. Denote the lefthand side of (12) by $f(m)$. Then

$$
\begin{aligned}
f^{\prime}(6 g-1) & =2(3 g-7)(6 g-1)-\frac{1}{2}\left(9 g^{2}-g-12\right) \\
& =\frac{1}{2}[63 g(g-3)+10 g+40]>0 \quad \text { if } g \geqslant 3 .
\end{aligned}
$$

Also $f^{\prime \prime}(m)=2(3 g-7)>0$ if $g \geqslant 3$, so that $f^{\prime}(m)$ is an increasing function. Hence $f^{\prime}(m)>0$ if $m \geqslant 6 g-1$ and $g \geqslant 3$. Hence $f(m)$ is an increasing function if $m \geqslant 6 g-1$ and $g \geqslant 3$.

Finally

$$
\begin{aligned}
f(6 g-1) & =\frac{1}{2}\left(162 g^{3}-561 g^{2}+281 g-38\right) \\
& =\frac{1}{2}\left[162 g^{2}(g-4)+87 g^{2}+281 g-38\right] \\
& >0 \quad \text { if } g \geqslant 4 \\
& >0 \quad \text { if } g=3 \text { by direct calculation. }
\end{aligned}
$$

Hence $f(m)>0$ if $m \geqslant 6 g-1$ and $g \geqslant 3$. This contradicts (12). Since $g>1$, we are left with the case $g=2$.

Lemma 4.11. If $g=2$ and $k=3 g-1=5$, then there cannot be a pencil.
Proof. Suppose there is a pencil, with vertex P. As in 4.10 there exist 2 points and 3 -points but no 5 -points. Each of the $m^{2}-m-5$ lines of $\pi-\pi_{0}$ through P contains either three 2 -points or two 3 -points since each such line has valency $(m-1)+6$. Moreover, each 2 -point and 3 -point lies on one such line. Thus

$$
\begin{equation*}
\frac{1}{3} C_{2}+\frac{1}{2} C_{3}=m^{2}-m-5 . \tag{13}
\end{equation*}
$$

Through every 2 -point there pass $m(m-3)$ lines of $\pi-\pi_{0}$ containing a point of π_{0}, such as $S Q$ in Figure 10. Each such line contains a single 3-point

Figure 10
such as T (by consideration of valencies). Moreover (considering such lines through every 2 -point), every 3 -point occurs in this manner, on just $m(m-4)$ of the lines (since through every 3 -point there pass $m(m-4)$ lines of $\pi-\pi_{0}$ containing a point of π_{0}, and each such line contains a 2 -point). Thus

$$
m(m-3) C_{2}=m(m-4) C_{3} .
$$

Hence from (13)

$$
\frac{1}{3} C_{2}+\frac{1}{2}(m-3) C_{2} /(m-4)=m^{2}-m-5 .
$$

Thus

$$
\begin{equation*}
C_{2}=6(m-4)\left(m^{2}-m-5\right) /(5 m-17) \tag{14}
\end{equation*}
$$

Furthermore, every line of $\pi-\pi_{0}$ through a point of π_{0} must contain a 2 -point (and a 3 -point). There are $m^{2}(n-m)=m^{2}\left(m^{2}-m-6\right)$ such lines, and $m(m-3)$ of them pass through each 2 -point. Hence

$$
m(m-3) C_{2}=m^{2}\left(m^{2}-m-6\right)
$$

so

$$
\begin{equation*}
C_{2}=m(m+2) . \tag{15}
\end{equation*}
$$

From (14) and (15) we obtain

$$
\phi(m)(\text { say }) \equiv m^{3}-23 m^{2}+28 m+120=0
$$

$\phi(0)>0$, so the equation has a negative root. $\phi(3)>0, \phi(4)<0 ; \phi(21)<0$, $\phi(22)>0$. Hence the equation has no positive integral roots. This proves the result.

We can combine $4.7,4.9,4.10,4.11$ into a single result, namely
Theorem 4.12. If $g>\frac{1}{3} k$, there cannot be a pencil.
We end this section with a lemma which gives another upper bound for g in terms of k. The method of proof is essentially the same as that used in 2.3 and 3.5 , but it is convenient to use the formulae given in 5.1 at the beginning of the next section.

Lemma 4.13.

$$
g+1 \leqslant \frac{m\left(m^{2}-1\right)}{\left(m^{2}-1\right)+k\left(m^{2}-m-1\right)-k^{2}} .
$$

Proof. Condensing the formulae of 5.1 , we have

$$
\begin{gather*}
\sum_{s=g}^{m-1} s C_{s}=R \tag{16}\\
\sum_{s=g}^{m-1} s(s+1) C_{s}=m\left(m^{2}-1\right) \tag{17}
\end{gather*}
$$

From (17)

$$
(g+1) \sum s C_{s}=\sum s(g+1) C_{s} \leqslant \sum s(s+1) C_{s}=m\left(m^{2}-1\right)
$$

so $(g+1) R \leqslant m\left(m^{2}-1\right)$. Dividing both sides by R (which is certainly positive, we have the result.

