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Abstract

We give an equivalent definition of the local volume of an isolated singularity
VolBdFF(X, 0) given in [S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated
singularity. Duke Math. J. 161 (2012), 1455–1520] in the Q-Gorenstein case and we
generalize it to the non-Q-Gorenstein case. We prove that there is a positive lower bound
depending only on the dimension for the non-zero local volume of an isolated singularity
if X is Gorenstein. We also give a non-Q-Gorenstein example with VolBdFF(X, 0) = 0,
which does not allow a boundary ∆ such that the pair (X,∆) is log canonical.

1. Introduction

Let X be a normal variety and let f : X → X be a finite endomorphism, i.e. a finite surjective
morphism of degree greater than 1. If X is projective, an abundant literature shows that the
existence of an endomorphism imposes strong restrictions on the global geometry ofX. In a recent
paper [BdFF12], Boucksom et al. introduce the volume VolBdFF(X, 0) of an isolated singularity
and show that VolBdFF(X, 0) = 0 if there exists an endomorphism preserving the singularity.
When X is Q-Gorenstein, they show that VolBdFF(X, 0) = 0 if and only if X has log canonical
singularities. For a better understanding of VolBdFF(X, 0), they suggest two problems.

Problem A. Does there exist a positive lower bound, only depending on the dimension, for the
volume of isolated Gorenstein singularities with positive volume?

Problem B. Is it true that VolBdFF(X, 0) = 0 implies the existence of an effective Q-boundary
∆ such that the pair (X,∆) is log canonical? (The converse is easily shown.)

In this paper, we will give an alternative definition of the volume in the Q-Gorenstein case
via log canonical modification (the existence of these modifications is shown in [OX12]). By using
the DCC for the volume established in [HMX12], we will give a positive answer to Problem A.

Theorem 1.1 (See Theorem 3.3). There exists a positive lower bound, only depending on the
dimension, for the volume of isolated Gorenstein singularities with positive volume.

We will then generalize this new definition to the non-Q-Gorenstein case. We will define the
augmented volume Vol+(X) as the liminf of the mth limiting volumes Volm(X). We will show
that the augmented volume Vol+(X) is greater than or equal to the volume VolBdFF(X, 0). When
there exists a boundary ∆ on X such that the pair (X,∆) is log canonical, we have the following
theorem.

Theorem 1.2 (See Corollary 4.6). The following statements are equivalent.

(i) There exists a boundary ∆ on X such that (X,∆) is log canonical.

(ii) Volm(X) = 0 for some (hence any multiple of) integer m > 1.
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In § 4.1, we will give a counterexample to Problem B.

Theorem 1.3 (See Theorem 4.9). There exists a polarized smooth variety (V,H) such that the
affine cone X = C(V,H) has positive Volm(X) for any positive integer m, but VolBdFF(X, 0) = 0.

A new idea is needed to investigate whether Vol+(X) = VolBdFF(X, 0).
In [Ful12], Fulger introduces a different invariant VolF(X, 0) associated to an isolated

singularity. It is shown that VolBdFF(X, 0) > VolF(X, 0), with equality if X is Q-Gorenstein.
In [BdFF12, Example 5.4], an example is given where VolBdFF(X, 0) > VolF(X, 0).

It is conjectured that for a normal variety X (perhaps not Q-Gorenstein) which has only
isolated singularities, there is a log canonical modification f : Y → X in the sense that KY +Ef
is f -ample and (Y,Ef ) is log canonical. In [BH12, Proposition 2.4], it is proved that if such
modification exists, then VolBdFF(X, 0) = 0 if and only if f is an isomorphism in codimension 1.

2. Preliminaries

Throughout this paper, X is a normal variety over C.

2.1 Valuations of Q-divisors
Let X be a normal variety. A divisorial valuation v on X is a discrete valuation of the function
field of X of the form v = q valF where q is a positive integer and F is a prime divisor over X.
Let J ⊂ K be a finitely generated sub-OX -module of the constant sheaf of rational functions
K = KX on X. We will refer to J as a fractional ideal sheaf on X, for short.

The valuation v(J ) of a non-zero fractional ideal sheaf J ⊂ K along v is given by

v(J ) = min{v(φ) | φ ∈ J (U), U ∩ cX(v) 6= ∅}.

