LINEAR TRANSFORMATIONS ON ALGEBRAS OF
MATRICES: THE INVARIANCE OF THE
ELEMENTARY SYMMETRIC FUNCTIONS

MARVIN MARCUS AND ROGER PURVES

1. Introduction. In this paper we examine the structure of certain
linear transformations 7 on the algebra of n-square matrices M, into itself.
In particular if 4 € M, let E,(4) be the rth elementary symmetric function
of the eigenvalues of A. Our main result states that f 4 <7 <% — 1 and
E,(T'(A4)) = E,(A) for A € M, then T is essentially (modulo taking the trans-
pose and multiplying by a constant) a similarity transformation:

T: A —SAS-.

No such result as this is true for » = 1, 2 and we shall exhibit certain classes
of counterexamples. These counterexamples fail to work for » = 3 and the
structure of those T such that E;(T(4)) = E;(A4) forall 4 € M, is unknown
to us. In (1) it is established that those 7" which preserve the rank (deter-
minant) of every matrix in M, are essentially of the form 7: 4 — PAQ where
P and Q are non-singular, (PQ is unimodular). In the first part of what follows,
we shall improve this result by requiring only that T preserves non-singularity.
We remark that in general we do not assume that T is multiplicative or anti-
multiplicative anywhere in the paper.

We shall collect here the notation to be used throughout. For 4 € M, let
A’ = transpose of 4, p(4) = rank of 4, tr(4) = trace of 4, 4;; = the ele-
ment in position (z,7) of 4, O, = the n-square zero matrix, and E;; = the
n-square matrix with 1 at position (¢, j), 0 elsewhere. In addition if 4 € M,
and B € M, we define 4 ® B € M,, to be the direct sum of A4 and B. If
1 < p < n then Q,, will be the set of all sequences of p-tuples w = (71, . .., 7,)
where 1 <4, <12 < ... <1, <n A transformation T: M, — M, will be
called a direct product if there exists a scalar ¢ and fixed U and V in M, such
that
cUAV

T4)
or
T(4) = cUA'V

forall A € M,. This is motivated by the fact that the mapping 7: 4 —» UAV
has a matrix representation V' X U, the direct product of ¥’ and U, with a
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proper choice of co-ordinate system for M,. We remark that the mapping
T: 4 — A’ cannot be accomplished by pre- and post-multiplication by fixed
matrices U and V for all 4. We shall also denote by e.v.(4) the set of all n
eigenvalues of 4 counting multiplicities.

2. Linear maps of GL, into itself. As usual, GL, is the group of #-square
non-singular matrices in M,. We shall determine all 7" such that T(GL,) C
GL,.

LemMMa 2.1. If 0 # A € M, then A is similar to a matrix B with By # 0,
1=1,...,n.

Proof. We may assume A4 is in Jordan form. It is known in general that 4
is similar to a matrix with tr(4)/# in position (¢,1),7 = 1, ..., n. Hence we
may assume tr(4) = 0. If 4 = E;; let u, be the vector with all entries 1 and
let u, be the vector with first entry 1 — % and the remaining entries 1. Norma-
lize #; and us and let us, ..., u, be a completion to an orthonormal basis.
Let U be the orthogonal matrix with #; as column 4. Then the (¢, 1) entry of
UE, U’ is uguse # 0. The proof is now completed by induction on #n. If
A € M, is in Jordan form with zero trace we consider first the case that 4
is diagonal. Since 4 # 0 we can assume A1; ¥ 0 and moreover the matrix
C € M, obtained by deleting row and column 1 of 4 is not 0,. By induction
choose V € M, such that (VCV=Y); 0 for 2 = 1,...,n Then

e VAl V) =A,® VCV!

has all non-zero diagonal elements. If 4 is not diagonal we can clearly assume
Ay = 1 and the submatrix C above is not 0,. As before we select V € M,
such that

P=(0V)A1 ® VY

has all non-zero entries on the diagonal with the possible exception of Pj;.
If P11 = 0 and 4y is the (1, 1) entry of VCV—1! then select U € M, such that

0o * -
0o 5)

has non-zero diagonal entries. Then
B=(U® Li) P(UT ® L)
is the required matrix.
LEmMma 2.2. If 0 £ A € M, then there is a Z € M, such that
ev.(d+ 2Z)Nev.(2) =0.

