An Analogue for Strong Summability of Abel's Summability Method

By C. F. Harington and J. M. Hyslop
(Received 18th July, 1950. Read 1st December, 1950.)

1. Introduction. Given a series Σa_{n}, we define $A_{n}^{(k)}, k>-1$, by the relation

$$
A_{n}^{(k)}=\sum_{\nu=0}^{n} E_{n-\nu}^{(k)} a_{\nu}
$$

where $E_{n}^{(k)}$ is the binomial coefficient $\binom{k+n}{n}$. Let $c_{n}^{(k)}=A_{n}^{(k)} / E_{n}^{(k)}$. If $c_{n}^{(k)} \rightarrow s$ as $n \rightarrow \infty$, the series Σa_{n} is said to be summable $(C ; k)$ to the sum s. If $k>0, p \geqslant 1$ and if, as $n \rightarrow \infty$,

$$
\sum_{\nu=0}^{n}\left|c_{\nu}^{(k-1)}-s\right|^{p}=o(n)
$$

we say ${ }^{1}$ that the series Σa_{n} is summable [$C ; k, p$] to the sum s, or that the series is strongly summable ($C ; k$) with index p to the sum s. If $a_{n}^{(k)}$ denotes the difference $c_{n}^{(k)}-c_{n-1}^{(k)}$, it is known ${ }^{2}$ that necessary and sufficient conditions for summability $[C ; k, p], k>0, p \geqslant 1$, to the sum s, are that Σa_{n} be summable ($C ; k$) to the sum s and that

$$
\sum_{\nu=1}^{n}\left\{\nu\left|a_{v}^{(k)}\right|\right\}^{p}=o(n)
$$

When $k=0, p \geqslant 1$, we use this property to define summability [$C ; 0, p$].
The series Σa_{n} is said to be summable (A), or summable by Abel's method, to the sum s, if (i) the series

$$
f(u)=\sum_{n=0}^{\infty} a_{n} e^{-n / u}
$$

is convergent for every positive u and (ii) $f(u) \rightarrow s$ as $u \rightarrow \infty$ continuously. It is a natural analogue to say that Σa_{n} is strongly summable (A) with index $p(\geqslant 1)$ to the $\operatorname{sum} s$, or that Σa_{n} is summable $[A ; p], p \geqslant 1$, to the sum s, if, in addition to (i) and (ii), we have, as $\omega \rightarrow \infty$,

$$
\begin{equation*}
\int_{0}^{\omega}\left|u f^{\prime}(u)\right|^{p} d u=o(\omega) . \tag{iii}
\end{equation*}
$$

[^0]In this paper we show that summability $[A ; p]$ implies summability $[A ; q]$ for $p>q \geqslant 1$, and that summability $[C ; k, p], k \geqslant 0, p \geqslant 1$, implies summability $[A ; p]$. The latter is of course the analogue for strong summability of the well-known result that summability ($C ; k$) implies summability (A).
2. Preliminary Lemmas. We state or derive here certain results which will be required in the proofs of the theorems.

Lemma 1. For $k>-1$, we have the formal identity ${ }^{1}$

$$
\sum_{n=0}^{\infty} n E_{n}^{(k)} a_{n}^{(k)} x^{n}=(1-x)^{-k} \sum_{n=0}^{\infty} n a_{n} x^{n}
$$

Lemma 2. If ${ }^{2} p>1, f(x) \geqslant 0, K(x, y) \geqslant 0$ and $K(x, y)$ is homogeneous of degree -1 , and if

$$
\int_{0}^{\infty} K(x, 1) x^{-1 / p} d x=\lambda
$$

then

$$
\int_{0}^{\infty} d y\left\{\int_{0}^{\infty} K(x, y) f(x) d x\right\}^{p} \leqslant \lambda^{p} \int_{0}^{\infty}\{f(x)\}^{p} d x
$$

Lemma 3. If $k>0, p>1, f(x) \geqslant 0, f(x)=0$ for $x>k w$, then

$$
\int_{1}^{\omega} d y\left\{\int_{1}^{k \omega} x^{k} y^{-k-1} e^{-x / y} f(x) d x\right\}^{p} \leqslant \lambda^{p} \int_{0}^{k \omega}\{f(x)\}^{p} d x
$$

where $\lambda=\Gamma\left(k+1-p^{-1}\right)$.
In Lemma 2 take $K(x, y)$ to be $x^{k} y^{-k-1} e^{-x / y}$. Then

$$
\int_{0}^{\infty} K(x, 1) x^{-1 / p} d x=\int_{0}^{\infty} x^{k-1 / p} e^{-x} d x=\Gamma\left(k+1-p^{-1}\right)=\lambda
$$