The valuation v(I) of a formal linear combination I =
∑
ak ·Jk of fractional ideal sheaves Jk ⊂ K

along v is defined by v(I) =
∑
ak · v(Jk), where ak are real numbers.

The \-valuation (or natural valuation) along v of an R-Weil divisor D on X is
v\(D) = v(OX(−D)) = v(OX(b−Dc)). If C is Cartier, then we have that v\(C) = v(C)
and v\(C + D) = v(C) + v\(D). Note also that, as OX(D) · OX(−D) ⊆ OX , we have that
v\(D) + v\(−D) > 0.

To any non-trivial fractional ideal sheaf J on X, we associate the divisor div(J ) =∑
val\E(J ) ·E, where the sum is taken over all prime divisors E on X. Consider now a birational

morphism f : Y → X from a normal variety Y . For any divisor D on X, the \-pullback
(or natural pullback) of D to Y is given by f \D = div(OX(−D) · OY ). In the other words,

f \D =
∑

val\E(D) · E, where the sum is taken over all prime divisors E on Y . In particular,
OY (−f \D) = (OX(−D) · OY )∨∨.

For every divisor D on X and every positive integer m, it is shown in [dFH09, Lemma 2.8]
that m · v\(D) > v\(mD) and

inf
k>1

v\(kD)

k
= lim inf

k→∞

v\(kD)

k
= lim

k→∞

v\(k!D)

k!
∈ R.

Let D be an R-divisor on X. We define the valuation along v of D by

v(D) = lim
k→∞

v\(k!D)

k!
∈ R.
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Remark 2.1. It is not hard to see that actually

v(D) = lim
k→∞

v\(kD)

k
∈ R.

See [BdFF12, Proposition 2.1].

Remark 2.2. Even if D is a Q-divisor on X, the valuation v(D) may not be a rational number.
See [Urb12, § 3].

If f : Y → X is a birational morphism from a normal variety Y , then the pullback of D to
Y is defined by

f∗D =
∑

valE(D) · E,

where the sum is taken over all prime divisors E on Y . Notice that if D is a Q-Cartier Q-divisor
and m is a positive integer such that mD is Cartier, then

v(D) =
v(mD)

m
and f∗D =

f∗(mD)

m
,

which coincide with the usual valuation and pullback of Q-Cartier Q-divisor. If C is Q-Cartier,
then v(C +D) = v(C) + v(D) and f∗(C +D) = f∗C + f∗D.

Lemma 2.3. Let f : Y → X and g : V → Y be two birational morphisms of normal varieties.
Then, for every divisor D on X, the divisor (fg)\D − g\(f \D) is effective and g-exceptional.
Moreover, if OX(−D) · OY is an invertible sheaf, then (fg)\D = g\(f \D). A similar statement
applies to f∗ and g∗.

Proof. See [dFH09, Lemma 2.7 and Remark 2.13]. 2

2.2 Relative canonical divisors
We recall that a canonical divisor KX on a normal variety X is, by definition, the
(componentwise) closure of any canonical divisor of the regular locus of X. We also recall that
X is said to be Q-Gorenstein if some (equivalently, every) canonical divisor KX is Q-Cartier.
For a proper birational morphism f : Y → X of normal varieties, we fix a canonical divisor KY

on Y such that f∗KY = KX . For any divisor D on X, we will write DY for the strict transform
f−1
∗ D of D on Y .

For every m > 1, the mth limiting relative canonical Q-divisor Km,Y/X of Y over X is

Km,Y/X = KY −
1

m
f \(mKX).

The relative canonical R-divisor KY/X of Y over X is

KY/X = KY − f∗KX .

Clearly, KY/X is the limsup of the Q-divisors Km,Y/X . A Q-divisor ∆ on X is said to be a
boundary, if b∆c = 0 and KX + ∆ is Q-Cartier. The log relative canonical Q-divisor of (Y,∆Y )
over (X,∆) is given by

K∆
Y/X = KY + ∆Y − f∗(KX + ∆).