If we put $k=\frac{1}{2} m-\frac{1}{2}$ (the largest possible value), the right-hand side of 4.13 is less than $2+1 / m$. Thus $g=1$. This is only to be expected since in the proof of 2.3 we had to allow points of valency 1 in order to obtain the upper bound for k.

If we put $k=(m+1)^{\frac{1}{2}}-1$ (the smallest possible value), we obtain an
inequality from which we can deduce only $g<k$, which again is what we should expect.

Thus for "large" values of $k, 4.13$ gives a new upper bound for g, while for "small" values of $k, 4.8$ gives a better upper bound.
5. Further restrictions on k. The technique of this section is to decrease our present upper bound for the number of points of $\pi+\pi_{0}$ in a parallelclass (for given values of m, k, g, and z) by finding as many points of low valency as we can. (See the remarks before 3.5.) This is a refinement of the method used in 3.5 . We then use this upper bound to obtain inequalities as in 3.6. We shall in fact consider all the parallel-classes together, and the technique is somewhat obscured by the quick methods used to obtain the inequalities.

We shall write $R=\left(m^{2}-1\right)+k\left(m^{2}-m-1\right)-k^{2}$. It is useful in some of the calculations to note that $R-m+1=(k+1)\left(m^{2}-k-m\right)$.

Lemma 5.1.
(a) $\sum_{s=g}^{k-z} s C_{s}+k C_{k}+(m-1) C_{m-1}=R$,
(b) $\sum_{s=g}^{k-z} s(s+1) C_{s}+k(k+1) C_{k}+m(m-1) C_{m-1}=m\left(m^{2}-1\right)$.

Proof. (a) Summing equation (5) of 3.5 over the $m+1$ parallel-classes we see that the total number of points in $\pi-\pi_{0}$ is

$$
\sum C_{s}=(m+1) m\left(m^{2}-m-k\right)-\sum s C_{s},
$$

the summation being taken from 0 to $m-1$, since a pencil may occur. Thus the number of points of π is

$$
m^{2}+\sum_{s=0}^{m-1} C_{s}=m^{2}+(m+1) m(n+1-m)-\sum_{s=0}^{m-1} s C_{s} .
$$

Equating this to $n^{2}+n+1$, putting $n=m^{2}-1-k$, and remembering the restrictions on the values of s for which s-points can occur, we obtain the result.
(b) We obtain this result by summing 3.4 over the $m+1$ parallel-classes.

The next two lemmas give information about the number of points of valency less than k.

Lemma 5.2.

$$
\sum_{s=g}^{k-z} s C_{s} \geqslant m(m-g-1)(k-g)+g
$$

Proof. Let S be a g-point, and let Q be a point of π_{0} not lying on any of the $g+1$ lines of π_{0} through S. (See Figure 6.) There are $m(m-g-1)$ choices
for Q, giving $m(m-g-1)$ distinct lines such as $S Q$. (If $S Q_{1}$ and $S Q_{2}$ were to coincide, then the line $S Q_{1} Q_{2}$, joining Q_{1} and Q_{2}, would be a line of π_{0}, contradicting the fact that $S Q_{1}$ is not a line of π_{0}.) On a typical line $S Q$ the points other than S and Q must have total valency $k-g$ (to bring up the total valency of the line to $m+k$). No s-point, where $s>k-g$, can contribute to this total, so each line contributes a term $k-g$ to the sum on the left-hand side. All the lines together contribute $m(m-g-1)(k-g)$ and S itself contributes a term g. This gives the result.

Lemma 5.3. If $z<\frac{1}{2} k$, then

$$
\sum_{s=g}^{z} s C_{s} \geqslant m(m-k+z-1) z
$$

Proof. The inequality for z implies that $z<k-z$. We use the method of 5.2 , but we take S to be a $(k-z)$-point. There are now $m(m-k+z-1)$ choices for Q, and on each line $S Q$ the points other than S and Q must have total valency $(m+k)-m-(k-z)=z$. No s-point, where $s>z$, can contribute to this total. Using an argument similar to that of 5.2 , we deduce the result.

Note. If $z \geqslant k-z$ we can only take the summation as far as $k-z$ and the result is simply an inequality which is weaker than 5.2 .

We now consider separately four cases. Using the results of § 4 we see that they exhaust all possibilities.

A1. $g \leqslant \frac{1}{3} k, C_{m-1}=0$.
A2. $g \leqslant \frac{1}{3} k, C_{m-1}=1, C_{k}>0, g=1$.
A3. $g \leqslant \frac{1}{3} k, C_{m-1}=1, C_{k}=0$.
B. $\frac{1}{3} k<g<\frac{1}{2} k, C_{m-1}=0$.

