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Abstract

The aim of this paper is to investigate the almost sure stability with a certain rate function X(t) for a class
of stochastic evolution equations in infinite dimensional spaces under various sufficient conditions. The
results obtained here include exponential and polynomial stability as special cases. Much more refined
sufficient conditions than the usual ones, for example, those described in [14], are obtained under our
framework by the method of Liapunov functions. Two examples are given to illustrate our theory.

1991 Mathematics subject classification (Amer. Math. Soc): primary 93E03; secondary 60H10.

1. Introduction

There exists an extensive literature in the stability of stochastic differential equations.
We mention here Arnold [1,2], Carverhill [4], Chappell [5], Chow [6, 7], Crauel
[8], Curtain [9, 10], Has'minskii [11] and Mao [15, 16] among others. However, all
of the above authors mainly pay attention to exponential stability. Recently, in [13,
14], Mao suggested considering another kind of stability, that is, polynomial stability,
which seems to possess great potential for many practical applications. His motivation
comes naturally from the following example.

Consider a one-dimensional linear Ito equation

dX, = - ^ X,dt + (l+t

with initial datum Xo = x0 € R, where p > 1/2 is a constant and W, is one--
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[2] Stability of stochastic evolution equations 129

dimensional Brownian motion. It is easy to obtain the explicit solution

X, = (xo + Wt)(l+trp, t>0.

Therefore for the Liapunov exponent, l imsup,^^ log \X,\/t = 0, a.s. However, we
have

log IX,| / 1\
limsup < — I p a.s.

,̂ co logr ~ V 2 /
In other words, the solution tends to zero almost surely polynomially, although it is
not exponentially stable. Therefore a natural question arises: Can we discuss stability
with a general rate function instead of exponential or polynomial? Precisely, given
a proper positive increasing function X(t), under what assumptions does the solution
of a stochastic differential equation tend to zero asymptotically with the given rate
function X(t)7

In this paper, we shall establish almost sure stability with a given rate function X(t)
for a class of stochastic differential equations in Hilbert spaces. The results obtained
here include exponential and polynomial stability as special cases.

Let us first introduce some necessary notation. Let H, U, V, K be separable Hilbert
spaces. Let Jtf(U) = Jz?(f/, U) be the linear space of all bounded linear operators on
U, equipped with the usual operator norm. We denote simply by || • || the norms in
U, H, J£(U, U) when there is no risk of confusion. Let QM e ^f(U) be a symmetric
non-negative operator with Tr QM < +oo, the trace of operator QM. It is known
that there exists a complete orthonormal basis \ek\ in U, and a bounded sequence of
non-negative real numbers kk —> 0, such that Qui^k = Xkek, k = 1 ,2 , . . .

Let A" be a real, reflexive, Sobolev type Hilbert space such that the inclusions
K c H C V = K*, where K* is the dual of K, are densely defined and continuous.
Consider the following infinite dimensional stochastic differential equation in H:

(1.1) dX, = AXtdA, + f(X,,t)dFt + g(X,,t)dM,, Xo = x0.

Here F, is a {/-valued, continuous, finite variation process with Fo = 0, and A, is a real-
valued non-decreasing, continuous process with Ao = 0. Unless otherwise specified,
we will always assume that M, is a [/-valued, continuous (?M-square integrable
martingale with Mo = 0, and A is a linear operator, in general unbounded, defined on
a dense linear subspace K := 3>{A) of H, generating a strong continuous semigroup
SO) of bounded linear operators on H. Assume also that / : H x R+ —• _£f(£/, V),
g : H x R+ -> Jz?((/, H) are two continuous, locally bounded mappings. Moreover,
we are only concerned with the strong solution X, of equation (1.1); that is, X, is a
A'-valued process. From now on, jSfJ (C/, H) and JS^Ct/, H) shall denote the spaces
consisting of all nuclear operators and Hilbert-Schmidt operators from U into H,
respectively.

