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Abstract

Let R be a ring in which the multiplicative semigroup is completely semisimplc. If R has the maximum
(respectively, minimum) condition on principal multiplicative ideals, then R is semipnme artinian
(respectively, a direct sum of dense rings of finite-rank linear transformations of vector spaces over
division rings).

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 M 25; secondary 16 A 30. 16 A 32.
16 A 42, 20 M 12.

1. Preliminaries

The study of completely semisimple semigroups was initiated by Munn (1957). In
particular, he considered various minimum conditions, showing that for the
semigroups in question, the minimum conditions on principal left ideals, on
principal right ideals, and on principal two-sided ideals are all equivalent (Munn
(1957), Theorem 2.9). To these may be added a fourth equivalent, the minimum
condition on idempotents (see below, Theorem 4). Our chief aim is the structural
classification of rings in which the multiplicative semigroup is completely semi-
simple and satisfies the above-mentioned minimum conditions (see Theorem 4). We
also show that for completely semisimple multiplicative semigroups of rings, the
maximum conditions on principal two-sided ideals and on idempotents are
equivalent, and again obtain a characterization of the relevant rings, in this case, as
semiprime artinian rings (see Theorem 5).

Semigroups and rings will not necessarily have an identity element.
In a semigroup S, let

E= {eeS:e2 = e}
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denote the set of idempotents. Define a partial order on E b y : / ^ e if and only if
/ = efe. A nonzero idempotent e is primitive in S if for /e£ , 0 / / ^ e implies/= e.
We say that S satisfies Min-£ if the minimum condition holds for E under the
specified order; Max-£ is defined dually. If xeS, let

J(x) = {x} uxSuSxu SxS

denote the principal (two-sided) ideal generated by x, and

= {yeJ(x):J(y)^J(x)}

the set of nongenerators of J(x). Then S is called completely semisimple (see Clifford
and Preston (1967), p. 32) if for each nonzero xeS, the Rees quotient semigroup
J(x)/I(x) contains a primitive idempotent; when this is the case, it is well known that
every nonzero idempotent of J(x)/I(x) is primitive (for example, see Clifford and
Preston (1961), Exercise 11, p. 84). We let Min-J signify the minimum condition on
the set of principal ideals of S (ordered by inclusion); Max-J is its dual.

A ring or semigroup S is regular if for all xeS, there exists yeS with xyx = x, or
equivalently, if each principal right ideal is generated by an idempotent. We call a
semigroups with identity direct lyfiniteif for x,yeS,xy = 1 implies yx = l;forrings,
this agrees with the usual definition.

A ring is semiprime if it contains no nonzero nilpotent (one-sided) ideals, and
artinian if it satisfies the minimum condition on right ideals. Following Petrich
(1974), p. 69, we shall call a ring atomic if it is a (direct) sum of minimal right ideals.

2. Results

PROPOSITION 1. For a semigroup S with set of idempotents E, the following are
equivalent:

(a) S is completely semisimple;
(b) S is regular and for e,feE,f< e implies J(f) £ J{e);
(c) S is regular and eSe is directly finite for each eeE.
PROOF, (a) => (b) Completely semisimple semigroups are regular by Clifford and

Preston (1967), 6.48 (see 2.51). I f / < e, certainly J(f) £ J{e); moreover, by (a) e is
primitive in J(e)/I(e), so / i s the zero thereof, whence fel{e) and J(f) ^J(e).

(b) => (c) Let x,yeeSe with xy = e. Put / = yx; then xfy = e and yex =f so
J(f) = J(e). Further,f = f2 ^ e, so yx = / = e by (b).

(c) => (a) Let x e S - { 0 ] . By regularity, J(x) = J(e) for some eeE — {0}. Suppose
/ = f2 ^ e with J(f) = J(e). Then e = afb for some a,beS; since e = eafebe, we may
assume afbeeSe. By (c), baf= e, whence e = ef = f Thus e is primitive in J(x)/I(x).
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Note that for rings, (c) characterizes the multiplicative concept of complete
semisimplicity in entirely ring-theoretic terms. For rings with identity, there is a
simpler characterization:

COROLLARY 2. Let Rbe a ring with identity. Then the multiplicative semigroup ofR
is completely semisimple if and only if R is regular and directly finite.

PROOF. It remains to show that if R is directly finite and e = e2 e R, then eRe is
directly finite. Let x, ye eRe with xy = e. Then

(x + 1 - e) (v + 1 - e) = xy + 1 - e = 1,

so

1 = (y+ 1 -e)(x+ 1 -e) = yx+ 1 -e,

whence yx = e.

LEMMA 3. Let R be a ring and E its set of multiplicative idempotents.

(a) Max-£ implies Min-£.
(b) If R has an identity element, Min-£ implies Max-E.
(c) Suppose Min-£ holds. Tlien every nonzero idempotent is a sum of primitive

idempotents.