Case $A 1$. It is convenient not to put $C_{m-1}=0$ at this stage. Multiplying 5.1 (a) by $k+1$ and subtracting 5.1 (b) we eliminate C_{k} and obtain

$$
\sum s(k-s) C_{s}+(k+1-m)(m-1) C_{m-1}=(k+1) R-m\left(m^{2}-1\right)
$$

or

$$
\begin{equation*}
(k+1) R+(m-k-1)(m-1) C_{m-1}-m\left(m^{2}-1\right)=\sum_{s=g}^{k-z} s(k-s) C_{s} \tag{18}
\end{equation*}
$$

If we simply use the fact that the right-hand side of (18) is greater than or equal to zero, we obtain 3.6 ; but we can now say more than this. It is possible to obtain the ensuing inequalities by a method that appears to use the fact that $C_{k} \geqslant 0$, but we have now eliminated C_{k} so we never really use this information either in 3.6 or anywhere else. We shall, however, use the fact that $C_{k}=0$ in the discussion of the case A3.

Now

$$
\begin{equation*}
\sum_{s=g}^{k-z} s(k-s) C_{s} \geqslant z \sum_{s=g}^{k-z} s C_{s} \geqslant z[m(m-g-1)(k-g)+g] \quad \text { (by 5.2). } \tag{19}
\end{equation*}
$$

Furthermore, if $z<\frac{1}{2} k$ we have

$$
\begin{align*}
\sum_{s=g}^{k-z} s(k-s) C_{s}= & \sum_{s=g}^{z} s(k-s) C_{s}+\sum_{z+1}^{k-z} s(k-s) C_{s} \tag{20}\\
\geqslant & (k-z) \sum_{s=g}^{z} s C_{s}+z \sum_{z+1}^{k-z} s C_{s} \\
= & (k-z) \sum_{s=g}^{z} s C_{s}+z\left[\sum_{g}^{k-z} s C_{s}-\sum_{g}^{z} s C_{s}\right] \\
= & (k-2 z) \sum_{s=g}^{z} s C_{s}+z \sum_{s=g}^{k-z} s C_{s} \\
\geqslant & (k-2 z) m(m-k+z-1) z \\
& \quad+z[m(m-g-1)(k-g)+g] \quad(\text { by } 5.2 \text { and } 5.3) \\
= & m\left[-2 z^{3}-(2 m-3 k-2) z^{2}+\left(m k-k^{2}-k\right) z\right] \\
& \quad+z\left[m g^{2}-\left(m^{2}+m k-m-1\right) g+\left(m^{2} k-m k\right)\right] \\
= & m \theta(z)+z \phi(g), \quad \text { say. }
\end{align*}
$$

Denote by $\psi(z)$ the function that is equal to $m \theta(z)+z \phi(g)$ when $z<\frac{1}{2} k$ and equal to $z \phi(g)$ when $z \geqslant \frac{1}{2} k$. These two expressions are equal when $z=\frac{1}{2} k$ so, regarding z as a continuous variable, $\psi(z)$ is a continuous function. By (19) and (20) we have

$$
\begin{equation*}
\sum_{s=g}^{k-z} s(k-s) C_{s} \geqslant \psi(z) \tag{21}
\end{equation*}
$$

We wish to find the minimum value of $\psi(z)$ in the interval $[g, k-g]$. In the interval $\left[g, \frac{1}{2} k\right], \psi(z)=m \theta(z)+z \phi(g) . \psi^{\prime}(z)$ need not have constant sign, but $\psi^{\prime \prime}(z)=m[-12 z-2(2 m-3 k-2)]$, which is negative. Hence the minimum value of $\psi(z)$ occurs when $z=g$ or $z=\frac{1}{2} k$. Now

$$
\begin{aligned}
\psi(g)-\psi\left(\frac{1}{2} k\right) & =m \theta(g)+g \phi(g)-\frac{1}{2} k \phi(g), \quad \text { since } \theta\left(\frac{1}{2} k\right)=0, \\
& =\frac{1}{2}[2 m \theta(g)-(k-2 g) \phi(g)] \\
& =\frac{1}{2}(k-2 g)[2 m g(m-k+g-1)-m(m-g-1)(k-g)-g] \\
& =\frac{1}{2}(k-2 g)\left[m g^{2}+\left(3 m^{2}-m k-3 m-1\right) g-m^{2} k-m k\right] .
\end{aligned}
$$

The derivative with respect to g of the expression in square brackets is $2 m g+\left(3 m^{2}-m k-3 m-1\right)$, which is positive. Hence the expression itself is an increasing function of g. Its value when $g=\frac{1}{3} k$ is $-\frac{2}{9} m k^{2}-\frac{1}{3} k$, so the expression is always negative (in the possible range of values for g). Hence $\psi(g)<\psi\left(\frac{1}{2} k\right)$. Hence the minimum value of $\psi(z)$ in the interval $\left[g, \frac{1}{2} k\right]$ is $\psi(g)$. Moreover, when $z \geqslant \frac{1}{2} k, \psi(z)$ is an increasing function. Hence, in the interval $[g, k-g]$,

$$
\begin{equation*}
\psi(z) \geqslant \psi(g)=m \theta(g)+g \phi(g) \tag{22}
\end{equation*}
$$