Throughout this paper, we impose the following standing assumption:
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(HI) There exists a symmetric, continuous non-negative J2/?\(U, t/)-valued pro-
cess QM(t,co), a continuous U-valued adapted process QF(t,co) and a continuous
non-decreasing real-valued process A, with Ao = 0, such that

(1) {{Mt)) = j'QQM{s,co)dAs,
(2) F1=f0QF{s,co)dAs,

where ((M,)) is the tensor quadratic variation of M,.
On the other hand, let us introduce the subspace Uo = Q^2U of U which is

endowed with the inner product

(u, v)0 = 22 —(u, ek)v{v, ek)v = {Q~^'2u, QM
l/2v)Ut

k=\ kk

and is also a Hilbert space. An important role will be played by the space of all
Hilbert-Schmidt operators «5f2° = J&iUo, H) from Uo into H. The space j£f2

0 is also a
separable Hilbert space, equipped with the norm

= Tr

Let <t>(r, co), t e [0, T], be an &t measurable ^f2°-valued process and we define the
norm, for arbitrary t e [0, T],

1/2
I I . ,. f I

1*1,f = \E f
,1/2

s,co)- Q'^)l<$>(s,co)- Ql/,z) dAs

As usual, we also denote the family of all ^f2°-valued predictable processes <!>(/, co)
such that |<t>|r < +oo by ̂ ( [ 0 , T]; ^f2

0), or simply by ^ ( 0 , T).
Since Ito's formula in infinite dimensional space plays an important role in the

subsequent stability analysis, we shall give a version of it suitable for our purpose
without proof (see [17, 18] for the details).

THEOREM 1.1 (Ito's formula). Let (,) and {,) denote the inner product in H and
the duality between K and V, respectively. Suppose that V(x, t) is a continuous,
locally bounded functional V : H x R+ —> R admitting derivatives of the first and
second-order, denoted by Vx, V,' and Vxx, and satisfying:

(1) For each x e H,t e R+, Vt'(x, t) e R and the derivatives Vx, Vxx are locally
bounded and continuous from H into H and jSf (H, H), respectively.

(2) Vx(x, t) e K,Vx € K and Vy e V, the mapping: x - * < V'x(x, t), y > is
continuous from K into R.
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[4] Stability of stochastic evolution equations 131

(3) For any Y e ^{H, H), the mapping: x -> Tr\\Vx"x(x,t)Y\\, from K into R,
is continuous.

Moreover, suppose that
(a) / : HxR+ -* <£{U, V), g : H x R+ -+ ££2{U, H) are two continuous,

locally bounded mappings.
(b) VX, € L"([0, T]xQ, K), p>\, f(X,, t) € L«([0, T]xQ, V), l/p+l/q = 1.
(c) Vx0 e K, (1.1) has a unique strong solution X, such that g(X,, 0 e N^ (0, T)

andX, e Jtv ([0, T]; K)HL2 {Q; C ([0, T]; H)}, where JZP ([0, T]\ K)denotesthe
space of all adapted K-valued processes %„ t e [0, T] which are jointly measurable
in (t, CD) and are &,-measurable such that E /Q

r ||§, \\p dA, < oo, and C ([0, T]; H)
denotes the space of H -valued continuous functions on [0, T].

Then we have, for arbitrary real-valued non-decreasing process A't with A'o = 0,

V(X,,A',)=V(X0,0)+ f V;(Xs,A's)dA's+ f (v:(Xs,A's),g(Xs,s)dMs)
Jo Jo

+ f (V;(XS, A',), (AXS + f(Xs, s) o QF(s)) dAs)
Jo

d-2) + \ I Tr [v;'x(Xs, A's)(g o Q^)(g o g^2)*] dAs.

In particular, suppose A\ = A,, and define, for x e K and t € R+,

LV(x, t) =V,'(x, t) + ( V > , r), Ax + f(x, t) o (QF(t)))

then Ito's formula can also be stated as follows:

V(X,,A,) = V(X 0 ,0 )+ / LV(Xs,As)dAs+ I (V'X(XS, A,), g(Xs,s)dMs).
Jo Jo

Next let us give the explicit definition of almost sure stability with rate function
k(t).