Also

$$
\begin{aligned}
\int_{1}^{\omega} d y\left\{\int_{1}^{k \omega} x^{k} y^{-k-1} e^{-x / y} f(x) d x\right\}^{p} & \leqslant \int_{0}^{\infty} d y\left\{\int_{0}^{\infty} x^{k} y^{-k-1} e^{-x / y} f(x) d x\right\}^{p} \\
& \leqslant \lambda^{p} \int_{0}^{\infty}\{f(x)\}^{p} d x=\lambda^{p} \int_{0}^{k \omega}\{f(x)\}^{p} d x
\end{aligned}
$$

Lemma 4. If $p>1, f(x) \geqslant 0, f(x)=0$ for $x>\omega$, then

$$
\int_{1}^{\omega} d y\left\{\int_{0}^{\omega} y^{-1} e^{-x / y} f(x) d x\right\}^{p} \leqslant \lambda^{p} \int_{0}^{\omega}\{f(x)\}^{p} d x
$$

where $\lambda=\Gamma\left(1-p^{-1}\right)$.
The proof is almost the same as that of Lemma 3.

[^1]Lemma 5. If $k>0, p>1, \phi_{\nu} \geqslant 0$ for $v=0,1,2, \ldots$, then

$$
\begin{gather*}
\int_{1}^{\omega} d u\left\{\sum_{\nu=1}^{m-1} \nu^{k} u^{-k-1} e^{-\nu / u} \phi_{\nu}\right\}^{p} \leqslant \lambda^{p} \sum_{\nu=0}^{n} \phi_{\nu}^{p}, \tag{i}\\
\int_{1}^{\omega} d u\left\{\sum_{\nu=m+2}^{n} \nu^{k} u^{-k-1} e^{-\nu / u} \phi_{\nu}\right\}^{p} \leqslant \lambda^{p} \sum_{\nu=0}^{n} \phi_{\nu}^{p}, \tag{ii}
\end{gather*}
$$

where $m=[k u], n=[k \omega]$ and $\lambda=\Gamma\left(k+1-p^{-1}\right)$.
Clearly the function $x^{k} e^{-x / u}$ increases for $0<x<k u$ and decreases for $x>k u$. In Lemma 3 take

$$
\begin{aligned}
f(x) & =\phi_{v}, \quad \\
& =0 \leqslant x<\nu+1, \quad \nu=0,1, \ldots, n-1 . \\
& =0 \geqslant n .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{1}^{\omega} d u\left\{\sum_{\nu=1}^{m-1} \nu^{k} u^{-k-1} e^{-\nu / u} \phi_{\nu}\right\}^{p} \leqslant \int_{1}^{\omega} d u\left\{\sum_{\nu=1}^{m-1} \int_{\nu}^{\nu+1} x^{k} u^{-k-1} e^{-x / u} f(x) d x\right\}^{p} \\
& \leqslant \int_{1}^{\omega} d u\left\{\int_{1}^{k \omega} x^{k} u^{-k-1} e^{-x / u} f(x) d x\right\}^{p} \leqslant \lambda^{p} \int_{0}^{k \omega}\{f(x)\}^{p} d x \\
&=\lambda^{p} \int_{0}^{n}\{f(x)\}^{p} d x=\lambda^{p} \sum_{\nu=0}^{n-1} \int_{\nu}^{\nu+1} \phi_{\nu}{ }^{p} d x \leqslant \lambda^{p} \sum_{\nu=0}^{n} \phi_{\nu}^{p}
\end{aligned}
$$

which proves (i). The proof of (ii) is similar, but in this case it is convenient to define $f(x)$ as follows:

$$
\begin{aligned}
f(x) & =\phi_{v}, \quad \\
& \quad \nu-1 \leqslant x<\nu, \quad \nu=1,2, \ldots, n \\
& =0, \quad x \geqslant n
\end{aligned}
$$

Lemma 6. If $p>1, r=[\omega]$ and $\phi_{\nu} \geqslant 0$ for $\nu=0,1,2, \ldots$, then

$$
\int_{1}^{\omega} d u\left\{\sum_{\nu=0}^{r} u^{-1} e^{-\nu / u} \phi_{\nu}\right\}^{p} \leqslant \lambda^{p} \sum_{\nu=0}^{r} \phi_{\nu}{ }^{p}
$$

where $\lambda=\Gamma\left(1-p^{-1}\right)$.
This follows from Lemma 4 as Lemma 5 follows from Lemma 3.
Lemma 7. If $b_{\nu} \geqslant 0, \nu=1,2, \ldots, s$, and $p \geqslant 1$, then

$$
\left(\sum_{\nu=1}^{s} b_{\nu}\right)^{p} \leqslant s^{p} \sum_{\nu=1}^{s} b_{\nu}^{p}
$$

The proof of this inequality is immediate.
3. Strong Abel Summability. The first of our two theorems follows almost immediately from Hölder's inequality.

Theorem 1. If Σa_{n} is summable $[A ; p]$ it is also summable $[A ; q]$ for $p>q \geqslant 1$.