Combining (18), (21), and (22) we see that

$$
\begin{align*}
& \text { (23) } \begin{array}{l}
(k+1) R+(m-k-1)(m-1) C_{m-1}-m\left(m^{2}-1\right) \\
\geqslant m \theta(g)+g \phi(g) .
\end{array} \tag{23}\\
& \text { Now } \begin{aligned}
& m \theta(g)+g \phi(g)=-m g^{3}-\left(3 m^{2}-2 m k-3 m-1\right) g^{2} \\
&+\left(2 m^{2} k-m k^{2}-2 m k\right) g,
\end{aligned}
\end{align*}
$$

whose derivative is

$$
-3 m g^{2}-2\left(3 m^{2}-2 m k-3 m-1\right) g+\left(2 m^{2} k-m k^{2}-2 m k\right)
$$

This is decreasing, since the second derivative is clearly negative. The value of the derivative when $g=\frac{1}{3} k$ is $\frac{2}{3} k$. Hence the derivative is always positive, so the right-hand side of (23) is an increasing function. Hence
$m \theta(g)+g \phi(g) \geqslant m \theta(1)+1 \phi(1)=m(k-2)(m-k)$

$$
+m(m-2)(k-1)+1
$$

and so from (23)

$$
\begin{align*}
&(k+1) R+(m-k-1)(m-1) C_{m-1}-m\left(m^{2}-1\right) \tag{24}\\
& \geqslant m(k-2)(m-k)+m(m-2)(k-1)+1
\end{align*}
$$

Substituting the value for R in (24) and putting $C_{m-1}=0$ we obtain

$$
\begin{equation*}
m^{3}-m^{2}\left(k^{2}+4\right)+m(k+1)+\left(k^{3}+2 k^{2}+2 k+2\right) \leqslant 0 . \tag{25}
\end{equation*}
$$

Hence $m^{3}-m^{2}\left(k^{2}+4\right)<0$, so $m<k^{2}+4$, Hence $m \leqslant k^{2}+3$. Putting $m=k^{2}+3$ in the left-hand side of (25) we obtain

$$
-\left(k^{4}-2 k^{3}+3 k^{2}-5 k+4\right)
$$

This is negative since $k \geqslant 3$ (by 4.7), so $m=k^{2}+3$ satisfies the inequality. Hence we cannot improve the result $m \leqslant k^{2}+3$. Thus in the case A1 we have

$$
\begin{equation*}
k \geqslant(m-3)^{\frac{1}{2}} . \tag{26}
\end{equation*}
$$

Case A2. We still have (18), with $C_{m-1}=1$, and the calculations of case A1 up to the inequality (23) are still valid, except that now $g=1$. Thus we have (24), but now we must put $C_{m-1}=1$ and (24) becomes

$$
\begin{equation*}
m^{3}-m^{2}\left(k^{2}+5\right)+m(2 k+3)+\left(k^{3}+2 k+k+1\right) \leqslant 0 \tag{27}
\end{equation*}
$$

Hence $m^{3}-m^{2}\left(k^{2}+5\right)<0$, so $m<k^{2}+5$. Hence $m \leqslant k^{2}+4$. Putting $m=k^{2}+4$ in the left-hand side of (27), we obtain

$$
-\left(k^{4}-3 k^{3}+3 k^{2}-9 k+3\right)
$$

This is negative since $k \geqslant 3$ (by 4.7) so $m=k^{2}+4$ satisfies the inequality. Hence we cannot improve the result $m \leqslant k^{2}+4$. Thus in the case A2 we have

$$
\begin{equation*}
k \geqslant(m-4)^{\frac{1}{2}} \tag{28}
\end{equation*}
$$

Case A3. Putting $C_{k}=0, C_{m-1}=1$ in 5.1, we obtain

$$
\begin{align*}
& \sum_{s=g}^{k-z} s C_{s}=R-m+1 \tag{29}\\
& \sum_{s=g}^{k-z} s(s+1) C_{s}=m^{2}(m-1) \tag{30}
\end{align*}
$$

By (30),

$$
(k-z+1) \sum_{s=g}^{k-z} s C_{s} \geqslant m^{2}(m-1)
$$

so, by (29), $(k-z+1)(R-m+1) \geqslant m^{2}(m-1)$, which gives

$$
\begin{equation*}
(k+1)(R-m+1)-m^{2}(m-1) \geqslant z(R-m+1) \tag{31}
\end{equation*}
$$

Furthermore, if $z<\frac{1}{2} k$ we have, by (29),

$$
R-m+1=\sum_{s=g}^{2} s C_{s}+\sum_{z+1}^{k-2} s C_{s} .
$$

Hence

$$
(k-z+1)(R-m+1) \geqslant(k-z+1) \sum_{s=g}^{z} s C_{s}+\sum_{z+1}^{k-z} s(s+1) C_{s} .
$$