DEFINITION 1.1. Let k(-) be a real-valued function on R+ such that k(t) > 0,
k(t) t +00 and logA.(r) is uniformly continuous in t. Equation (1.1) is said to be
almost surely stable with rate function k(t) of order 8 > 0 if for every x0 e K there
exists a finite random variable %(co) such that

\\X,(xo)\\ < !=(a>) • k(t)~s a.s.

for all / € R+, or equivalently,

log||X,(JCb)||
(1.3) hmsup— < -S a.s.

logA(0
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In order to prove our main results, we need a Gronwall-type lemma which can be

found in [14].

LEMMA 1.1. Let u(x), n(x) belongs to M ([0, Y], R+), the family of all Borel meas-

urable, bounded, left limit non-negative functions defined on [0, Y],Y = (yi,... , yn)

e R", with n(x) positive and non-decreasing. Let At{t) = (an(t), • • • , ain(t)),

i = 1, • • • ,m, where atj{t) : [0, yt] —> R+ is a right continuous non-decreasing func-

tion withajj(0) = Oforalli = 1, • • • ,m and j = 1, • • • , n. Leta(x{) : [0, y{] - • R+

be right continuous and non-decreasing and let f(x, s) (i = 1,2,... ,m) be a

bounded Borel measurable non-negative function defined onO<s<x<Y and

non-decreasing in x. Then the inequality

m

u(x) < a(x\) + n(x) + ^

implies

u(x)<(a(0)+n(x))exp{ I _ _ ^ I l L — + ) ' / f(x, s)dAi(s)\ .

2. The main results

In this section we shall use the Liapunov function to study almost sure stability for
a class of stochastic differential equations:

(2.1) dX, = AXtdA, + f(Xt,t)dFt+g(Xt,t)dMl, X0 = xQeK.

Here f, g, A, F,, M, and V(x, t) are defined as in the previous section and are assumed
to satisfy the standing hypothesis (HI) and all the conditions in Theorem 1.1. For
the purpose of stability analysis, we shall always assume equation (2.1) has a unique
strong solution which is denoted by X,(x0) e K as in the work of [18].

Since V(x, t) is a C2 '-positive function, we define operators L and Q as follows:
For x € K and t e R+, define

LV(x, t) =V,'(x, t) + [V'x(x, t), Ax + f(x, t) o (QF(t)))

and

(2.2) QV(x, t) = Tr [v; ® V'x(x, t)(g o Q)f)(g o eif )*] •

At present, we need the following hypothesis in the first two theorems of this
section, although we will remove this restriction later on:
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(H2) X,(xo)^O for any x0 ^ 0.

Now we can state our main results.

THEOREM 2.1. Let (H2) hold. Suppose k(t)has the property lim s u p ^ ^ l o
= q > 0. Assume there exists a positive function V(x, t) e C 2 ' [ ( / / - {0}) x /?+] -»
/?+, constants p>0, u>0, 8>0, m>0, CeR such that

(1) WxVHt)1" < V(x,t), x^O, t>0,
(2) LV(x,t)<CV(x,t), xeK-{0}, t > 0,
(3) liminf^cclogMAjVlogMO > M, limsup,^,^ CA,/\ogk(t) < mu — 8 — q,

a.s.

Then equation (2.1) is almost surely stable with rate function X(t) of order 8/ p, that
is,

log||X,(x0)|| 8
hm sup < a.s.

,̂ oo log M0 p

forallx0e K - {0}.

PROOF. By Ito's formula and the definitions of L and Q, we can show that

f 1
< log V(xo, 0) + CA, - ————QV(Xs,As)dAs

Jo zv{xs, Asy
(2.3) + I ( l v;(X,,A,),g(X,,s)dM,Y

Jo \V(AS,AS) )
Due to the exponential martingale inequality [17], we have

p\co: sup [ f (—L—VXXs,As),g(X,,s)dMs
I o<i<iLio \ » ( . ^ i i " i J

In particular, if

e = (\+o)logk, v = l, T=IC, a > 0, (k = 1,2, . . . ) ,
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then

P\CO: sup I" f'( l v;(Xs,As),g(Xs,s)dMs)
I o<i<kUo \V{XS,A5) J

- I QV(Xs,As)dAA > {\+o)\ogk\ < .