Proof. By Lemma 2.1. choose P € M, such that (P7'4P); for i = 1,
..., n. Let X be defined as follows:
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X,“.=1’ 1:=1,...,n
Xy = — (P14P)y,, 1>7
X“ = 0, 1r < j.
Then X hasall n eigenvalues 1 and P~'AP + X haseigenvalues1 + (P~14P);
i =1,...,n noneof which are 1. Then Z = PXP~!has the required property.

Lemma 2.3. If T(GL,) € GL, then T is non-singular.

Proof. We have that if
det (xI, — [T(I,)]71 T(4)) =0
for some x then
det (xI, — 4) =0

for that x. In other words the distinct elements of e.v. ([T°(I)]7!T(4)) form a
subset of the distinct eigenvalues of A. Now suppose 0 # A € M,and T'(4) =
0. Choose Z € M, by Lemma 2.2 such that

ev. (Z)Nev.4+2)=0
Then
(TI)]TTTA+ 2) =[TT)]T(2)

and the distinct eigenvalues of [T(1,)]7'7(Z) form a subset of the distinct
eigenvalues of both 4 + Z and Z. This shows that 4 = 0 if 7(4) = 0 and
T is non-singular.

Lemma 24. If T(GL,) € GL, and T(I,) = I, then e.v. (T(4)) = e.v.(4)
for all A € M,.

Proof. As in the proof of Lemma 2.3, we know that if 7°(4) has a set of n
distinct eigenvalues then

ev.(4) = ev.(T'(4)).
Since 7! exists we can say that if B has # distinct eigenvalues then
e.v.(B) = ev.(T1(B)).

If 7(4) has multiple eigenvalues choose a sequence B, converging to T'(4)
such that B, has distinct eigenvalues. The proof is completed using the fact
that the eigenvalues depend continuously on the elements.

Tureorem 2.1. If T(GL,) C GL, then there exist U and V in GL, such that
either

T:A—>UAVforall A € M,
or
T:A—->UA'Vforall A € M,.
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Proof. By Lemma 2.4 the map

¢:4—[T,)]'T(4)
sati_sﬁes

ev. (¢(4)) = ev.(4)
for all A € M,. But by (1: Theorem 2),
¢(4) = UAU!
or
o(4) = UA'U.
Multiplication on the left by 7°(,) completes the proof.
3. Linear maps preserving the symmetric functions. We now deter-
mine the structure of those linear " on M, to M, such that for each 4 € M,
E.(4) = E.(T'(4)).

For each r let the class of all such 7" be denoted by ¥,. It is clear that if T,
S €U, then TS € A,. Also if T € %, and T-! exists then T € U,; for

since any B is in the range of T we have
E.(B) = E((TT™(B)) = E,(T~'(B)).
Our first result shows that ¥, is actually a multiplicative group for r > 2.

LemMA 3.1. If r > 2and T € U, then T exists. Thus N, 1s a multiplicative
group for r > 2.

Proof. Suppose T(4) = O, and 4 # O,. Then
for any X € M,. By Lemma 2.1 there exists P € GL, such that (P! AP);;

#Z0forz=1,...,n.

Define X € M, as follows:
Xy=x i=1,...,r =1
Xu = i=r,...,n
X{j=0 ’L<j
Xiy= — (P7'AP)y; 7> j.

Then

fi(x) = E,(P'AP + X) = E,(4 + PXP-') = E,(PXP™") = E,(X) = 0.

Thus the coefficient of x’~! in the polynomial f,(x) must be 0. This means
that the sum of the last # — r + 1 entries on the main diagonal of P~'4P
is 0. Similarly we can show that the sum of any » — r + 1 is 0. But since
r>2 n—r+1<mn and it is clear that (P71 4P); =0 (1t =1,...,n).
This completes the proof.
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LEMMA 3.2. If A € M, and A 5= 0 then
degdet (xA + B) < 1forall B € M,
if, and only if, p(4) = 1.

Proof. We can clearly assume that 4 is in Jordan canonical form and the
“if”’ part of the result is obvious.

In the other direction we show first that 4 has at most one non-zero eigen-
value. Suppose

Ny ooy Ay
are the non-zero eigenvalues of 4 in positions (44, 1), ¢ =1,..., %k Let B
be a diagonal matrix with 0 at positions (4y,4;) £ = 1, ..., k and 1 elsewhere

on the main diagonal. Then
degdet (x4 + B) =k = 1.

