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SPHERICAL SUBMANIFOLDS WITH
SPECIAL QUADRIC REPRESENTATIONS

JlTAN LU

In this paper, we study submanifolds in the unit hypersphere satisfying Ax =
Bx + C, where x is the quadric representation of the submanifold, and B and C
are two constant matrices. We prove that the totally geodesic submanifolds are the
only submanifolds in the unit hypersphere whose quadric representations satisfy
Ax-Bx + C.

1. INTRODUCTION

Let x : Mn -¥ Em be an isometric immersion of an n-dimensional Riemannian
manifold into the m-dimensional Euclidean space, and SM(m) be the space of the
real symmetric matrices of order m. We define on SM(m) the metric g(P,Q) =
(tr(PQ))/2, for arbitrary P, Q in SM(m). Then this space becomes the standard
m(m + l)/2-dimensional Euclidean

transpose of x. Let x = xxl. Then we obtain a smooth map x : Mn -» SM(m).
Since the coordinates of x depend on the coordinates of x in a quadric manner, we
call x the quadric representation of Mn [3]. It is well known that for the hypersphere
centred at the origin embedded in the Euclidean space in the standard way, the quadric
representation is just the second standard immersion of the sphere. Then a question
arises naturally: To what extent does the quadric representation of a submanifold in Em

determine the submanifold? This question has been answered partly by many authors
[1, 3, 4, 5, 6]. In [3], I. Dimitric gave some results relative to the condition of x being
of finite type. In [5], the author proved that the only hypersurfaces with constant mean
curvature which satisfy Ax = Bx + C are the hyperplane or the hypersphere centred at
the origin. In this paper, we shall study submanifolds in the hypersphere of Em which
satisfy the condition Ax — Bx + C. We prove that the totally geodesic submanifolds
are the only submanifolds in the unit hypersphere whose quadric representations satisfy
Ax = Bx + C.
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2. PRELIMINARIES

Let us fix the notation first. Let x : Mn -> 5m~1(l) C Em be an isometric immer-
sion of an n-dimensional Riemannian manifold into the unit hypersphere Sm~1(l) of
the TO -dimensional Euclidean space Em. Then the position vector x is a unit normal
vector. We denote by H the mean curvature vector of Mn in 5m~1(l) . Let ei, • • • , en,
e n + i , • • • , e m _ i ,x be local orthonormal vector fields along Mn, such that ei, • • • ,en

are tangent to Mn, en+i, • • • , em are normal to Mn, and en + x is parallel to H. Then
H = a e n + i , where a is the mean curvature of Mn in 5m~1( l ) . Let (,) and V be
the Euclidean metric and the connection of Em, and denote by V, h,D, Ar, \Ar\

respectively, the connection of Mn, the second fundamental form of Mn in 5 m - 1 ( l ) ,
the normal connection of Mn in Sm~l(l), the Weingarten endomorphism relative to
the normal direction e r , and the length of Ar, r — n+1,- • • ,m- 1.

In this setting, the indices i,j,k always range from 1 to n, r,s,t from n + 1 to
m — 1 and 0,7 from n + 2 to m — 1.

We define a map * from Em x £"" into SM(m) by F • W = VWl + WVl, for
column vectors V and W in i ? m . Then V * W = W * V. Let V denote the Euclidean
connection of SM(m), then we have

(2.1) Vv(Wi * W2) = ( V # i ) * W2 + Wx *

(2.2) y(Vx * V2j Wx * W2) = (VuWMV^Wi) + (V

and

(2.3) A(V * W) = (AV) * W + V * (AW) - 2 ^ (Ve<^) * (Ve< W),
i

where V, W, Wi, W2, Vi and V2 are all vectors in Em, and A is the Laplacian operator

of Mn [3].

In this paper, we always denote by X, Y and Z tangent vectors of Mn, and by

V and W column vectors in Em.

3. MINIMAL SUBMANIFOLDS IN THE SPHERE

In this section, we consider the special case of a minimal submanifold.

Let x : Mn -> S"1"1^) C £ m be a minimal submanifold of Sm~l{l). We denote

the mean curvature vector of Mn in Em by i7. Then

H = H-x=-x.