PROOF, (a) Iff! > e2 > e3 > ..., then ex—e2 < c ^ - r , < ....
(b) If el < e2 < ..., then l—e1>\—e2>....
(c) Assume the contrary, and choose e e E — {0} minimal with respect to not being

such a sum. Now e cannot be primitive: say 0 # / = / 2 < e . Then also
0 ^ e— / = (e—f)2 < e, so both/and e— / a re sums of primitive idempotents (by the
minimality off). But e =f+(e — / ) , a contradiction.

THEOREM 4. For a semigroup S, the following are equivalent:

(a) S is completely semisimple and satisfies Min-J;
(b) S is completely semisimple and satisfies Min-£;
(c) S is regular and satisfies Min-E.

Furthermore, ifS is the multiplicative semigroup of a ring R, then (a), (b) and (c) are
equivalent to each of the following conditions:

(d) R is semiprime atomic;
(e) R is a direct sum of dense rings of finite-rank linear transformations of vector

spaces over division rings.
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PROOF, (a) => (b) => (c) by Proposition 1.
(c) => (a) Let x G S. By regularity, the set of idempotents in J(x) — I(x) is nonempty.

By Min-£, this set contains a minimal element, which gives a primitive idempotent
in J(x)/I(x). Thus S is completely semisimple. It is an immediate consequence of Hall
(1970), Theorem 1, that for regular semigroups, Min-E implies Min-J.

Now let R be a ring with multiplicative semigroup S.
(c) => (d) If 0 / x £ R, then by regularity and Lemma 3(c),

xR sj elR + ... + enR

for primitive idempotents c,. By regularity again, each et R is minimal (Clifford and
Preston (1967), 6.38). Hence R is a sum of minimal right ideals, and therefore
(Jacobson (1956), Theorem 1, p. 61) a direct sum of such ideals, that is, atomic.
Regularity implies that R is semiprime.

(d) => (e) Since R is atomic, it is its own right socle, and thus the direct sum of its
homogeneous components, each of which is a simple ring as R is semiprime
(Jacobson (1956), p. 64-65). Now (e) follows from McCoy (1964), 7.13.

(e) => (c) It is easy to reduce to the case where R is a single dense ring of finite-rank
linear transformations of a vector space VD over a division ring D. Such an R is
regular (McCoy (1964), 7.9). Moreover, i f /= / 2 < e = e2 eR,thenfV$eVJorf^ e
a n d / F = eKimply

(e-f)V= (e-f)eV= (e-f)fV= 0.

Since eKis finite-dimensional over D, it follows that R satisfies Min-£.

REMARKS. Theorem 4 extends the characterization of semiprime atomic rings
given in Petrich(1974), II.6. l,a result in which the equivalence of (d) and (e) above—
no doubt well known--is implicit (see also Petrich (1974), II.2.8). Note also that the
equivalent conditions (a), (b) and (c) imply that S is regular with Min-J, but even for
rings with identity the converse does not hold. For the full ring of linear
transformations of an infinite-dimensional vector space is regular (McCoy (1964),
7.3) with Min-J (Petrich (1974), 1.4.2), but does not satisfy Min-£, since the
projections onto an infinite descending chain of subspaces give rise to an infinite
descending chain of idempotents. A second instance of the same situation is
provided by Example 8 below.

THEOREM 5. For a semigroup S, each of the following conditions implies the next:

(a) S is completely semisimple and satisfies Max-J;
(b) S is completely semisimple and satisfies Max-£;
(c) S is regular and satisfies Max-£.
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Furthermore, ifS is the multiplicative semigroup of a ring R, then (a), (b) and (c) are
equivalent to each other and to:

(d) R is semiprime artinian, that is, a finite direct sum of full matrix rings over
division rings.

PROOF, (a) => (b) => (c) by Proposition 1.
Now let R be a ring with multiplicative semigroup S.
(c) => (d) Suppose that R is regular with Max-£. We first show that R has an

identity element. Let e be a maximal idempotent in R, and let xe R. We apply a
familiar argument of von Neumann (1936). Since R is regular, xR =fR for some
f = f2eR; then

eR + xR = eR+fR = eR + (f-ef)R.

Again, (/"— ef) R = gR where g = g2 eR, and eg e e{f— ef) R = 0. Let h = e + g — ge.
Since he = e and hg = g, we have

eR + xR = eR+gR = hR.

Moreover, h = h2 ^ e, so h = e by choice of e. Hence xeeR, and ex = x. Similarly
xe = e, so e is the required identity element.

By Lemma 3(a), R has Min-£. Thus by Theorem 4, R is semiprime atomic, and in
particular, a direct sum of minimal right ideals.