Suppose now that 4 has the single non-zero eigenvalue A which we may assume
is in position (1, 1). To show that p(4) = 1 it will suffice to show that the
elements along the superdiagonal of 4 are all 0. This is clear for n = 2. If
n > 2 let a be the largest integer such that there is a 1 at position (e, @ + 1)
of A. Define B as follows:

By=0 t=a,a+ 1
By =1 1 # a,a+1
Ba+1,a =1

Bi;=0 elsewhere.

Then
det (x4 + B) = —x? — x.

Thus there must be a 0 at (@, @ + 1) and a repetition of this procedure shows
that there are no 1's along the superdiagonal when \ 5 0.

Now assume that A = 0 and that the (1, 2) entry of 4 is 1. Define a as
above and if @ > 2 define B as follows:

By =0 1=1,2,a,a+ 1

By =1 elsewhere on the main diagonal
B21 = 1

By =0 elsewhere off the main diagonal.

Then
det (x4 + B) = x2.

In this way all elements (¢,7 + 1) for 2 < 7 < # — 1 are shown to be 0. To
settle position (2, 3) use the test matrix

B=E;®I,.
for E3; € M;. This completes the proof.
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LemMma 33. If 3 <r<mnand A € M,, A # O, then the condition
deg E, (x4 + B) <1

for all B € M, implies that A has at most one non-zero eigenvalue.

Proof. We can again assume 4 is in Jordan canonical form with eigenvalues

A1, ..., M. Letzy, ..., 2, be indeterminates and let B be the diagonal matrix
with B" = % 1= 1, PN (B Then
E@xA+B)= >  T] i+ za)
w=(4, ..., ir)€Qrn k=1
-3 (S = O a)s
t=0 WeQrn §4CwW  aesg Bew—sy
where

2

$tCw

means the sum over all subsets s, of w with ¢ members and

Bew—sy

means the product over those elements of w not in s,. Hence for ¢ > 2 we have
that the coefficient of x* in the above sum must be 0 for any choice of 2z,

.+, 2, From this it is not difficult to show that the tth elementary sym-
metric function of any # — # + ¢ of the \; is 0. Choosing ¢ = 2 we have that
if all the A\ ; are equal they must all be 0. Assume then that for some g, a, Ay # A,
Since r > 3 we have that R =n —r + 2 < n. Let

Nity o ooy Ny
be a choice of & — 1 of the eigenvalues with ¢; # o, uforj=1,...,k — 1.
Then
0=FE:s e, Mty v+ oy Aiemy) = A E1hipy ooy M) F Ea Ny ooy Aimy)

and a similar relation holds for A,.
We then have

()\d - )\u) El ()‘lu ce ey )\llc—l) = 0'

If > 3 then B — 1 <#n — 2 and this last relation implies that \;
1 5% o, p. In this case

0 for

Ay =0

and A4 has at most one non-zero eigenvalue. To settle the case r = 3 let
E,(A,) denote the fth elementary symmetric function of all the \; for ¢ 5 j.
We first note that

Ex(\y, .. M) = MEQ) + EaRy) = LER).
Summing on j we have
nEz()\1,... ,)\,,,) = 2E2()\1,... ,)\n) = O
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Thus
A Ei(Ay) = 0.
Setting
s = \j
J=1
we have

A= s, (0 — ) =0

and thus the non-zero eigenvalues of A are all equal to s. This completes
r = 3.

LEMMA 3.4. Assume 4 < v < n -+ 3andlet A € My 3, A % O,. Then
deg E,(xA + B) <1 forall B € Mys
if, and only if, p(4) = 1.

Proof. The “if”’ part of the theorem is clear. To prove the ‘“‘only if’’ part we
can assume 4 is in Jordan canonical form and proceed by induction on #.
Forn = 1orr = n 4+ 3 Lemma 3.2 gives the result. Thus assume » < n + 4
and by Lemma 3.3 we know that A has at most one non-zero eigenvalue A
which we can assume is in position (1, 1). Call the (2, 3) entry € (either 1 or
0). Define B to be the matrix with 1 in position (3, 2) and » — 3 1’s in any of
the diagonal positions (¢, 7) for 2 > 3, 0’s elsewhere. Then

E, (x4 + B) = N ex

Consider first the situation in which X # 0. Then ¢ = 0 and row 2 and column
2 of A are both zero. If we restrict B to those matrices with row 2 and column
2 zero we can apply the induction hypothesis to conclude that the submatrix
of 4 obtained by deleting row 2 and column 2 has rank 1. Thus p(4) =1 as
well. In case A = 0 let ¢; and e; be the (1, 2) and (n + 3, n + 4) entries of 4
respectively. Define B as follows:

Bs1 = Byianss = 1.