Also, by (30),

$$
m^{2}(m-1)=\sum_{s=g}^{z} s(s+1) C_{s}+\sum_{z+1}^{k-z} s(s+1) C_{s}
$$

Hence, by subtraction,

$$
\begin{align*}
(k-z+1)(R-m+1)-m^{2}(m-1) & \geqslant \sum_{s=g}^{z} s(k-z-s) C_{s} \\
& \geqslant(k-2 z) \sum_{s=g}^{z} s C_{s} \\
& \geqslant(k-2 z) m(m-k-z-1) z \tag{by5.3}
\end{align*}
$$

Thus

$$
\begin{align*}
(k+1)(R-m+1)-m^{2}(m-1) & \geqslant(k-2 z) m(m-k-z-1) z \tag{32}\\
& +z(R-m+1) \\
& =m \theta(z)+z(R-m+1)
\end{align*}
$$

using the notation of (20).
Denote by $\chi(z)$ the function that is equal to $m \theta(z)+z(R-m+1)$ when $z<\frac{1}{2} k$ and equal to $z(R-m+1)$ when $z \geqslant \frac{1}{2} k$. These two expressions are equal when $z=\frac{1}{2} k$ so, regarding z as a continuous variable, $\chi(z)$ is a continuous function. By (31) and (32)

$$
\begin{equation*}
(k+1)(R-m+1)-m^{2}(m-1) \geqslant \chi(z) \tag{33}
\end{equation*}
$$

Now $\chi(z)-\psi(z)=z[R-m+1-\phi(g)]$, using the notation of (20) and (21). Hence

$$
\begin{aligned}
\chi^{\prime}(z)-\psi^{\prime}(z) & =R-m+1-\phi(g) \\
& =\left[m^{2}-k(k+1)\right]+m g[m-g-1]+[m(k g-1)-g]
\end{aligned}
$$

which is positive. Thus $\chi(z)-\psi(z)$ is an increasing function. But the minimum value of $\psi(z)$ in the interval $[g, k-g]$ occurs when $z=g$. Hence the minimum value of $\chi(z)$ occurs when $z=g$ also. Hence $\chi(z) \geqslant \chi(g)$ so, by (33),

$$
\begin{equation*}
(k+1)(R-m+1)-m^{2}(m-1) \geqslant m \theta(g)+g(R-m+1) \tag{34}
\end{equation*}
$$

The derivative of the right-hand side with respect to g is

$$
m\left[-6 g^{2}-2(2 m-3 k-2) g+\left(m k-k^{2}-k\right)\right]+(R-m+1)
$$

This is a decreasing function of g. When $g=\frac{1}{3} k$, its value is

$$
\frac{2}{3} m^{2} k+\frac{1}{3} m k^{2}-\frac{2}{3} m k+m^{2}-k^{2}-k-m,
$$

which is positive. Hence the derivative is always positive, so the right-hand side of (34) is an increasing function of g. Its least value therefore occurs when $g=1$, so

$$
m \theta(g)+g(R-m+1) \geqslant m \theta(1)+1(R-m+1)
$$

Combining this with (34), we have

$$
(k+1)(R-m+1)-m^{2}(m-1) \geqslant m(k-2)(m-k)+(R-m+1)
$$

This simplifies to

$$
\begin{equation*}
m^{3}-\left(k^{2}+3\right) m^{2}+3 k m+\left(k^{3}+k^{2}\right) \leqslant 0 \tag{35}
\end{equation*}
$$

Hence $m^{3}-\left(k^{2}+3\right) m^{2}<0, m<k^{2}+3$, so $m \leqslant k^{2}+2$.
Putting $m=k^{2}+2$ on the left-hand side of (35) we obtain

$$
-\left(k^{4}-4 k^{3}+3 k^{2}-6 k+4\right)
$$

This is positive when $k=3$ and negative when $k \geqslant 4$. Thus, if

$$
m \geqslant 4^{2}+2=18
$$

$m=k^{2}+2$ satisfies the inequality (33), so we cannot improve the result $m \leqslant k^{2}+2$. But if $m<18$, we cannot have $m=k^{2}+2$ (since this implies $k=3$, for we are considering only $k \geqslant 3$), so $m<k^{2}+2$ and hence $m \leqslant k^{2}+1$. Putting $m=k^{2}+1$, on the left-hand side of (33), we have

$$
-\left(2 k^{4}-4 k^{3}+3 k^{2}-3 k+2\right)
$$

which is negative since $k \geqslant 3$. Hence we cannot improve upon the result
$m \leqslant k^{2}+1$. Thus in the case A3 we have

$$
\begin{cases}k \geqslant(m-2)^{\frac{1}{2}} & \text { if } m \geqslant 18 \tag{36}\\ k \geqslant(m-1)^{\frac{1}{2}} & \text { if } m \leqslant 17 .\end{cases}
$$