But using (2.3) and (2.1), by a direct computation, we have

(3.1) A i = —nH * x — ^2e* * e* = nx* x ~

Now we compute A2x.

i i
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LEMMA 3 . 1 . Let x : Mn -> Sm~l(l) C Em be a minimal submanifold of

S™-1^). Then

(3.2) A2x = 2n(n +l)x*x- 2(n - 1) 53 e{ * e*
i

- 2 53(A-e<) * {Ard) + 2 53{trATAs)er * es.
r,s

PROOF: Let x be an arbitrary point in M"; we may assume that Ve<ej = 0 at
x. Then

Since

and

3 3

we have

^ (Aei) * ê  = J 3 (Ar^i) * (Arei) - ^2 e< *
t t,r i

On the other hand,

Combining the last two relations with (2.3), we obtain

e< * ej) = 2 53 ( ^ i ) * (.4rei) - 2 53 ̂  * ê
t

- 2 5 3 ^(^i ej) * h(ei, ej) - 2nx * x.

i ,r

Then from (3.1) and the last relation, we obtain (3.2). D
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THEOREM 3 . 2 . Let x : Mn -> S™-1^) c Em be a minimal submanifold of
Sm~1(l). If its quadric representation satisfies Ax = Bx + C, M" must be a totally
geodesic submanifold of the unit hypersphere.

PROOF: Let x : Mn -»• S"1"1^) C Em be a minimal submanifold of 5 m - 1 ( l ) . If
the quadric representation of Mn satisfies the condition Ax = Bx + C, from (3.1) we
have

^ J * ei - nx* x + Bx + C = 0.

Differentiating the above relation along X, an arbitrary tangent vector of Mn, we have

(3.3) (BX)x* + (Bx)Xt - 2(n + 1)X * x + 2 J^ (ArX) *er = 0.
r

Finding the er * x and er * Y components of (3.2) respectively, we have

(3.4) (BX,er) = 0,

and

(3.5) <B*,er)=0.

Prom (3.1) we know that

(3.6) B(Ai) - 2n(Bx)xt - 2

Now using (3.4) and (3.5), we find the et *et components of (3.6) and (3.2) respec-
tively. These are

(B(Ax),et*et) = 0,

and
(A2x>t*e t) =4 |A t |

2 .

Since Ax = Bx + C, we know that A2x = x = B(Ax). Combining this relation
with the above equations, we obtain \At\ = 0, for t = n + 1,... ,m- 1. This means
that Mn is a totally geodesic submanifold of the unit hypersphere. D

4. SUBMANIFOLDS IN THE UNIT HYPERSPHERE

In this section, we shall prove the following main result:

THEOREM 4 . 1 . Let x : M" -» S"1-1^) c Em be a submanifold of 5r"-1(l).
If its quadric representation satisfies Ax = Bx + C, Mn must be a totally geodesic
submanifold of the unit hypersphere.

The proof is lengthy; we divide it into a few lemmas.
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LEMMA 4 . 2 . Let x : Mn -> Sm~x(l) c Em be a submanifold of S ™ - 1 ^ ) . If
its quadric representation satisfies Ax = Bx + C, there exists a function X(x) such

that (BX, Y) = \{x)(X, Y) for any X, Y € Tx(M
n), the tangent space at an arbitrary

point x of Mn.

PROOF: First, using (2.1) and (2.3), we compute the Laplace of x , that is

(4.1) Ax = nx * x — naen+i * x — V^ ei * e*.

Since Ax = Bx + C, we have

n a e n + i * x — nx * x + 2_. e« * e» + -^^ + C = 0.

Differentiating this relation along any tangent vector X of Mn, we obtain

(4.2) 0 = (BX)x* + 2(n + 1)X * x + (Bx)X ' + 2 ̂  (A r X) * e r + n X ( a ) e n + 1 * x
r

+ nae n + i *X — not(An+iX) *x + na(Dxen+i) *%•

Finding the en +i * Y component of (4.2), we have

(4.3) (Bx, en+1)(X, Y) + 2na(X, Y) + A(An+1X, Y) = 0.