Bii=1v 3<’L<7’—2

Bi;;=0 elsewhere.

Then
Er(xA + B) = 61€2x2

and we may assume without loss of generality that ez = 0. But then we can
apply the induction argument as before to obtain p(4) = 1.

LEmMma 3.5. If 4 <r<nand T € A, and p(4A) =1 for A € M, then
p(T(4)) = L

Proof. Consider the polynomial f,(x) = E,(xT(4) + B). Since T7! € ¥,
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we have f,(x) = E,(x4A + T-'(B)). Since p(4) = 1, deg f,(x) < 1 for all B,
and by Lemma 3.4 p(T'(4)) = 1.
LEmMA 3.6. If 4 <r < mand T € U, then for every A € M,
p(T(4)) = p(4).
Proof. Let p(4) = k and select 4;j = 1,...,k such that p(4,) = 1 and
4= Zk 4,
Then by‘Lemmas 3.5 and 3.1
p(T(4)) < k= p(4) = p(T7H(T(4)) < p(T(4)).

We are now in a position to prove our main result concerning the structure

of %,.

THEOREM 3.1. If 4 <r <n —1and T € U, then there exist U and V in
M, such that either

@) T:4—>UAV forall A € M,
or

(ii) T:4—->UA'V forallA € M,
where

(iii) UV =1¢*l,r¢d=0 (2.

Proof. The existence of U and V satisfying (i) and (ii) is an immediate
consequence of Lemma 3.6 and Theorem 2.1. It is clear that it suffices to
show that E,(PB) = E,(B) for all B € M, implies that P = ¢*I, with
r¢ = 0(27). Letting C,(B) denote the rth compound of B we have

tr C,(PB) = tr C,(B) for all B € M,.

Hence
tr{[C,(P) - I(n)] Cr(B)} = 0.

This implies immediately that
C.(P) =1,.
®)=1e
By the polar factorization theorem let P = UH where U is unitary and H
is positive definite Hermitian (p. d. h.). Then

C(U)C(H) = I(r;)

implies that C,(U) is both unitary and p. d. h. Hence every eigenvalue of

C,(U) is 1 and this in turn implies that every eigenvalue of Uis e?® forr ¢ =
0 (27). Similarly we show H = I, and the result is at hand.
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4. The structure of %j for j = 1,2,3. At this point Theorem 3.1
together with the results in (1) completely settle the question of the structure
of %A, when r > 4. It is easy to construct singular 7" € ¥, (map A4 into the
diagonal matrix B with By = 4;). Thus not much can be said about ;.
In examining A, we are led to two kinds of counterexamples: (i) those trans-
formations S € A, which permute the entries of every 4 € M, in some fixed
way; (i) those transformations C € %, which map 4 into K 0 4 where
K € M, and K 0 4 is the Hadamard product of K and 4 ((Ko 4);; =
KiAi;4,7 = 1,...,n). We shall show that there exist non-trivial examples
of both types (i) and (ii) in U, but that no such examples exist in ;. We re-
mark here that Lemma 3.4 fails for » = 3; for take 4 = Es + E3s € M4 and
note that although E; (x 4 + B) is at most linear in x for B € My, p(4) = 2.
Thus there is no hope for proving Theorem 3.1 via Lemma 3.4 for r = 3.

Denote by .S, that subset of U, consisting of transformations that rearrange
the elements of every 4 € M, in some fixed way. Similarly, let H, denote that
subset of 9, consisting of transformations of the type 4 - K o0 4, K € M,.

THEOREM 4.1. If S € S, then S = 01 0y 03 Where

(1) o3 is a permutation of the main diagonal entries only.

(i1) o2 is a permutation of the set of pairs of entries symmetrically located
across the main diagonal.

(iii) oy interchanges symmetrically located entries.

The proof of Theorem 4.1 is a straightforward enumeration of the possibili-
ties for images under S of matrices of the types Ei; + E;y, ¢ < j and Eyy
+ Ey4, ¢ < j. We omit the details.

THEOREM 4.2. No element of S, of the types (i), (i), (iii) 4z Theorem 4.1 s
a direct product except the identity map and the transpose map.