Note. We have not used 5.2 in these calculations. The reason for this is that (29) gives us more information than 5.2, since

$$
R-m+1>m(m-g-1)(k-g)+g
$$

as may easily be shown.
Case B. Let S be a g-point. There are $m(m-g-1)$ points of π_{0}, such as Q in Figure 6, not lying on any of the $g+1$ lines of π_{0} through S. The $m(m-g-1)$ lines such as $S Q$ are all distinct, and apart from S and Q each such line must contain points of total valency $(m+k)-g-m=k-g$. Since $k-g<2 g$, this extra valency must come from a single ($k-g$)-point. Hence there are at least $m(m-g-1)$ points of valency $k-g$. Thus

$$
C_{k-g} \geqslant m(m-g-1)
$$

Similarly, starting with a $(k-g)$-point, we can show that

$$
C_{g} \geqslant m(m-k+g-1) .
$$

Since $k-g \neq g$ (by 4.8), $(k-g)$-points are not the same as g-points. Thus, substituting these inequalities in (18) and putting $C_{m-1}=0$, we have

$$
\begin{align*}
(k+1) R-m\left(m^{2}-1\right) & \geqslant g(k-g) m[m-g-1+m-k+g-1] \tag{37}\\
& =g(k-g) m(2 m-k-2) .
\end{align*}
$$

Now $g>\frac{1}{3} k$ and g and k are integers, so $g \geqslant \frac{1}{3} k+\frac{1}{3}$. Also $g(k-g)$ is an increasing function of g if $g<\frac{1}{2} k$, so the minimum value of $g(k-g)$ in the range $\frac{1}{3} k+\frac{1}{3} \leqslant g<\frac{1}{2} k$ is

$$
\left(\frac{1}{3} k+\frac{1}{3}\right)\left(k-\frac{1}{3} k-\frac{1}{3}\right)=\frac{1}{9}\left(2 k^{2}+k-1\right) .
$$

Thus from (37) we deduce that

$$
(k+1) R-m\left(m^{2}-1\right) \geqslant \frac{1}{9}\left(2 k^{2}+k-1\right) m(2 m-k-2) .
$$

This simplifies to

$$
\begin{align*}
9 m^{3}-m^{2}\left(5 k^{2}+16 k+11\right)-m\left(2 k^{3}\right. & \left.-4 k^{2}-8 k+7\right) \tag{38}\\
& +\left(9 k^{3}+18 k^{2}+18 k+9\right) \leqslant 0
\end{align*}
$$

Suppose $k^{2}<2 m$. Then (38) can be written

$$
\begin{aligned}
9 m^{3}-m^{2}\left(5 k^{2}+20 k+11\right)+2 m k\left(2 m-k^{2}\right) & +m\left(4 k^{2}+8 k-7\right) \\
& +\left(9 k^{3}+18 k^{2}+18 k+9\right) \leqslant 0
\end{aligned}
$$

Hence $9 m^{3}-m^{2}\left(5 k^{2}+20 k+11\right)<0$, so $9(m+1)<5(k+2)^{2}$.

If $k^{2} \geqslant 2 m$, then certainly $9(m+1)<5(k+2)^{2}$. Hence in any case

$$
\begin{equation*}
k+2>[9(m+1) / 5]^{\frac{1}{2}} \tag{39}
\end{equation*}
$$

The results for the cases A1, A2, A3 are, by (26), (28), and (36),
A1. $k \geqslant(m-3)^{\frac{1}{2}}$,
A2. $k \geqslant(m-4)^{\frac{1}{2}}$,
A3. $\begin{cases}k \geqslant(m-2)^{\frac{1}{2}} & \text { if } m \geqslant 18, \\ k \geqslant(m-1)^{\frac{1}{2}} & \text { if } m \leqslant 17 .\end{cases}$
Combining these results, we can say that if $g \leqslant \frac{1}{3} k$, then $k \geqslant(m-4)^{\frac{1}{2}}$. Since we cannot have $k=2$, we cannot have $k=(m-4)^{\frac{1}{2}}$ if $m \leqslant 12$, so $k>(m-4)^{\frac{1}{2}}$ and thus

$$
\begin{equation*}
k \geqslant(m-3)^{\frac{1}{2}} \quad \text { if } m<13 \tag{40}
\end{equation*}
$$

