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1. Introduction. Given a series £«„, we define A%\ k> — 1, by the
relation

A™ = S E»lrav,

where E™ is the binomial coefficient (k+n\. Let c<*» = AS»/E*K If

cjf* ->•« as TO->OO, the series San is said to be summable (0 ; A) to the sum s.
If k > 0, £> ^ 1 and if, as

2 |c<*-1)-s|J' = o(n),
» = 0

we say1 that the series San is summable [C; k, p] to the sum s, or that the
series is strongly summable (C; k) with index p to the sum s. If ajj>
denotes the difference c^'—c*i1, it is known2 that necessary and sufficient
conditions for eummability [C; &, p], k > 0, ^ > 1, to the sum s, are that
Sare be summable (C; k) to the sum s and that

2 {v|a<*>|}P = o(?i).

When & = 0, p ^ 1, we use this property to define summability [0; 0, p].
The series San is said to be summable (A), or summable by Abel's

method, to the sum s, if (i) the series

n=0

is convergent for every positive u and (ii)/(it)->s as u->oo continuously.
It is a natural analogue to say that ~£an is strongly summable (.4) with
index p ( ^1 ) to the sum s, or that I,an is summable [A ; p], p > 1, to the
sum s, if, in addition to (i) and (ii), we have, as a>-»oo,

(iii)

1 Hyslop, 2. For the cases k = 1, p = 1 see respectively Kuttner, 4, and Winn, 7.
For applications of strong summability to Fourier series see Paley, 6, and Marcinkiewicz, 5.

2 Hyslop, 2.
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In this paper we show that summability [A ; p] implies summability
[A; q] for p > q ^ 1, and that summability [C; k, p], k ^ 0, p > 1, implies
summability [A; p]. The latter is of course the analogue for strong
summability of the well-known result that summability (C; k) implies
summability (A).

2. Preliminary Lemmas. We state or derive here certain results
which will be required in the proofs of the theorems.

LEMMA 1. For k> — 1, we have the formal identity1

g)xn= {l-x)~k 2 nanx
n

n=0 »=0
LEMMA 2. If2 p>l, f(x) > 0, K{x, y) > 0 and K(x, y) is homo-

geneous of degree —1, and if

f°°
I K(x, l)x~1!pdx = A,
Jo

then \ dy\\ K(x, y)f(x)dx\V ^X» \ {f(x)Y>dx.
Jo Uo > Jo

LEMMA 3. If k > 0, p > 1, f(x) Js 0, f(x) = 0 for x > kco,

dy\\ xky-k-1e-xlvf(x)dx\ <A» {f{x)\pdx,
Ji Ui I Jo

where A = r(A-{-l—y1).

In Lemma 2 take if (a;, y) to be xky-k~xe~xlv. Then
/•CO '•00

1 Tf / ™ 1 \ /y—1/3? //•>* — I <y&—X/JJ p—SC (JfY* T^ / J* I 1 JY\—X j — - \

Jo ' Jo
Also

cfo/ j a;fty-fc-1e-x/»'/(a;)da:[ < ^2/1 %ky~k~1e-x/vf(z)dz\

"" Jo Jo
LEMMA 4. If p> 1, f(z) > 0, /(a;) = 0 for x> co, then

where A = F(l— p~l).

The proof is almost the same as that of Lemma 3.

1 Kogbetliantz, 3 .
* Hardy, Littlewood and Polya, 1, 229.
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LEMMA 5. If k > 0, p > 1, <f>v ^ 0 for v = 0, 1, 2, ..., then

(i) [du\mZvku-*-1e->'lu<f>\P ^X> 2 0 / ,
Ji U = i J ,=o

(ii) pdMJ 2 v ^ - ^ e - ^ ^ r ^ ^ 2 <£/,

where m = [ku], n = [&o>] and X = F(k-\-1 —p~l).

Clearly the function xh e~x/u increases for 0 < x < ku and decreases for
x > ku. In Lemma 3 take

= 0, x^n.
Then

du \ S vhu~k-xe-vlu4>A ^ dw I
Ji I ,.=1 ^ Ji U=i

^du\\ "xku~k-1e-xluf(x)dx\P <A» f*"{f(x)¥dx
Ji U i ) Jo

= \P f" {/(«)}» dx = A? "f1 ("+1 ̂ » dx^XP £ ^ / ,
Jo V=OJK K=O

which proves (i). The proof of (ii) is similar, but in this case it is convenient
to define f(x) as follows :

f{x) = cf>y, v—l^x<v, i / = l , 2, ..., n,
= 0, a;>%.

LEMMA 6. / / p > 1, r = [co] and <£,, ^ 0 /or v = 0, 1, 2, ..., then

{"dull,
Ji U=o= o J

where X = F(l—p~x)-

This follows from Lemma 4 as Lemma 5 follows from Lemma 3.
LEMMA 7. If bv > 0, v = 1, 2, ..., s, a?«Z p > 1, <Aen

/ 8 \P I
2 6r) < S P 2 ft,*.