Proof. This is done by showing that any map of the types o1, o2, 05 described
in Theorem 4.1 maps some non-singular N into a singular matrix. First, suppose
o3 maps the (4,7) entry into the (¢;, 4;) entry. Choose a permutation = of
1,...,nsuch that #(§) = jand 7(¢) # ¢ for ¢ # j. Let N be the permutation
matrix corresponding to w and observe that o3(V) is singular. Next, suppose
oy maps (¢,7) and (7, 7) into (&, 7) and (I, k) respectively. Let

N = Eij + E:u + t;jEtt

and note that N is non-singular and ¢2(N) is singular. Next, suppose ¢, inter-
changes (¢, ) and (j, ¢) and leaves fixed (%, 1) and (I, k). It is not difficult to
exhibit non-singular N € M3 or M, for which ¢1(N) is singular and we pro-
ceed to show that the examples in M, for » > 4 can be reduced to one of the
cases n = 3 or n = 4. Suppose first that none of the equalities: ¢ = &, 2 = [,
j =k, j=1holds. Then set Ny = E;;+ Ey + Ei; + Ey and let the per-
mutation 7 of 1,...,#n be (¢7) (2 4) with corresponding permutation matrix
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P. Then P (Ny) P’ = E;s + Ey1 + Ei; + Ey. Similarly obtain a permu-
tation matrix Q such that QPo1(N1)P'Q" = E12 + E21 + E3 + Es. We are
then confronted essentially with the case n = 4. If any of the equalities 7 = &,
1 =1 j=F% j=1holds we can reduce the situation to the case » = 3 by
a similar device.

We may describe the structure of H, as follows:

Taeorem 4.3. If C € Hy,, C: A —> K o A then K;; = (K;)™! for 1 % j and
either Ky =1 (@ =1,...,n) or K= —1fori=1,...,n.

We omit the proof which consists of a straightforward consideration of the
possibilities for the 2-square sub-determinants of K.

We remark at this point that it seems plausible that 2, is generated by
taking only products of elements of S, H, and maps of the form 4 — PAP™},
P € GL,. We have been unable to prove this, however.

The situations for S; and H; are somewhat more involved but we shall use
a sequence of lemmas to show that:

S; consists only of the identity map, the transpose map, and maps of the
form 4 — PAP' for P a permutation matrix; H; consists only of the identity
map and the map 4 — K o 4 = 6 DAD~! where D is a diagonal matrix and
6 is a cube root of 1. It is not known to us whether there exist other elements of
A which are not direct products.

LEMMA 4.1. If A € M, and A has n elements 1, the rest 0, then forn > r > 1,
) _(n
Er(A) - <1’>

Proof. 1t is clear that since the rth order subdeterminants of 4 are integers

if, and only if, 4 = I,.

that
E.(4) < tr {[C.(4)] [C.(D]'}.
Hence
E.(4) < tr C,(44") = E/(a, ..., a1)
where a?,j = 1,...,n are the eigenvalues of 44’. If p(4) = kand k <7

it is clear that

0=E )< (’:)

Otherwise if & > 7
E

H(A)'< E @} ..., a)) = E(d}, ..., al)
< (Ve o e
- (’f) E {tr(44"))" = (’j) E
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We consider two cases:
(i) # = n. Then 4 is a permutation matrix and all eigenvalues lie on the
unit circle. Then it is easily seen that

rw - ()

implies all the eigenvalues are equal and the only permutation matrix with
this property is I,.

(ii) & < n. We shall show this is impossible. If 2 = 1, then » = 1 and
E(4) = tr (4) = n. But I, is the only matrix satisfying this and this is a
contradiction. On the other hand, if £ > 2 then

E.(4) < (k) Kl < (’:) - E,(4)

r
and the proof is complete.

LEMMA 4.2. If S € S; and n > 4 then S either interchanges (i,7) and (j, 1)
for © # j or leaves them fixed.

Proof. Since
Ey(S(I)) = (g)
we have S(I,) = I, by Lemma 4.1. Thus we may modify S to obtain
o:4— PS(A)P’

where P € M, is such a permutation matrix that ¢ holds the main diagonal
elements fixed. Now let
No=0,_2® J,

0 1
J2"<1 0)‘

We show first that ¢(N,) = N,. If this were not the case we have two possible

where

alternatives:

(i) o(No) has a 1 at some position (&, 1) such that 2 <1 and (k,1) #
(n — 1, n).

(i) ¢(N,) has a 1 at some position (&, /) such that 2 > 1 and (%, 1) # (,
n —1).

In (i) let D be a diagonal matrix in M,_, with 1 at (%, k) and (n — 3) zero’s
elsewhere on the diagonal. Then

ES(D @ Jz) = —1
However o(D @ J.) has at most two non-zero rows and hence

Es(c(D @ Jy) = 0.
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In a similar way we eliminate the alternative (ii). Hence ¢ either interchanges
or leaves fixed the entries at (# — 1, %) and (n,# — 1). A similar argument
for the other pairs of symmetrically located entries completes the proof.