In case B , we have $\frac{1}{3} k<g<\frac{1}{2} k$, which is impossible unless $k \geqslant 5$. Then $\frac{1}{2}(m+1) \geqslant k+1 \geqslant 6$ (by 2.3) so $m \geqslant 11$. If $m=11$ or 12 , both (39) and (40) give $k \geqslant 3$. If $m \geqslant 13$ we may easily verify that

$$
[9(m+1) / 5]^{\frac{1}{2}}-2>(m-4)^{\frac{1}{2}}
$$

Hence the inequalities obtained in case A are also valid in case B.
Since we are now considering $m \geqslant 7$, our new inequalities are better than

$$
k+1 \geqslant(m+1)^{\frac{1}{2}}
$$

obtained in 3.6. We have now proved
Theorem 5.4. Either $m=2, k=0, n=3$; or $m=3, k=4$, $n=4$; or $m=3, k=1, n=7$; or $7 \leqslant m \leqslant 12$ and $\frac{1}{2} m-\frac{1}{2} \geqslant k \geqslant(m-3)^{\frac{1}{2}}$ which implies that $m^{2}-1-(m-3)^{\frac{1}{2}} \geqslant n \geqslant m^{2}-\frac{1}{2} m-\frac{1}{2}$; or $m \geqslant 13$ and

$$
\frac{1}{2} m-\frac{1}{2} \geqslant k \geqslant(m-4)^{\frac{1}{2}}
$$

which implies that $m^{2}-1-(m-4)^{\frac{1}{2}} \geqslant n \geqslant m^{2}-\frac{1}{2} m-\frac{1}{2}$. Moreover, $k \neq 2$.
6. The Desarguesian case. A projective plane is Desarguesian if it satisfies the axiom of Desargues, i.e., if any two triangles in central perspective are also in axial perspective.

An affine plane is Desarguesian if its projective extension (as defined in § 1)is Desarguesian.
It is well known that a Desarguesian plane (projective or affine) may be co-ordinatized using elements of a unique skew field (e.g., 1, p. 374). The characteristic of a Desarguesian plane is the characteristic of the skew field of co-ordinates.

An affine plane and its projective extension have the same skew field of co-ordinates, so they have the same characteristic.

Ostrom and Sherk (5, p. 556) have investigated the conditions under which an affine plane of order 3 can be embedded in a Desarguesian projective plane
of finite order. The proof of their result can easily be adapted to the infinite case, using a skew field, and with a little extra calculation we can extend their result to

Theorem 6.1. The Desarguesian projective plane π, co-ordinatized by the skew field k, contains an affine subplane π_{0} of order 3 if and only if k contains an element t such that $t^{2}+t+1=0$. This means that either (a) k has characteristic 3 and $t=1$ or (b) k contains a primitive cube root of unity, which, if k is finite, occurs if and only if the order of k is congruent to $1(\bmod 3)$.

The bundles of parallels in π_{0} form pencils of concurrent lines in π if and only if k has characteristic 3, in which case the four vertices of these pencils are collinear in π, so that π contains the projective extension of π_{0}.

It is natural to ask what happens if the order of π_{0} is greater than 3 . We shall prove

Theorem 6.2. Let π be a Desarguesian projective plane containing an affine subplane π_{0} of order greater than 3. Then
(a) π_{0} is Desarguesian,
(b) each bundle of parallels in π_{0} forms a pencil of concurrent lines in π,
(c) the vertices of all these pencils are collinear in π, so that π contains the projective extension of π_{0},
(d) π_{0} has the same characteristics as π.
(e) If π is finite, the order of π is a power of the order of π_{0}.

Before giving the proof, we need a lemma.
Lemma 6.3. Let L, M be two points of an affine plane π_{0}, and let f be a line through L and g a line through M, both distinct from the line $h=L M$. Let $l \rightarrow l^{*}$ be a one-one mapping of the pencil of lines through L onto the pencil of lines through M such that $h \rightarrow h$ and $f \rightarrow g$. If this mapping has the property that l and l^{*} are parallel whenever $l \neq f$ and $l \neq h$, then f and g are parallel.

Proof. Suppose f and g are not parallel. Let l_{0} be the line through L parallel to g. Then $l_{0} \neq h$ and $l_{0} \neq f$. Hence $l_{0}{ }^{*}$ is parallel to l_{0}, and $l_{0}{ }^{*} \neq g$ (since the mapping is one-one). Thus we have two distinct lines through M parallel to l_{0}, namely $l_{0}{ }^{*}$ and g, a contradiction. Hence f and g are parallel.

Proof of 6.2. Let a, b, c be any three parallel lines of π_{0}. Let A, B, C be any three non-collinear points on a, b, c (Figure 11). Since π_{0} has order greater than 3 , there exists a point L on $B C, L \neq B, C$, and L not lying on a. Let the line h through L parallel to a, b, c meet $A B, A C$ at N, M. (The line h cannot be parallel to $A B$ or $A C$, so M, N exist in π_{0}.)

Let X be a general point of a, and let $N X$ meet b at Y. Write $L Y=l$, $M X=l^{*}$. Then the mapping $h \rightarrow h, l \rightarrow l^{*}$ is a one-one mapping of the pencil of lines through L onto the pencil of lines through M, with the property $f \rightarrow g$, where $f=L B, y=M A$ (taking $X=A$). By 6.3 , if l were

Figure 11
parallel to l^{*} whenever $X \neq A$, then f and g would be parallel, a contradiction since f and g meet at C. Hence there exists a point $X \neq A$ on a, and a corresponding point $Y \neq B$ on b (N, X, Y being collinear) such that $L Y$ and $M X$ are not parallel. (The symbol X will now denote this particular point rather than a general point of a; similarly for Y.) Let $L Y \cap M X=Z$, where $Z \in \pi_{0}$.