Hence, by the Borel-Cantelli lemma, we deduce that for almost all co e £2 there exists
an integer k0(co) such that

< (l+<r)log*+ f QV(Xs,As)dAs

for all 0 < t < k, k > k0(co). Substituting this into (2.3) gives

log V(X,, A,) < log V(x0, 0) + CA, + (1 + a) log A:

for all 0 < t < k, k > ko(u>) almost surely. Consequently, by hypothesis (1), we have

log || X, || _ lo

logA(/) ~

< log V(x0, 0) _ J_ /mlogXjA,) _ c A, \ ( 1 + a ) log A:

~ p\ogk{t) p \ log k{t) log k(t)J plogX(t)

< log V(x0, 0) _ ]_ /mlogkjA,) _ A, \ ( 1 + a ) log A:

" plogk(t) p \ logMr) logk(t)J p\ogk(k-l)

for all A; — 1 < t < k, k > k0(co) almost surely.
Letting a -> 0, together with assumption (3), implies

log||X,(x0)|| 1 . . t(m\ogk{A,) A, \ q
hmsup— < hminf I C I H—

,̂ oo log k(t) p t^oo \ log MO logMO/ P
8

< — a.s.
P

The proof is complete.

THEOREM 2.2. Let (H2) hold. Suppose k{t) satisfies limsup^^logf/logACf) =
q > 0. Assume there exists a positive function V(x, t) € C 2 ' [(H - {0}) x R+] ->
R+, constants p > 0, S > 0, u > 0, m > 0, C e R and a real-valued predictable
process §(f) such that
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< v(X, t), x ̂  o, t > o,
(2) LV(x,t) <C$(t)V(x,t), x e K - {0}, t > 0,
(3) QV(x,t) >i;(t)V(x,t)2, x e K - {0}, t > 0,
(4) liminf^oclogMA^/logMO > u,

lim sup,^^/0' C i-(s)dAs/log k(t) < mu - 8 - q, a.s.

Then equation (2.1) is almost surely stable with rate function A(0 of order S/p, that
is,

,. logl|X,(*o)ll 8
limsup—-——-— < a.s.

log>(0 p
forallxQe K - {0}.

PROOF. Using the same arguments similar to those used in the preceding proofs, it
is easy to obtain the following inequality

I
Jo o

QV(Xs,As)dAs

(2.4) + / ( l V;(Xs,As),g(Xs,s)dMs).
Jo \ y{xs, AS) /

Assigning e > 0 arbitrarily and using the exponential martingale inequality, we then
have

P L : supT/" ( l
 A V:(Xs,As),g(Xs,s)dMs\

- / QV(XS, As)dAs > r\ <e~vr.

Jo 2V(XS,AS)^ SJ I ~
In particular, letting

r = (\+9)s~> logk, v = s , x — k, (k — 1 , 2 , . . . )

where 9 > 0, we see that there exists an integer ko(a>), for almost all a> e Q, such that

f £
< (\+9)£~]logk+ QV(XS, As)dAs.

Therefore

logV(X,,A,)

<logV(x0,0) + c / i;(s)dAs + (l+9)e-llogk + —— / , ' 5 ' /
Jo 2 Jo V(XS,AS)

2
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Letting s = e~s, 8 > 0, yields that almost surely

logV(X,,A,)

< log V(xo, 0) + C / $(s)dAs + (I + 9)e~] logk + ^-^- f $(s)dAs

Jo £ j0

i;(s)dAs — / $(s)dA,
* Jo

whenever 0 < t < k, k > kQ(co). Therefore it follows from hypothesis (1) that almost
surely

plog ||X,|| + m IogA(Ar) < log V(X,, A,)

<\ogV(x0,0) + es(l + 0)\ogk + C f
Jo

Hence, letting 9 —• 0 and then 5 -> 0, we can obtain

log ||Xt(j0) 11 =logV(jc0,0)
log A(0 plogA.(f)

log*I f / " I
m log k(A,) — C / £(s) dA,

>gHt) L Jo J
Now we are in a position to obtain our conclusion:

hmsup — ^ — ^ ^ < -hmsup -1" — +
logX(0 /> ,_,,» logA.(r) p p

The proof is complete.