Remark 2.4. Our definition of the relative canonical R-divisor is different from that in [dFH09]. In
this paper, the relative canonical R-divisor is defined as KY/X =KY +f∗(−KX). And KY −f∗KX

is denoted by K−Y/X . It can be shown that, with this notation, KY/X > K−Y/X . But they are not

equal in general. See [dFH09, Example 3.4].
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For every integer m > 1, the mth limiting log discrepancy Q-divisor Am,Y/X of Y over X is

Am,Y/X = KY + Ef −
1

m
f \(mKX),

where Ef is the reduced exceptional divisor of f . The log discrepancy R-divisor AY/X of Y over
X is

AY/X = KY + Ef − f∗KX .

The log discrepancy Q-divisor of (Y,∆Y ) over (X,∆) is given by

A∆
Y/X = KY + ∆Y + Ef − f∗(KX + ∆).

Consider a pair (X, I =
∑
ak · Jk) where Jk are non-zero fractional ideal sheaves on X and

ak are real numbers. A log resolution of (X, I) is a proper birational morphism f : Y → X
from a smooth variety Y such that for every k the sheaf Jk · OY is the invertible sheaf
corresponding to a divisor Ek on Y , the exceptional locus Ex(f) of f is also a divisor, and
Ex(f) ∪ E has simple normal crossing, where E =

⋃
Supp(Ek). If ∆ is a boundary on X, then

a log resolution of the log pair ((X,∆), I) is given by a log resolution f : Y → X of (X, I) such
that Ex(f) ∪ E ∪ Supp(f∗(KX + ∆)) has simple normal crossings. The log resolution always
exists (see [dFH09, Theorem 4.2]).

Let X be a normal variety, and fix an integer m > 2. Given a log resolution f : Y → X of
(X,OX(−mKX)), a boundary ∆ on X is said to be m-compatible for X with respect to f if:

(i) m∆ is integral and b∆c = 0;

(ii) f is a log resolution for the log pair ((X,∆);OX(−mKX)); and

(iii) K∆
Y/X = Km,Y/X .

Theorem 2.5. For any normal variety X, any integer m > 2 and any log resolution f : Y → X
of (X,OX(−mKX)), there exists an m-compatible boundary ∆ for X with respect to f .

Proof. See [dFH09, Theorem 5.4]. 2

2.3 Shokurov’s b-divisors
Let X be a normal variety. The set of all proper birational morphisms π : Xπ → X from a
normal variety Xπ modulo isomorphism is (partially) ordered by π′ > π if and only if π′ factors
through π, and any two proper birational morphisms can be dominated by a third one. The
Riemann–Zariski space X is defined as the projective limit, X = lim

←−πXπ. The group of Weil

b-divisors over X is defined as Div(X ) = lim
←−π Div(Xπ), where Div(Xπ) denotes the group of

Weil divisors on Xπ and the limit is taken with respect to the push-forwards. The group of
Cartier b-divisors over X is defined as CDiv(X ) = lim−→π

CDiv(Xπ), where CDiv(Xπ) denotes the
group of Cartier divisors on Xπ and the limit is taken with respect to the pullbacks. An element
in DivR(X ) = Div(X ) ⊗ R (respectively, CDivR(X ) = CDiv(X ) ⊗ R) will be called an R-Weil
b-divisor (respectively, R-Cartier b-divisor), and similarly with Q in place of R. Clearly, a Weil
b-divisor W over X consists of a family of Weil divisors Wπ ∈ Div(Xπ) that are compatible under
push-forward. We say that Wπ is the trace of W on the model Xπ. Let C be an Cartier b-divisor.
We say that π : Xπ → X is a determination of C, if C can be obtained by pulling back Cπ to
models dominating π and pushing forward to other models, in which case we denote C = Cπ.

Let Z and W be two R-Weil b-divisors over X. We say that Z 6 W , if for any model
π : Xπ → X we have Zπ 6 Wπ. We say that an R-Cartier b-divisor is relatively nef over X, if
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its trace is relatively nef on one (hence any sufficiently high) determination. An R-Weil b-divisor
W is relatively nef over X if and only if there is a sequence of relatively nef R-Cartier b-divisors
over X such that the traces converge to the trace of W in the numerical class over X on each
model. We will need the following variant of the negativity lemma in the future.

Lemma 2.6. Let W be a relatively nef R-Weil b-divisor over X. Let π :Xπ→X and π′ :Xπ′→X
be two models over X such that π′ factors through π via ρ : Xπ′ → Xπ. Then Wπ′ 6 −ρ∗(−Wπ).