Suppose Z does not lie on c. Then $C Z$ is not parallel to a, so $C Z$ meets a at P, say, where $P \in \pi_{0}$. Then the triangles $L C Z, N A X$ are in central perspective from M. Also $C Z \cap A X=P, Z L \cap X N=Y$, and $L C \cap N A=B$. Hence by the axiom of Desargues in π, P, Y, B are collinear. Thus $B Y=b$ meets a at $P \in \pi_{0}$, a contradiction since b and a are parallel. Hence $Z \in c$.

Now let P denote the point of π where the parallel lines $C Z, A X$ meet. By the above argument, P, Y, B are collinear in π. Hence a, b, c are concurrent in π.

It follows that all the lines of any bundle of parallels are concurrent in π. Thus we have proved (b).

Now let P, Q, R be the vertices, in π, of three distinct bundles of parallels in π_{0}, and let $A B C$ be any triangle in π_{0} such that $B C, C A, A B$ pass through P, Q, R respectively (Figure 12). Let O be a point of π_{0} not on a side of the triangle, and let A^{*}, B^{*} be points of π_{0} on $O A, O B$ such that $A^{*} B^{*}$ and $A B$ are parallel. Then $A^{*} B^{*}$ passes through R.

Let C^{\prime} be a point of π_{0} on $O C$ such that $A^{*} C^{\prime}$ is not parallel to $A C$. If C^{\prime} is distinct from O and C, let $A^{*} C^{\prime} \cap A C=Q^{\prime}$. Let $B C$ meet the line $Q^{\prime} R$ parallel to $A B$ in P^{\prime}. Then $P^{\prime} \in \pi_{0}$ since $B C$ and $A B$ are not parallel. Applying the axiom of Desargues in π to triangles $B C O, R Q^{\prime} A^{*}$, in central perspective from A, we see that $C^{\prime}, B^{*}, P^{\prime}$ are collinear. Thus $B^{*} C^{\prime}$ and $B C$ are not parallel. Also if $C^{\prime}=O$ or $C^{\prime}=C$, then $B^{*} C^{\prime}$ and $B C$ are not parallel.

Hence if C^{*} is the point on $O C$ such that $A^{*} C^{*}$ is parallel to $A C$, then $B^{*} C^{*}$ must be parallel to $B C$. Thus $A^{*} C^{*}$ passes through Q and $B^{*} C^{*}$ passes through P. Applying the axiom of Desargues in π to the triangles $A B C$,

Figure 12
$A^{*} B^{*} C^{*}$, in central perspective from O, we see that P, Q, R are collinear in π. It follows that the vertices of all bundles are collinear. Thus we have proved (c).

Now the projective extension π^{*} of π_{0}, being a projective subplane of the Desarguesian projective plane π, must be Desarguesian. Hence π_{0} is Desarguesian by definition. Thus we have proved (a).

A Desarguesian plane of given characteristic is characterized by an incidence theorem giving rise to a configuration which occurs only in such planes. If such a configuration occurs in π^{*}, then it will occur in π. Thus π, π^{*} have the same characteristic. Hence π, π_{0} have the same characteristic. Thus we have proved (d).

It is easily shown that the skew field of co-ordinates of π_{0} is a sub-skewfield of the skew field of co-ordinates of π. Hence if π is finite, the order of π is a power of the order of π_{0}. Thus we have proved (e).

From Theorems 6.1 and 6.2 we see that the planes π of the type considered in §§ 2-5 cannot be Desarguesian, except in the examples already considered ($m=2, n=3 ; m=3, n=4$; and $m=3, n=7$). Also the number $n=m^{2}-1-k$, where $k \leqslant \frac{1}{2} m-\frac{1}{2}$, cannot be a square, since it lies between m^{2} and $(m-1)^{2}$. Thus π cannot be a Hughes plane (1, p. 416), nor can it be a plane co-ordinatized by a Hall system (1, p. 364).

References

1. Marshall Hall, Jr., The theory of groups (New York, 1959).
2. _-_Uniqueness of the projective plane with 57 points, Proc. Amer. Math. Soc., 4 (1953), 912-916.
3. Correction to "Uniqueness of the projective plane with 57 points," Proc. Amer. Math. Soc., 5 (1954), 994-997.
4. M. Hall, J. D. Swift, and R. Walker, Uniqueness of the projective plane of order eight, Math. Tables Aids Comput., 10 (1956), 186-194.
5. T. G. Ostrom and F. A. Sherk, Finite projective planes with affine subplanes, Can. Math. Bull., 7 (1964), 549-560.

University of Toronto