In what follows, we shall remove hypothesis (H2).

THEOREM 2.3. Suppose k(t) has the property limsup^^logf/logA,^) = q > 0.
Assume that there exists a positive function V ( x , t) e C2 [[H x i ? + ] —>• R + , constants
p > 0, & > 0, u > 0, m > 0 , a > 0 , fi>0, C e R and a polynomial jx{t) with
positive coefficients such that

(1 ) \\x\\pk(t)m < V(x, 0, x e H, t > 0,
(2) L V ( x , 0 < CV(jc,f) + /x(Oec-°", x e K , ! > 0 ,
(3) QV(x,t) <ii(t)eCtt'V(x,t), xeK,t>0,
(4) CA, > Cat + Cfi, liminf,_>oologA,G4r)/logMr) > u,

< mu - S - {d + \)q a.s.,
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where d denotes the degree of the polynomial ix(t). Then equation (2.1) is almost
surely stable with rate function X(t) of order 8/ p, that is,

log || X, (*<,) || 8
limsup < a.s.

,-co log MO p
for all x0 € K.

PROOF. By Itd's formula, we easily have

e-CAlV(X,,Al)=V(x0,0)+ f e~CA' [-CV(XS, As) + LV(XS, As)] dAs

Jo

f
Jo

<V(xo,O)+

+ f (e~CA'V;(Xs,As),g(Xs,s)dMs).
Jo

Combined with condition (4), the inequality above implies

e-CA'V(X,,A,)<V(x0,0)+ f n(s)e-ctidAs

Jo

(2.5) + I (e-CA<V'x(Xs, As),g(Xs,s)dMs).
Jo

On the other hand, due to the exponential martingale inequality, we have

Pico: sup \ f (e-CA'V;(Xs,As),g(Xs,s)dM>)
[ 0<r<r |_./O

r<
- /

r< ve~2CAs

In particular, assigning 0 > 1 arbitrarily and setting

x = e\ C* = 1 , 2 , . . . )

where d is the degree of /x(f), then, by the Borel-Cantelli lemma, we easily deduce
that there exists an integer k0(co) for almost all co e Q such that

(2.6)

/ (e-CA*V;(Xs,As),g(Xs,s)dMs)
Jo

< 0<rf+»*+1 \Ogk + f <
2 Jo
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for all 0 < t < 6k, k > k0(co). Combining this with hypotheses (3) and (4), we have

QV(X5, A,) < n(t)eCa'V(Xs, As) < n(t)eCA'-pcV(Xs, As),

which, together with (2.6), implies immediately that almost surely

(e-CA'Vx(Xs,As),g(Xs,s)dMs)

a-(d+\)k ft

< e{d+X)M log* + — e~Cfi / n(s)e-CA' V(X5, As)dAs
2 Jo

for all 0 < t < 6k, k > ko(a>). Substituting this into (2.5) gives

e-CA'V(X,,A,) < V(x0,0)+8id+l)k+]logk
-(d+\)k t-i r-t

cfi C A C f > / n(s)dAs

t-i r-t

n{s)e-CA>V(Xs,As)dAs+e-Cf> /
Jo Jo

for all 0 < t < 0k, k > ko(a>). Now we can apply Lemma 1.1 to obtain

e~CA'V(X,,A,) <V(xo,O)+0(d+1)Mlogk
n-(d+l)k

• exp j — ^ — • *- cV(0

0<t<6k, k>k0,

where v i s a positive constant independent of k. Consequently,

e-CA'V(X,,A,) v(l +6>(d+l)*+1logA:)

td+1 log log t ~ 6»w+1»(*-1»(log(jt - 1) + log log 6>)

for all 9k-1 <t <0k,k >k0(co).

