THE DENSITY OF SUBSEQUENCES

DAVID B. CHOATE

Let $A = \{a_1, a_2, \ldots\}$ be an increasing sequence of positive integers whose upper density, θ , is less than 1, Then the counting function of the subsequence

 $\{a_1 = q, a_q = r, a_p = s, ...\}$

does not exceed $\left[\log_{\sqrt{h}}(1/n)\right] - 1$.

1. Introduction

In this paper we develop a method to calculate precisely the asymptotic density of a subsequence in terms of the density of its indices and of the original sequence. This technique also allows us to estimate its Schnirelmann density.

2. Preliminary considerations

Let $A = \{a_1, a_2, \ldots\}$ be a strictly increasing sequence of positive integers, and let A(n) count the elements of A which are less than or equal to n. Let $B = \{b_1, b_2, \ldots\}$ also be a strictly increasing sequence of positive integers. Define $A_B = \{a_{b_1}, a_{b_2}, \ldots\}$ to be the subsequence of A whose indices are determined by the elements of B. If

Received 23 September 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

i < j, then $b_i < b_j$ since *B* is increasing. Since $b_i < b_j$, $a_{b_i} < a_{b_j}$ because *A* is increasing. So A_B is strictly increasing and $A_B(n)$ is defined.

Define lub A(n)/n as the upper density of A, glb A(n)/n as the Schnirelmann density of A [1] and lim A(n)/n as the asymptotic density $n \rightarrow \infty$ of A.

3. Density relations

LEMMA 1. If θ , δ and θ_{δ} are the upper densities of A, B and A_B respectively, then $\theta_{\delta} \leq \theta \cdot \delta$.

Proof. Let t = B[A(n)]. Then $b_t \le A(n) \le b_{t+1}$. This implies $a_{b_t} \le n \le a_{b_{t+1}}$. So $t \le A_B(n) \le t + 1$. Therefore $B[A(n)] = t = A_B(n)$. If $A(n) \ne 0$, then $\theta \cdot \delta \ge (A(n)/n) \cdot (B[A(n)]/A(n)) = A_B(n)/n$. If A(n) = 0, then $\theta \cdot \delta > 0 = B(0)/n = B[A(n)]/n = A_B(n)/n$. Therefore $\theta \cdot \delta \ge \theta_{\delta}$.

REMARK 1. Observe that if α , β and α_{β} are defined to be the Schnirelmann densities of A, B and A_B , we then conclude that $\alpha_{\beta} \geq \alpha \cdot \beta$. Let $A + B = \{a_i + b_j \mid a_i \text{ is in } A; b_j \text{ is in } B\}$. A is a *basis* if there is a positive integer k such that $A + \ldots + A$ (k times) is the set of positive integers. Schnirelmann has shown that A is a basis when $\alpha > 0$ [1].

So we conclude that if α and β are positive, A_B is a basis. In particular, if $\alpha > 0$, A_A is a basis.

REMARK 2. Observe that if Δ , Γ and Δ_{Γ} are defined to be the asymptotic densities of A, B and A_B respectively, we then conclude that Δ_{Γ} exists provided Δ and Γ do and that $\Delta_{\Gamma} = \Delta \cdot \Gamma = \Gamma_{\Delta}$, the asymptotic density of B_A . In particular, since $6/\pi^2$ is the asymptotic dnesity of the sequence of square-free integers [2], we see that $36/\pi^4$ is the asymptotic density of the sequence of square-free numbers with square-free index.

Let A^0 be the sequence of positive integers. Let $A^1 = A$ and $A^2 = A_A$. In general define A^1 to be those elements of A^{l-1} whose indices are exactly the elements of A. This operation is associative; that is, of $k \ge 0$, then A^1 is the set of elements of A^{l-k} whose indices are exactly the elements in A^k . For example, if E is the set of even numbers, then $E^l = \{2^l, 2^{l} \cdot (2), 2^{l} \cdot (3), \ldots\}$.

LEMMA 2. If $\theta[l]$ is the upper density of A^{l} , then $\theta[l] \leq \theta^{l}$. Proof. Proceed by induction over l. The lemma is true for l = 1. Assume $\theta[l] \leq \theta^{l}$ for some $l \geq 1$. Since $A^{l+1} = A_{A^{l}}$, $\theta[l+1) = \theta_{\theta[l]}$. But $\theta_{\theta[l]} \leq \theta \cdot \theta^{l} = \theta^{l+1}$ by Lemma 1.