\F=i / v=i

The proof of this inequality is immediate.

3. Strong Abel Summability. The first of our two theorems follows
almost immediately from Holder's inequality.

THEOREM 1. / / 2 a n is summable [A; p] it is also summable {A; q]
for p>q^l.

I t is sufficient to show that, when p > q ̂  1,
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implies that I \uf'(u)\adu = o(u>).
Ji

Denote \uf (u)\ by g(u). Then, by Holder's inequality,
f- r f» ) «/» i f»
\ gQdu^.] \ (gq)p'adu\ \ I ]
J\ Ui I Ui

31

4. Strong Cesaro and Abel Summability. The following is the main
theorem:

THEOREM 2. If Han is summable [0; k, p], k ^ 0 , p ^ 1, iken it is
summable [A ; p] to the same sum.

We suppose throughout, as we may without loss of generality, tliat the
sum of the series in the Cesaro sense is zero. Thus c*' = o(l) as n-^-ao.

Clearly conditions (i) and (ii) in the definition of summability [A ; p]
are satisfied. It is only necessary therefore to show that the hypothesis
implies (in). We consider four cases separately.

Case (i), k > 0, p > 1. We have, by Lemma 1,

\ = \' u-v 2J va^ e ' du

_ ,,-»ri— «-i/«\ftp S
>• = !

t-*-1 S v

-*-1 S v

it-*-1 S

+ 0 , - f c - l

by Lemma 7. Denote these integrals respectively by /x(co) and /2( a ) ) .
Then, writing <f>, for |va*'|, we have

= 0

where

r1)1(«.) = n m s 1

Ji U=i

= f"
Jll U=

du.
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By Lemma 5, / u ( u ; ) and /1 I 3(OJ) are each equal to 0\ 2 </>„*
by hypothesis, is o(n), or 0(00). Also "=0

which,

Clearly by hypothesis <f>m
p, $?l+1 are each o(o>). Hence

OJ r " d K [ = ( i w vrpdu\ = o(w).

Ji J (. Ji -1

Returning now to /2(a>) we have

and we must now show that the three integrals

du,

i-̂ -1 2
J l *=n+L "— i

are each o(co).
We use the fact that c*,*' = o ( l ) as v-
Dealing first with I2 1(co), we have

e-"/«

2 ^w) = o \ ["
LJi

{ S

| j e-"/u) 1

= o f j du I f f̂c+i e-" ^y 1 H + o fa>p(i+1) f" M-

In the first of these expressions, we may replace the lower limit of the inner
integral by zero, and the expression is clearly o(co). By means of the
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substitution y = pnju it is easy to see that the second expression is

Also 2 2 ( )

and the substitution y =pnju shows that this is also o(o>).
Finally

= o IT «-
LJi =n+1

The theorem is therefore proved for k > 0, p > 1.

Case (ii), k = 0, p > 1. We proceed as in Case (i) but replace n by r,
where r = [to]. The proof that

J ut 00

u-1 S vave-"/u

is unaltered, except that cf> is replaced by Av, where Av=-Yi a^. Also,

by Lemma 6,
S

= OJS(v|or|)»J=o(r) = <>(«,),
by hypothesis.

An independent proof of this case is not strictly necessary since
summability [C; 0, p] implies1 summability [C ; k, p], k > 0, p ^ 1.

Case (iii), k>0, p=l. In this case we have

= O(Idu S

= 0 ( oj*» | f" u~k

For /2(o») we merely replace >̂ by unity throughout the argument in
Case (i).

1 Hyslop, 2.
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Case (iv), k = 0, >̂ = 1. The truth of the theorem in this case may
be inferred from Case (iii) and the consistency theorem for strong Cesaro
summability which has been quoted above. For the sake of completeness,
however, and because the preceding arguments require modification in
this case, we think it desirable to insert a short independent proof.

The proof that /2(a>) = o(u>) presents no difficulty. Also, if r = [o>]
and 0 < S < 1, we have

/1(w) = o(\ u~xdu £ v av\e-vlu)

= 0(a>s £ v\aJ \°'u-1-'e-'ludv)

= 0 L 8 S v1-61 a, I [°° t/8-1 e-ydy)
\ ,=\ Jo /

= 0(a>6 £ v1^ \a,\).

V

Denoting1 2! fj.\%\ by Bv and noting that Bv = o(v) by hypothesis,

we have, on summing by parts.

a.8 £ v1-5|a>|=ai4V5,{v-'-(v+l)-4}+.Br(w/r)

The theorem is therefore completely proved.

1 The subsequent argument is substantially due to Winn. See Winn, 7.
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