Since R has an identity element, this sum must be finite. Hence R is artinian. The
Artin-Wedderburn Theorem (Jacobson (1956), p. 40; see also Corollary 1, p. 39) now
applies.

(d) => (a) It follows from Theorem 4 that (d) implies the complete semisimplicity
of S. A matrix ring over a division ring satisfies Max-./ by Petrich (1974), 1.3.6, and
extension to a direct sum of such matrix rings is straightforward.

We conclude with four examples to show what can go wrong if we relax some of
the hypotheses used above.

EXAMPLE 6. The bicyclic semigroup

(p,q: pq = 1 # qp}

is regular and satisfies Max-£ but not Min-£ (Clifford and Preston (1961), 2.53).
Moreover, it is not completely semisimple (for example, by Proposition 1), so in
Theorem 5 we see that (c) does not imply (b) for non-ring-semigroups.

EXAMPLE 7. The implication (b) => (a) also breaks down for general semigroups.
To see this consider the following construction. Let C2, C3, Q,.. . be the semilattices
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which are chains of lengths 2,3,4,... (respectively) and assume that these chains have
a common zero element, 0 say. Now let £ be the O-direct union of C2, C3, C4,... (see
Clifford and Preston (1967), Section 6.3) so that £ is a semilattice satisfying Max-£
and Min-E. Then TE, the Munn semigroup of £ (see Howie (1976), Section V.4), is an
inverse semigroup with £ as its semilattice of all idempotents (so that, by Theorem 4,
TE is completely semisimple) but it does not satisfy Max-J.

The remaining examples are taken from the simple right self-injective rings
studied by Goodearl and Handelman (1975). Firstly we reinterpret the principal
multiplicative ideals in a regular ring.

LEMMA 8. Let a.be R,a regular ring. Then J(a) £ J(b) if and only if there is a one-to-
one right R-module homomorphism from aR to bR.

PROOF. Since R is regular we may assume that a and b are idempotents. If
J{a) c j(b), say a = xby, then q>: aR -»bR given by <p{ar) = byar is an .R-module
homomorphism which is one-to-one since if byar = byas then

ar = a2 r = xbyar = xbyas = as.

Conversely, suppose <p: aR -> bR is an R-monomorphism, with cp(a) = bx. There
exists yeR with bx = bxybx, and we have

<p{aybx) = cp(a)ybx = bx = (p(a).

Since q> is one-to-one, a = aybxeJ(b).
Following Goodearl and Handelman we shall write aR < bR if there is a one-to-

one R-module homomorphism <p: aR -> bR.

EXAMPLE 9. There is a regular ring R with identity which has only two principal
multiplicative ideals but does not satisfy Max-£ or Min-£.

For let R be a simple right self-injective ring which is not directly finite (see
Goodearl and Handelman (1975), Example (a), p. 805); then R is regular (Goodearl
and Handelman (1975), Remark, p. 801). The only principal multiplicative ideals of
R are 0 and R. To see this, let 0 ^ a e R. Then R ^ aR (Goodearl and Handelman
(1975), Theorem 2.1, proof that (d) implies (a)), so by Lemma 8 we have
R = J{ 1) £ J(a). On the other hand, as R is not directly finite it contains a copy of the
bicyclic semigroup, so does not satisfy Min-£. By Lemma 3(a) it does not satisfy
Max-£ either.

Thus without complete semisimplicity even the strongest possible chain condition
on principal multiplicative ideals fails to force any chain condition on idempotents.

EXAMPLE 10. There is a ring R with identity whose multiplicative semigroup is
completely semisimple but does not satisfy Max-J, Min-J, Max-£ or Min-£.
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For let R be a simple right self-injective ring which is directly finite but not
artinian (Goodearl and Handelman (1975), Example (b), p. 805); as before. R is
regular. By Corollary 2, the multiplicative semigroup of R is completely semisimple.
Thus R does not satisfy Max-£ or Min-£ (since it is not atomic). Indeed R does not
have any primitive idempotents: if it did, the socle of R would be nonzero so all of R
(as R is simple); but then R would be artinian.

We determine the principal multiplicative ideals of R as follows. Let D be the
"dimension function" on the lattice of principal right ideals of R (Goodearl and
Handelman (1975), Theorem 3.17). If aeR, then we claim that

J(a) = {xeR: D{xR) ^ D(aR)).

Indeed, by Lemma 8 we know that xeJ(a) if and only if x < aR, and this last is
equivalent to D(xR) < D(aR) (Goodearl and Handelman (1975), Theorem 3.17(b)).
Since the range of D is the entire unit interval [0,1] (Goodearl and Handelman
(1975), Theorem 3.17(d)), it follows that the lattice of principal multiplicative ideals of
R, ordered by inclusion, is isomorphic to [0,1]; so, in particular, R does not satisfy
Max-./ or Min-J.
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