This implies

r e-CA'V(X,,At)
hmsup < v-6>' \ a.s.

/->oc

Letting 61 tends to 1 yields

e-CA'V(X,,At)
hmsup———— < v, a.s.

?rf+'l0gl0gf

Finally,

log IIX, 1| ^ logV^ .A, ) mlogk(At)

p\ogk(t)

m\ogk{At)log L C V + 1 ) log log tlog L V log log t 1
log k(t) g i S g f+'loglogf J plogHt)
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Therefore

limsup • log ||X,|| <— I limsup - mu + (d + l)q I
,^oo log k{t) p \ t^oo log MO /

8

p'

The proof is complete.

THEOREM 2.4. Suppose that the function k(t) satisfies lim sup,^.^ log t / log k(t) =
q > 0. Assume there exists a positive function V(x, t) e C2A[H x R+] -*• R+,
constants p > 0, p > 0, m > 0, u > 0, 8 > 0, a > 0 , y0 > 0, fi > 0, C e R such
that

(1) \\x\\Pk(t)m <V(x,t), xeH, t>0,
(2) LV(x, t) < CV(x, t) + iieCal+fil, x € K, t > 0,
(3) QV(x, t) < ixeCo"+f"V(x, t), x e K, t > 0,
(4) CA, > Cat+Cfi, liminf/^oologk(A,)/\ogk(t) > u, l imsup^^ f / log .^? )

< v < +oo, l imsup,^^ CA,/\ogk(t) < mu — S — vp — q, a.s.

Then equation (2.1) is almost surely stable with rate function k(t) of order 8/p, that
is,

l o g || *,(*«>) II S
l imsup < a.s.

,^oo lOg k(t) p

for all x0 £ K.

PROOF. Using arguments similar to those used in Theorem 2.3, we have

e-CA'V(X,,At)<V(x0,0)+ f ne-Cfi+psdAs
Jo

(2.7) + f (e-CA-V'x(Xs, As),g(Xs,s)dMs).
Jo

By the exponential martingale inequality, we can also have

P\co: sup I I {e'CA'V'x{Xs,As),g{Xs,s)dMs)
[ 0<(<r L./0

/" ve'2CA- 1 )

-J —^—QV(X,,A,)dAA>r\<e-vr.

In particular, assigning 9 > 1 arbitrarily and substituting

r = 9kepklogk, v = k~{e~pk, x = k, (it = 1 , 2 , . . . )
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into (2.7) and applying the Borel-Cantelli lemma, we deduce that there exists an
integer k0(co) for almost all a> e Q such that

1 f
< k9epk\ogk + -k~le~cl)-pk / eps-°A'V(Xs, As)dAs

2 Jo
for all 0 < t <k,k > k0{eo). Hence we get from (2.7) that almost surely

e-CA-V(X,,A,) <V(xo,O)+ k0epk log k + f ^e'cli+psdAs

Jo

+ X-k-le~cli-pk f eps-CA' V(XS, As)dAs.
2 Jo

This implies

e-
CA'V(X,,A,) < v(l +k6epklogk), 0 < t < k , k > ko

where v is a positive constant independent of it. Consequently, whenever it — 1 < / <
k, k > k0(co),

e-CA'V(X,,At) v(l+k9epk\ogk)
ee'tlogt ~ e^k~l\k - l)log(A: - 1)

Therefore

,. e-CA-V{Xt,At)hmsup < v • ep a.s.
eP'tlogt

and it follows that almost surely

log IIX,|| < logV(X,,^f) m\ogk{At)
<

log Mr) ~ p\og\(t) p\ogX(t)
L l o g ( e ^ , ? l o g f e^V(X,,At)) m log MA,)< l o g ( e ? l o g f )

log MO ^ e<»tlogt / p log MO

Hence we obtain

lim sup —- • log || X, || < lim sup - 1 -—-|— + vp + q - mu
,^00 log MO i^oc p\\ogk(t)

The proof is now complete.
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The following theorem is an immediate consequence of the previous two theorems.