Then

(4.4) (An+1X,Y) = a(X,Y),

and

(4.5) (Bx,en+1) + 2(n + 2)a = 0.

But finding the Y * x component of (4.2), we obtain

(4.6) {BX, Y) + (Bx, x)(X, Y) - 2na(An+1X, Y) + 4(n + 1)(X, Y) = 0.

Combining (4.4) and (4.6), we have

(BX,Y) = X(x)(X,Y),

where A(x) = 2na2 - (Bx, x) - 4(n + 1). D
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LEMMA 4 . 3 . Let x : Mn ->• 5 m - 1 ( l ) C Em he a full submanifold of S"1"1^).
Then there does not exist a vector Vo € Em, which is normal to the tangent space
Tx(M

n) of Mn, for any x 6 Mn.

We note that Mn is a full submanifold of 5 m - 1 ( l ) means that (any piece of) Mn

can not be contained in a lower dimensional linear subspace of Em.

PROOF: Suppose there exists a vector Vo G Em, which is normal to the tangent
space Tx(M

n) of Mn, for any x G M n . Then for any X G Tx(M
n), and any x e Mn,

we have X(V0,x) = 0. This means (V0,x) is a constant. Let xo be arbitrary point in
Mn. Then (V0,x — XQ) = 0. This means that Mn is contained in the linear subspace

A={W £Em;(W,Xo) = 0}.

This is a contradiction to the fact that Mn is full in S"1"1^). D

LEMMA 4 . 4 . Let x : M " -> Sm-l(l) C Em be a full submanifold of S 7 "- 1 ^) .
Then there exist finite points xi,... ,xk, such that TXi(M

n) n Tx.+1(Mn) ^ {0}, for

i = 1, . . . , k - 1 and Em = spanf (J Tx.{Mn)J , where spanf (J TXi(M
n) J is the

k

linear space obtained by spanning linearly from all the vectors in (J TXi(M
n).

t=i

PROOF: Let x\ be any point in Mn. It is impossible that Tx{Mn) = TXl(M
n)

always holds for any other point x € M2. For if it did, Mn must be a n-dimensional
Euclidean space. On the other hand, if Tx (M2) n TXl (M2) = {0} always holds for
any other point x ( ^ x i ) e M 2 , we can choose any vector Xo e TXl(M

2). Then
XQ is normal to TX(M2), for any other point x. It is obvious that Mn - {xi}

is also a full submanifold in 5 m ~ 1 ( l ) . From Lemma 4.3 we obtain a contradic-
tion. Thus there exists x2 G M 2 , such that TX1 (M

2) D TX2 (M
2) ^ {0} and

TXl{Mn) ^ TX2(M
n). It is obvious that the dimension of span(TXl(M

n)) is less

than the dimension of span I (J TXi(M
n) I. Now the first t points xi,... ,xt, which

satisfy that TXi(M
n) f lT I j + 1 (M") ^ {0}, for i = 1 , . . . ,t - 1, and the dimension

( * \ (i+l \

of span! |J Tx.(M
n) I is less than the dimension of span {J Tx.(M

n) I, have been

defined. If the dimension of span I |J TXj(M
n) J = m, the proof is complete. If

not, we can always choose a point y € Mn, such that Ty(M
n) is not contained in

( * \
span I U TXj. (Mn) I . Since Tx{Mn) changes continuously when x changes, we can

\i=i /
choose a point xt+i 6 Mn, such that TXt {Mn)C\TXt+l (Mn) ^ {0}, and the dimension of

/ t \ n+\ \
span! |J TXj(M

n) I is less than the dimension of span! |J TXj(M
n) j . By induction,
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we can choose finite points xx,... ,Xk, such that ( ( j TXj(M
n)) nTXi+1 (M") ^ {0},

for i = 1,... , k and Em = spanf U TXi{Mn)\. D

LEMMA 4 . 5 . Let x : M" -> S"1"1^) C Em be a full submanifold of Sm-1( l ) • If
there exists.a function \{x),such that {BX,Y) = X{x)(X,Y) for any X,Y € Tx(M

n)

and any x € M", the function X(x) must be a constant.