Proof. See [BdFF12, Proposition 2.12]. 2

Let C1, . . . , Cn be R-Cartier b-divisors, where n = dimX. Let f be a common determination.
It is clear that the intersection number C1,f · . . . · Cn,f is independent of the choice of f by the
projection formula. We define C1 · . . . · Cn to be the above intersection number. If W1, . . . ,Wn

are relatively nef R-Weil b-divisors over X, we define

W1 · . . . ·Wn = inf(C1 · . . . · Cn) ∈ [−∞,∞),

where the infimum is taken over all relatively nef R-Cartier b-divisors Ci over X such that
Ci >Wi for each i. It is obvious that the intersection number is monotonic in the sense that, if
Wi 6W ′i for each i, then W1 · . . . ·Wn 6W ′1 · . . . ·W ′n. For further properties of the intersection
number, we refer to [BdFF12, § 4.3 and Appendix A].

Given a canonical divisor KX on X, there is a unique canonical divisor KXπ for each model
π : Xπ→ X with the property that π∗KXπ = KX . Hence, a choice of KX determines a canonical
b-divisor KX over X.

2.4 Nef envelopes
The nef envelope EnvX(D) of an R-divisor D on X is an R-Weil b-divisor over X whose trace
on a model π : Xπ→ X is −π∗(−D). For more details, see [BdFF12, § 2]. If D is Q-Cartier, then
EnvX(D) is the Q-Cartier b-divisor D.

The nef envelope EnvX (W ) of an R-Weil b-divisor W over X is the largest relatively nef
R-Weil b-divisor Z over X such that Z 6 W . It is well defined by [BdFF12, Proposition 2.15].
It is clear that if W1 6W2, then EnvX (W1) 6 EnvX (W2).

The log discrepancy b-divisor is defined as

AX/X = KX + EX/X + EnvX(−KX),

where the trace of EX/X in any model π is equal to the reduced exceptional divisor Eπ over X.
It is clear that the trace of AX/X on a model π : Xπ → X is AXπ/X . Similarly, for every integer
m > 1, we define the mth limiting log discrepancy b-divisor Am,X/X to be a Q-Weil b-divisor
whose trace on a model π : Xπ → X is Am,Xπ/X . It is easy to check that Am,X/X 6 AX/X and
AX/X is the limsup of Am,X/X .

The volume of the singularity on X is defined by

VolBdFF(X, 0) = −EnvX (AX/X)n.

It is shown in [BdFF12] that if X has isolated singularity, then VolBdFF(X, 0) is a well-defined
non-negative finite real number.

2.5 Log canonical modification
Suppose that (X,∆) is a pair such that X is a normal variety, ∆ is an effective Q-divisor and
KX + ∆ is Q-Cartier. A birational projective morphism f : Y → X is called a log canonical
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modification of (X,∆) if:

(i) (Y,∆Y + Ef ) is log canonical;

(ii) KY + ∆Y + Ef is f -ample.

Here ∆Y is the strict transform of ∆ and Ef is the reduced exceptional divisor of f . It is shown
in [OX12] that the log canonical modification exists uniquely up to isomorphism for any log pair
(X,∆). Clearly, if f ′ : Y ′→ X is a log resolution of the pair (X,∆), then

Y ∼= ProjX
⊕

m∈Z>0

f∗OY ′(m(KY ′ + ∆Y ′ + Ef ′)).

Lemma 2.7. Let (X,∆) be a pair as above which is not log canonical. Let f : Y → X be the
log canonical model. Write f∗(KX + ∆) ∼Q KY + ∆Y + B, and B =

∑
biBi as the sum of

distinct prime divisors such that f∗(B) = ∆. We let B>1 be the non-zero divisor
∑

bi>1 biBi;

then Supp(B>1) = Ex(f). In particular, Ex(f) ⊂ Y is of pure codimension 1.

Proof. See [OX12, Lemma 2.4]. 2

3. Q-Gorenstein case

Assume that X is a Q-Gorenstein normal variety with isolated singularities. We pick ∆ = 0 and
suppose that f : Y → X is the log canonical modification of X. Let F = f∗KX −KY −Ef . We
define Vol(X) = −(KY + Ef − f∗KX)n. By the negativity lemma (see [KM98, Lemma 3.39]),
F > 0. Since KY + Ef is f -ample and F is f -exceptional, we have that

Vol(X) = −(KY + Ef − f∗KX)n = F · (KY + Ef )n−1 > 0.