Designate by a_1^l the first element of A^l . This symbol does not mean exponentiation; however, it obeys the same laws under composition. For example, $a_{\left(a_1^n\right)}^m = a_1^{m+n}$ and if A^n is considered the original

sequence, $\binom{n}{a_1}^{m} = a_1^{mn}$. In the discussion below exponents are used only with upper densities, never with an element of a sequence.

Define $Aa_1 = \{a_1, a_1^2, a_1^3, \ldots\}$. If $a_1 > 1$, then Aa_1 is increasing and $Aa_1(n)$ is defined. In the sequel θ will denote the upper density of A. Note that if $\theta < 1$ then $a_1 > 1$.

THEOREM. $Aa_{1}(n) \leq \log_{\sqrt{\theta}}(1/n) - 1$ provided $\theta < 1$ and $n \geq a_{1}$. Proof. Fix n. Proceed by induction on $Aa_{1}(n)$. Suppose $Aa_{1}(n) = 1$. Then $a_{1} \leq n$ and $1 \leq A(n)$. So $1/n \leq A(n)/n \leq \theta = (\sqrt{\theta})^{2}$. Therefore $2 \leq \log_{\sqrt{A}}(1/n)$ since $\sqrt{\theta} < 1$. Or

$$Aa_1(n) = 1 \le \log_{\sqrt{\theta}}(1/n) - 1$$
.

Let $Aa_1(n) = k$ and assume the theorem true for all sequences B such that $1 \leq Bb_1(n) < k$. Set $B = A^2$. If $Bb_1(n) = 0 < 1$, then $n < b_1 = a_1^2$. Since $a_1 \leq n$ by hypothesis, $a_1 \leq n < a^2$, which implies $Aa_1(n) = 1$, which has been considered. If $k = Aa_1(n) \leq Bb_1(n) = t$, then $a_1^{2k} = b_1^k \leq b_1^t \leq n < a_1^{k+1}$, which implies $a_1^{k-1} < 1$ since A is strictly increasing. Since A consists only of positive integers, $k - 1 \leq 0$ or $Aa_1(n) \leq 1$. Therefore $Aa_1(n) = 1$, which has been considered. So if $B = A^2$, we can assume $1 \leq Bb_1(n) < k$.

Also $\theta[2] = \theta_{\theta} \leq \theta^2 < \theta < 1$. Since $Bb_1(n) \geq 1$, $b_1 \leq n$ as well. Using the induction hypothesis, we can assume $Bb_1(n) \leq \log_{\sqrt{\theta[2]}}(1/n) - 1$. But $\log_{\sqrt{\theta[2]}}(1/n) - 1 \leq \log_{\sqrt{\theta^2}}(1/n) - 1 = (\log_{\sqrt{\theta}}(1/n))/2 - 1$. Depending on whether $Aa_1(n)$ is even or odd, we have

(i)
$$2Bb_{1}(n) = Aa_{1}(n)$$
, or
(ii) $2Bb_{1}(n) + 1 = Aa_{1}(n)$.
If (i), then $Aa_{1}(n) = 2Bb_{1}(n) \le \log_{\sqrt{\theta}}(1/n) - 2 < \log_{\sqrt{\theta}}(1/n) - 1$.
If (ii), then
 $Aa_{1}(n) = 2Bb_{1}(n) + 1 \le \log_{\sqrt{\theta}}(1/n) - 2 + 1 = \log_{\sqrt{\theta}}(1/n) - 1$.

COROLLARY. The asymptotic density of Aa_1 is zero if the upper density of A is less than 1.

Proof. Dividing the inequality in the above theorem by n, we obtain $Aa_1(n)/n \leq \left(\log_{\sqrt{\theta}}(1/n)\right)/n - 1/n$. Taking the limit as n approaches infinite, we have our result.

References

- [1] Henry B. Mann, Addition theorems: the addition theorems of group theory and number theory (Interscience [John Wiley & Sons], New York, London, Sydney, 1965).
- [2] Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers, Second edition (John Wiley & Sons, New York, London, Sydney, 1966).

Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125, USA.