P R O O F : From Lemma 4.3, we can choose finite points x i , . . . ,xk, such that

U Tx (AT) n TXi+1 (M") ? {0}, for i = 1,. . . , k - 1 and Em = span ( \J TXi (M
n)) .

j=i \t=i /

Since TXl(M
n) n TX2(M

n) ^ {0}, we can choose an non-zero vector X € TXl(M
n) n

TX2(M"). It is obvious that X(xi){X,X) = X(x2){X,X). Then A(xi) = A(x2). Sim-
ilarly, we obtain A(xi) = . . . = A(xfc). Let x be an arbitrary point of Mn. Since

Em = span^ U TXi(M
n)\ , we know that Tx{Mn) n( (J ^ ( M " ) " ) ^ {0}. Then we

can obtain A(x) = A(xi) — ...=: A(xfc). That is to say, A(x) is a constant. D

LEMMA 4 . 6 . Let x : Mn -> S171'1^) <Z Em be a full submanifold of Sm~l(l).

If its quadric representation satisfies Ax — Bx + C, Mn must be minimal.

PROOF: From Lemma 4.2, 4.3 and 4.4 we know that A(x) = 2na2 - (5x,x) -

4(n 4-1) is a constant.

Moreover, finding the ej * e/t component of (4.2), we have

(4.7) (Bx,ej)(X,ek) + (Bx,ek)(X,ej) = 0.

In (4.7), letting j — k and summing on k, we obtain

(4.8) (Bx,X) = 0.

On the other hand, we find the x * x component of (4.2), that is

(4.9) (BX,x) = 0.

Combining (4.9) with (4.8), we know that

X(Bx,x) = 0.

This means that (Bx, x) is a constant. But we know that A(x) = Ino? — (Bx,x) -

4(n + 1) is also a constant. Thus a is a constant.

Then finding the x * en+i component of (4.2), we have

(4.10) (BX,en+1) = Q.
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But from (4.5), we also know that (Bx,en+{) is a constant. Differentiating this
relation and using (4.8) and (4.10), we obtain

(4.11) (Bx,Dxen+l)=0.

Now we find the er * Y component of (4.2), that is

(4.12) (Bx, er)(X, Y) + (h(X, Y), eT) = 0.

Combining (4.11) with (4.12), we obtain

(4.13) (h(X,Y),Dzen+1) = 0.

If there exists a tangent vector field Zo, such that Dzoen+i J^ 0, we can choose
en +2 parallel to Dzoen+\- Then (h(X, Y),en+2) = 0 and An+2 — 0. This means that
Mn is contained in a totally geodesic submanifold of 5 m ~ x ( l ) . This is a contradiction.

Thus for any x £ M n a n d Z € Tx{Mn), Dzen+i - 0. Then finding the eT * x
component of (4.2), we know that

(4.14) (BX,er) = 0,

where r = n + 1 , . . . , m — 1.

Combining (4.14), (4.9) with (BX,Y) = X(X,Y), we know that BX = XX, for

any X € Tx{Mn) and any x 6 Mn. By Lemma 4.4, we can find Xu... ,Xm €
U Tx(M

n), which are linearly independent. Thus BXi = XXit i = l , . . . m , and
xeMn

then BV — XV, for any V e Em. Applying this relation in (4.5), we obtain a — 0.

This means that M " is minimal.

Conclusion. Let i : M " - » Sm-l{\) C Em be a submanifold of S™- 1 ^) whose
quadric representation satisfies Ax — Bx + C. If it is full in 5 m - 1 ( l ) , from Theorem
3.1 and Lemma 4.5, we know that n = m — 1 and M n is a piece of 5 m - 1 ( l ) . If it is
not full in 5 m ~ 1 ( l ) , there must exist a positive integer k < m, such that Mn is full in
S*""1^). Then we know that n = k - 1 and M n is a piece of 5"(1). That is to say
M " is a totally geodesic submanifold of 5 m - 1 ( l ) . Q
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