Remark 3.1. This definition can be extended to the case where X has isolated non-log-canonical
locus.

Theorem 3.2. If X is a Q-Gorenstein normal variety which has isolated singularities, then
VolBdFF(X, 0) = Vol(X).

Proof. We show that EnvX (AX/X) is a Q-Cartier b-divisor and equals AY/X , where f : Y → X
is the log canonical modification of (X, 0). Then the theorem follows immediately.

We only need to show that on a sufficiently high model f ′ : Y ′ → X which factors through
f : Y → X via g : Y ′→ Y , we have that D = EnvX (AX/X)f ′ equals to g∗AY/X .

First, we show that g∗AY/X 6 D. Since (Y,Ef ) is log canonical, we have that

AY ′/X − g∗AY/X =KY ′ + Ef ′ − f ′∗KX − g∗(KY + Ef − f∗KX)

=KY ′ + (Ef )Y ′ + Eg − g∗(KY + Ef )

> 0,

where (Ef )Y ′ is the strict transform of Ef on Y ′. As AY/X is f -ample, we have that g∗AY/X is

f ′-nef. We can conclude that AY/X is a relatively nef Q-Cartier b-divisor such that AY/X 6 AX/X .

By the definition of nef envelope, we have that AY/X 6 EnvX (AX/X). In particular, g∗AY/X 6D.
On the other hand, by the definition of nef envelope, we have that EnvX (AX/X) is relatively

nef over X. We may apply Lemma 2.6. Thus, D 6 −g∗(−EnvX (AX/X)f ). By definition,
EnvX (AX/X)f 6 AY/X . Hence, D 6 −g∗(−AY/X) = g∗AY/X , since AY/X is Q-Cartier. Therefore,
D = g∗AY/X . 2
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Theorem 3.3. There exists a positive lower bound, only depending on the dimension, for the

volume of isolated Gorenstein singularities with positive volume.

Proof. Suppose that X is a Gorenstein normal variety with isolated singularities and f : Y → X

is its log canonical modification. Let F = f∗KX−KY −Ef =
∑
ai ·Ei, where Ei are f -exceptional

divisors. Since X is Gorenstein, we have that ai are positive integers by Lemma 2.7. If Vol(X)> 0,

then F 6= 0, hence F > Ef . We have that

Vol(X) > Ef · (KY + Ef )n−1 = ((KY + Ef )|Ef )n−1 = (KEf + DiffEf (0))n−1.

Since (Y,Ef ) is log canonical, by [Kol92, 16.6], the coefficients of DiffEf (0) lie in {0, 1}∪{1−1/m |
m > 2}, which is a DCC set. By [HMX12, Theorem 1.3], we have that (KEf + DiffEf (0))n−1 lies

in a DCC set. The theorem follows. 2

4. Non-Q-Gorenstein case

Let X be a normal variety which has only isolated singularities. For any integer m > 2, fix a log

resolution f : Y → X of (X,OX(−mKX)). By Theorem 2.5, we can find a boundary ∆ such

that K∆
Y/X = Km,Y/X . Let flc : Ylc → X be the log canonical modification of the pair (X,∆).

Then

Ylc ∼= ProjX
⊕

m∈Z>0

f∗OY (m(KY + ∆Y + Ef )).

Assuming that ∆′ is another m-compatible boundary for X with respect to f and f ′lc : Y ′lc→ X
is the corresponding log canonical modification, we have that K∆

Y/X = K∆′

Y/X . Hence, ∆Y −∆′Y =

f∗(∆−∆′). Now

f∗OY (m(KY + ∆′Y )) = f∗OY (m(KY + ∆Y − f∗(∆−∆′)))

= f∗OY (m(KY + ∆Y ))⊗OX(m(∆′ −∆))

for sufficiently divisible m, as ∆ − ∆′ is Q-Cartier. Thus, there is a natural X-isomorphism

σ : Ylc → Y ′lc such that flc = f ′lc ◦ σ. Fix a common resolution of Y and Ylc, f̃ : Ỹ → X, as in

the following diagram:

Ỹ

s

��

t

  
Y //

f ��

Ylc

flc~~
X

Noticing that Ỹ is also a common resolution of Y and Y ′lc, we have that the morphism s : Ỹ → Y

is independent of the choice of ∆.