LemMma 43. If S € S, 7 > 2 and
S:4->UAV
or
S:A->UA'V
then U and V are permutation matrices.
We omit the proof.
THEOREM 4.4. If S € Ssand n = p + 2, p > 1 then either
S:A4 — PAP' forall A € M,

or
S:4 —PA'P forall A € M,

where P € M, is a permutation matrix.

Proof. The proof is by induction on the integer p. For p = 1 the result in
(1, Theorem 2) shows that S is a direct product (modulo taking the transpose),
and Lemma 4.3 combined with argument used in the latter part of the proof
of Theorem 3.1 establishes that S has the above form. Now we modify S as in
Lemma 4.2 to obtain ¢ € S; where ¢ holds diagonal elements fixed. Assume
the result for all integers up to p > 1. Then if C € M,_1 = M—1+2 we have
by Lemma 4.2 that

c0® C) =0 a(0)
and

Ei(a(C)) = Es(0 @ ¢(C)) = E3(c(0 ® ()

E;(0 ® C) = Es(0).

By the induction hypothesis and the fact that ¢ holds the diagonal elements
fixed we see that if we consider ¢ as a mapping of M,_; — M, in the obvious
way then

g:C—Cforall C € M,
or

cg:C—C'forall C € M,_,.

Now it is clear that if 4 € M, = M,y» and C; € M,_, is the principal sub-
matrix obtained by deleting row and column i of 4 then the above argument
shows that

a(C) = G
or

O'(Ci) = Cil.
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Thus for each 4 € M, it follows that

c(d) =4
or

a(4) = 4,

and the proof is complete.

TaEOREM 4.5. If C € H; then there exists D € M, such that
C:4A—0DAD™ forall A € M,

where D is a diagonal matrix and 62 = 1.

Proof. It suffices to show that there exist diagonal U and V in M, such that
C(4A) = UAV or C(4) = UA’V for then it is clear that U; = 6~1V;~! for
i=1,...,nand ¢ = 1. Now for each w € Qs3, it is clear that we may con-
sider C as a mapping of M; — M; by restricting C to the principal submatrix
of each 4 € M, corresponding to the indices of w. Call the restricted mapping
Cy : M3 — M;; and since C, preserves determinant it is a direct product:

Coid > UAV, for A€ Ms,.

It is easy to check that U, and V., are diagonal by examining the images of
Ey € M;, ¢ =1,2,3 and using the fact that C,(4) is a Hadamard product.
Thus on each 3-square principal submatrix C has the desired form. It will
clearly suffice to show that C: 4 — K o 4 has the property p(K) = 1. For
then K has the form K;; = a; 6, 7,7 = 1, ..., n. We show that every 2-square
submatrix of K is singular. Let (; 8;) denote the submatrix of K involving
rows a; as and columns 81, B2. Suppose {ai, as, B1, B2} involves fewer than 4
distinct integers. Then it is clear that (a; 8;) is a part of some principal 3-
square submatrix whose row and column indices we will designate by

0 = {vrvays}.
By the above argument Cs has the form
Co:A— UsAVy; A € M,

where Uy and Vj are diagonal with diagonal elements u;, %2, %3 and vy, v,, 93
respectively. It follows that for some 7, 73, 1, j2 that

Koy = 44,95, 5,8 = 1,2

and hence that (e; 8,) is singular. In case {ai, az, 81, B2} consists of 4 distinct
integers we consider the two 3-square principal submatrices corresponding to

M= {041, g, ﬁl} and ¢ = {ay, a3, Bs}.

Again we see that
Co:A—> U AV, A € M;
C,:A—-> U, AV, A € M,
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where U,, U,, V, and V, are diagonal with main diagonals
14 ’
(ul) Ug, u3)1 (ullv %’2, %’3), (7)11 Uz 7}3)r (7} 1 7},2, 4 3)

respectively. We then obtain for some iy, ji, 22.

Kaipy = iy Kooy = w404
Kap = 4,05 Kazay = Uiy
and for some %y, nq, Mo,
Kogy = t'py0'm, Koray = t'n0'n,
Koawsy = nst'my Kasay = Wny¥'ns.

From these equalities we see that
Kalﬂl/Kazﬂl = Kalﬁz/Kazﬂz

and again (e; B3,) is singular.
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