THEOREM 2.5. Suppose that the function k(t) satisfies lim sup,^^ log t / log X(t) =
q > 0. Assume that there exists a positive function V(x, t) e C 2 ' [ / / x R+] —>• R+,
constants p> 0, p> 0, k>0, u> 0, 8> 0, a>0, f3>0, CeR and a polynomial
with positive coefficients fx(t) such that

(1) \\x\\pX(t)m < V(x, t), x e H, t> 0,
(2) LV(x, t) < CV(x, t) + n(t)eCo"+<", x e K, t > 0,
(3) QV(x, t) < fi(t)eCat+<"V(x, t), x e K, t > 0,
(4) CA, > Cat + Cp, liminf^oologA^logA-Cf) > «, limsup,^^ t/logk(t)

< v < +oo, l imsup,^^ CA,/ logX(t) < mu — 8 — vp — q, a.s.

Then equation (2.1) is almost surely stable with rate function X(t) of order 8/ p, that

is,

log||Xf(*0)|| S
lim sup < a.s.

,^oo logA(r) p

for all x0 € K.

PROOF. For any e > 0, there exists a constant M such that n(t)eCo"+p' < MeCo"+p'+e'.
Hence the conclusion follows from Theorem 2.4.

3. Examples

In this section, we will give two examples to illustrate the results derived in the
previous sections.

EXAMPLE 3.1. Consider the following model equation in population biology [18]:

dX(t,x) ( X \ •
- — = /zAX + e( )M(t,x), t>0,xsDcR"

(3.1) X(0,x) = x0, X|3 D=0.

where /it, e are positive constants and D is a bounded domain with smooth boundary
in R".

Let H = L2(D), K = //O'(D), a Sobolev space with elements satisfying boundary
conditions above, V = K*, f — 0, g : u(x) ->• €(u(x)/{\ + |M(JC)|)) from H into
H, and M(t, x) be an //-valued Wiener process with bounded continuous covariance
q(x,y).
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Introduce a Liapunov function

V(u, t) = e'm I u{xfdx, m > 0.

It is easy to verify that

LV{u,t) =me'm f u(x)2dx-2fie"" f \Vu(x)\2dx
J D J D

, f 9 U2(X)
+ e I e q(x,x) jdx

JD (1 + |M(JT)|)

<me'm j u2(x)dx - 2/z / \Vu(x)\2dx • e'm +€2{qu, u)e'm.
JD JD

Let A.o = infug//̂  |Vu(x)\2/\u(x)\2 and q0 — sup^sD ^(JC, X)\. Thus we obtain

LV(u, t) <{m- 2/iA.o + €2q0)V(u, t).

Therefore, if there exists a 8 > 0 such that qo€
2 < 2fik0 — 8, that is, if qoe

2 < 2fik0,
then by Theorem 2.1, equation (3.1) is exponentially stable, that is,

log||X,(x0)|| 8
hmsup < — a.s.

;->oo t 2

EXAMPLE 3.2. A variation of (3.1) is the following:

t > 0, x € D c R"

which satisfies the same initial boundary conditions as before. Here v, /A, 0 are some
proper positive constants and p(t) is a polynomial. In contrast with the previous
example, / ( « , t) = 9{u/{\ + |w|)) is non-linear, g(u, t) = p ( 0 ^ ^ ( l / ( l + \u(x)\))
and M{t,x) is an //-valued Wiener process with continuous covariance q(x, y) such
that JD \q(x, x) dx — C < oo. Introduce a Liapunov function

V(u,t) = (1 +t) I u(x)2dx,
JD

and it is easy to verify that

LV(u,t) = j u{x)2dx-2v(\ +t) I \Vu(x)\2dx
J D J D

JD\l + \u(x)\J
<(1 - 2vk0 + 20)V(u, t) + 4C(1 + t)p2{t)e-2)l'
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and

QV(u, t) < 4C(1 + t)p2(t)e~2i1'V(u, t),

where

. • f

An = lnt-eHi l « « | 2

Hence, by Theorem 2.5, we know that if 2vX0 — 20 — 2\x — 1 > 0, then the equation
is almost surely polynomially stable.
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