Theorem 4.1. The R-Weil b-divisor EnvX (Am,X/X) is a Q-Cartier b-divisor. If ∆ is

m-compatible for X with respect to f̃ : Ỹ → X, then

EnvX (Am,X/X) = A∆
Ylc/X

.
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Proof. We will mimic the proof of Theorem 3.2. We only need to show that on a sufficiently
high model ρ : Z → X which factors through f̃ : Ỹ → X by π : Z → Ỹ , we have that D =
EnvX (Am,X/X)ρ is equal to (t ◦ π)∗A∆

Ylc/X
.

First, we show that (t ◦ π)∗A∆
Ylc/X

6 D. Since ∆ is m-compatible for X with respect to f̃ ,
we have that

KỸ + ∆Ỹ − f̃
∗(KX + ∆) = KỸ −

1

m
f̃ \(mKX).

Hence,

− 1

m
ρ\(mKX) = π∗

(
− 1

m
f̃ \(mKX)

)
= π∗∆Ỹ − ρ

∗(KX + ∆),

by Lemma 2.3 and the fact that Ỹ is smooth. Now the difference

Am,Z/X − (t ◦ π)∗A∆
Ylc/X

= KZ + Eρ −
1

m
ρ\(mKX)− (t ◦ π)∗(KYlc + ∆Ylc + Eflc) + ρ∗(KX + ∆)

= KZ + Eρ + π∗∆Ỹ − (t ◦ π)∗(KYlc + ∆Ylc + Eflc)

= (KZ + ∆Z + (Eflc)Z + Et◦π − (t ◦ π)∗(KYlc + ∆Ylc + Eflc)) + (π∗∆Ỹ −∆Z).

Since (Ylc,∆Ylc + Eflc) is log canonical, we have that the first term is effective and (t ◦ π)-
exceptional. As ∆Z is the strict transform of the effective divisor ∆Ỹ , the second term is
effective and π-exceptional, hence (t◦π)-exceptional. We conclude that Am,Z/X−(t◦π)∗A∆

Ylc/X
is

effective and (t◦π)-exceptional. Since A∆
Ylc/X

is f -ample, we have that (t◦π)∗A∆
Ylc/X

is ρ-nef. We

can conclude that A∆
Ylc/X

is a relatively nef Q-Cartier b-divisor such that A∆
Ylc/X

6 Am,X/X .

By the definition of nef envelope, we have that A∆
Ylc/X

6 EnvX (Am,X/X). In particular,

(t ◦ π)∗A∆
Ylc/X

6 D.

On the other hand, by the definition of nef envelope, we have that EnvX (Am,X/X) is relatively
nef over X. We may apply Lemma 2.6. Thus, D 6 −(t ◦ π)∗(−EnvX (Am,X/X)flc). By definition,

EnvX (Am,X/X)flc 6 Am,Ylc/X . Hence, D 6 −(t ◦ π)∗(−Am,Ylc/X) = (t ◦ π)∗A∆
Ylc/X

, since A∆
Ylc/X

is Q-Cartier. Therefore, D = (t ◦ π)∗A∆
Ylc/X

. 2

We can define the volume of singularities of X as follows.

Definition 4.2. The mth limiting volume of singularity of X is

Volm(X) = −EnvX (Am,X/X)n.

Corollary 4.3. In the setting of Theorem 4.1, if ∆ is m-compatible for X with respect to f̃ ,
then

Volm(X) = −(A∆
Ylc/X

)n = −A∆
Ylc/X

· (KYlc + ∆Ylc + Eflc)
n−1 > 0.

Proof. The first equation is straightforward by Theorem 4.1 and the definition of intersection
number. The second equation is valid since A∆

Ylc/X
is flc-exceptional. By the negativity lemma,

we have that A∆
Ylc/X

6 0. Since KYlc + ∆Ylc + Eflc is flc-ample, we have the inequality in the
corollary. 2

For an arbitrary boundary ∆ on X, we have the following inequalities.
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Proposition 4.4. Suppose that ∆ is a boundary on X, m is the index of KX+∆ and f : Y →X

is the log canonical modification of (X,∆). Then:

(i) EnvX (Am,X/X) > A∆
Y/X ;

(ii) Volm(X) 6 −(A∆
Y/X)n.

Proof. For any model π : Xπ → X, we have that

π∗(m(KX + ∆)) + π\(−m∆) = π\(mKX).

Hence,

Am,Xπ/X =KXπ + Eπ −
1

m
π\(mKX)

=KXπ + Eπ −
1

m
π\(−m∆)− 1

m
π∗(m(KX + ∆))

>KXπ + Eπ + ∆Xπ − π∗(KX + ∆) = A∆
Xπ/X

.

Thus, as b-divisors, Am,X/X > A∆
X/X , hence,

EnvX (Am,X/X) > EnvX (A∆
X/X).

On the other hand, for any model f ′ : Y ′ → Y factoring through f via g : Y ′ → Y , we

have that A∆
Y ′/X > g∗A∆

Y/X , since (Y,∆Y +Ef ) is log canonical. As b-divisors, A∆
X/X > A∆

Y/X . As

KY +∆Y +Ef is f -ample, we have thatA∆
Y/X is relatively nef overX. Thus, EnvX (A∆

X/X) >A∆
Y/X .

We have proved (i).

Since both EnvX (Am,X/X) and A∆
Y/X are relatively nef and exceptional over X, (ii) follows

from the inequality between intersection numbers. 2

Remark 4.5. In Proposition 4.4, one can show that EnvX (A∆
X/X) = A∆

Y/X .

For any two positive integers m and l and any model f : Y → X, since

1

m
f \(mKX) >

1

lm
f \(lmKX) > f∗KX ,

we have that

Am,Y/X 6 Alm,Y/X 6 AY/X ,

hence

Am,X/X 6 Alm,X/X 6 AX/X .

By the definition of nef envelope, we have that

EnvX (Am,X/X) 6 EnvX (Alm,X/X) 6 EnvX (AX/X).

Since they are both exceptional over X by Theorem 4.1, we have the following inequality of

volumes:

Volm(X) > Vollm(X) > VolBdFF(X, 0).
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Corollary 4.6. The following statements are equivalent.

(i) There exists a boundary ∆ on X such that (X,∆) is log canonical.

(ii) Volm(X) = 0 for some (hence any multiple of) integer m > 1.

Proof. (i)⇒ (ii). Suppose that m(KX + ∆) is Cartier. By Proposition 4.4,

Am,X/X > A∆
X/X > 0,

since (X,∆) is log canonical. As 0 is a relatively nef b-divisor over X, we have that
EnvX (Am,X/X) > 0. On the other hand, by Theorem 4.1 and the negativity lemma,
EnvX (Am,X/X) 6 0. Hence, EnvX (Am,X/X) = 0. We can conclude that Volm(X) = 0.

(ii) ⇒ (i). Let ∆ be an m-compatible boundary for X with respect to f̃ in the setting
of Theorem 4.1. By Theorem 2.5, such a boundary always exists. Since Volm(X) = 0, by
Corollary 4.3, we have that

−A∆
Ylc/X

· (KYlc + ∆Ylc + Eflc)
n−1 = 0.

Since KYlc + ∆Ylc + Eflc is flc-ample, this is equivalent to A∆
Ylc/X

= 0. Thus, we have that

f∗lc(KX + ∆) = KYlc + ∆Ylc + Eflc .

For any model ρ : Z → X factoring through flc via π : Z → Ylc, we have that

A∆
Z/X =KZ + ∆Z + Eρ − ρ∗(KX + ∆)

=KZ + ∆Z + (Eflc)Z + Eπ − π∗(KYlc + ∆Ylc + Eflc)

> 0,

since (Ylc,∆Ylc + Eflc) is log canonical. Therefore, (X,∆) is log canonical. 2

Definition 4.7. The augmented volume of singularities on X is

Vol+(X) = lim inf
m

Volm(X) = lim
k→∞

Volk!(X) > VolBdFF(X, 0).

Remark 4.8. While it is proved in the appendix of [BdFF12] that the intersection number is
continuous, it is not clear that EnvX (Am,X/X) converges to EnvX (AX/X). It would be interesting
to have an example with Vol+(X) > VolBdFF(X, 0).

4.1 Cone singularities
We will give a counterexample to Problem B in this section.

Let (V,H) be a non-singular projective polarized variety of dimension n− 1. The vertex 0 is
the isolated singularity of the variety

X = Spec
⊕
m>0

H0(V,OV (mH)).

We assume that H is sufficiently ample so that X is normal. Blowing up 0 gives a resolution of
singularities for X which we denote by Y . The induced map f : Y → X is isomorphic to the
contraction of the zero section E of the total space of the vector bundle OV (H). Let π : Y → V
be the bundle map. We have that E ∼= V . The co-normal bundle of E in Y is

OE(−E) ∼= OV (H).
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Let us slightly change our notation from previous sections. Let Γ be a boundary on X, ΓY
be the strict transform of Γ on Y and ∆ = ΓY |E . Since AΓ

Y/X is exceptional, we may assume

that AΓ
Y/X = −aE for some rational number a. Restricting to E, we have that

KV + ∆ ∼Q aH

by the adjunction formula. On the other hand, assuming that ∆ is an effective Q-Cartier divisor
on V such that ∆ ∼Q −KV + aH, we may set Γ = C∆ and get that AC∆

Y/X = −aE, where C∆ is

the cone over ∆ in X.
Let C be an elliptic curve, U be a semi-stable vector bundle on C of rank 2 and degree 0 and

V = P(U) be the ruled surface over C. The nef cone Nef(V ) and pseudo-effective cone NE(V )
are the same. They are spanned by the section C0 corresponding to the tautological bundle
OP(U)(1) and a fiber F of the ruling (for details, see [Laz04, § 1.5.A]). Moreover, as in [Sho00,
Example 1.1], if C ′ is an effective curve on V such that C ′ ≡ mC0 for some positive integer m,
then C ′ = mC0.

Theorem 4.9. Let V be the ruled surface as above. Fix an ample divisor H on V . Let X be
the affine cone over (V,H). Suppose that H is sufficiently ample so that X is normal. Then
Vol+(X) = 0, hence VolBdFF(X, 0) = 0. But there is no effective Q-divisor Γ such that (X,Γ) is
log canonical.

Proof. Fix an ample divisor H on V . Since KV ∼ −2C0, we have that −KV + aH is ample for
any rational number a > 0. Let D be a smooth curve in |n(−KV +aH)| for some sufficiently large
positive integer n, and set ∆ = (1/n)D. Then (Y, π∗∆ + E) is the log canonical modification of
(X,C∆), since (KY + π∗∆ + E)|E ∼Q aH is ample and (X,C∆) is not log canonical. Suppose
that m is the index of KX + C∆. By Proposition 4.4(ii),

Volm(X) 6 −(AC∆

Y/X)3 = (aE)3 = a3H2.

As a→ 0, we conclude that Vol+(X) = 0, hence VolBdFF(X, 0) = 0.
If (X,Γ) is log canonical for some effective Q-divisor Γ on X, then AΓ

Y/X = −aE > 0, hence

a 6 0. On the other hand, let ∆ = ΓY |E ∈ NE(V ). Then

∆ ∼Q −KV + aH ∼Q 2C0 + aH.

Since ∆ > 0, we have a> 0 and hence a= 0. Thus AΓ
Y/X = 0, and (Y,ΓY +E) is log canonical. But

∆ = ΓY |E is an effective Q-divisor linearly equivalent to 2C0, and hence ∆ = 2C0, a contradiction.
2

In [dFH09, Definition 7.1], a normal variety X is defined to be log canonical if for one
(hence any sufficiently divisible) positive integer m, the mth limiting log discrepancy b-divisor
Am,X/X > 0. And in [dFH09, Proposition 7.2], it was proved that X is log canonical if and only
if there is a boundary ∆ such that the pair (X,∆) is log canonical. It is natural to ask whether
this definition is equivalent to the one requiring that the log discrepancy b-divisor AX/X > 0.

Corollary 4.10. Let X be the affine cone over (V,H) as in Theorem 4.9. Then AX/X > 0, but
X is not log canonical.

Proof. The corollary follows immediately from the fact that AX/X > 0 is equivalent to
VolBdFF(X, 0) = 0 (see [BdFF12, Proposition 4.19] or Corollary 4.6). 2
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