It is sufficient to show that, when $p>q \geqslant 1$,

$$
\int_{1}^{\omega}\left|u f^{\prime}(u)\right|^{p} d u=o(\omega)
$$

implies that

$$
\int_{1}^{\omega}\left|u f^{\prime}(u)\right|^{q} d u=o(\omega)
$$

Denote $\left|u f^{\prime}(u)\right|$ by $g(u)$. Then, by Hölder's inequality,

$$
\begin{aligned}
\int_{1}^{\omega} g^{q} d u & \leqslant\left\{\int_{1}^{\omega}\left(g^{q}\right)^{p / q} d u\right\}^{q / p}\left\{\int_{1}^{\omega} 1 d u\right\}^{1-q / p} \\
& =o\left(\omega^{q / p}\right) O\left(\omega^{1-q / p}\right)=o(\omega)
\end{aligned}
$$

4. Strong Cesàro and Abel Summability. The following is the main theorem:

Theorem 2. If Σa_{n} is summable $[C ; k, p], k \geqslant 0, p \geqslant 1$, then it is summable $[A ; p]$ to the same sum.

We suppose throughout, as we may without loss of generality, that the sum of the series in the Cesàro sense is zero. Thus $c_{n}^{(k)}=o(1)$ as $n \rightarrow \infty$.

Clearly conditions (i) and (ii) in the definition of summability $[A ; p]$ are satisfied. It is only necessary therefore to show that the hypothesis implies (iii). We consider four cases separately.

Case (i), $k>0, p>1$. We have, by Lemma 1,

$$
\begin{aligned}
& \int_{1}^{\omega}\left|u f^{\prime}(u)\right|^{p} d u=\left.\left.\int_{1}^{\omega} u^{-p}\right|_{\nu=1} ^{\infty} \nu a_{\nu} e^{-\nu / u}\right|^{p} d u \\
& \quad=\int_{1}^{\omega} u^{-p}\left(1-e^{-1 / u}\right)^{k p}\left|\sum_{\nu=1}^{\infty} \nu E_{\nu}^{(k)} a_{\nu}^{(k)} e^{-\nu / u}\right|^{p} d u \\
& \quad=O\left[\int_{1}^{\omega}| | u^{-k-1} \sum_{\nu=1}^{n} \nu E_{\nu}^{(k)} a_{\nu}^{(k)} e^{-\nu / u}\left|+\left|u^{-k-1} \sum_{\nu=n+1}^{\infty} \nu E_{\nu}^{(k)} a_{\nu}^{(k)} e^{-\nu / u}\right|\right\}^{p} d u\right] \\
& =O\left\{\int_{1}\left|u^{-k-1} \sum_{\nu=1}^{n} \nu E_{\nu}^{(k)} a_{v}^{(k)} e^{-\nu / u}\right|^{p} d u\right\} \\
& \quad+O\left\{\int_{1}^{\omega}\left|u^{-k-1} \sum_{\nu=n+1}^{\infty} \nu E_{\nu}^{(k)} a_{\nu}^{(k)} e^{-\nu / u}\right|^{p} d u\right\}
\end{aligned}
$$

by Lemma 7. Denote these integrals respectively by $I_{1}(\omega)$ and $I_{2}(\omega)$. Then, writing ϕ_{ν} for $\left|\nu a_{\nu}^{(k)}\right|$, we have

$$
\begin{aligned}
I_{1}(\omega) & =O\left[\int_{1}^{\omega}\left\{\sum_{\nu=1}^{n} \nu^{k} u^{-k-1} e^{-v / u} \phi_{\nu}\right\}^{p} d u\right] \\
& =O\left[I_{1,1}(\omega)+I_{1,2}(\omega)+I_{1,3}(\omega)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1,1}(\omega)=\int_{1}^{\omega}\left\{\sum_{\nu=1}^{m-1} \nu^{k} u^{-k-1} e^{-\nu / u} \phi_{\nu}\right\}^{p} d u \\
& I_{1,2}(\omega)=\int_{1}^{\omega} u^{-p(k+1)}\left\{m^{k} e^{-m / u} \phi_{m}+(m+1)^{k} e^{-(m+1) / u} \phi_{m+1}\right\}^{p} d u \\
& I_{1,3}(\omega)=\int_{1}^{\omega}\left\{\sum_{\nu=m+2}^{n} \nu^{k} u^{-k-1} e^{-\nu / u} \phi_{\nu}\right\}^{p} d u
\end{aligned}
$$

By Lemma 5, $I_{1,1}(\omega)$ and $I_{1,3}(\omega)$ are each equal to $O\left\{\sum_{\nu=0}^{n} \phi_{\nu}{ }^{p}\right\}$ which, by hypothesis, is $o(n)$, or $o(\omega)$. Also

$$
I_{1,2}(\omega) \leqslant \int_{1}^{\omega}\left\{(k u)^{k} e^{-k} u^{-k-1}\right\}^{p}\left(\phi_{m}+\phi_{m+1}\right)^{p} d u
$$

Clearly by hypothesis $\phi_{m}{ }^{p}, \phi_{n+1}^{p}$ are each $o(\omega)$. Hence

$$
I_{1,2}(\omega)=o\left\{\omega \int_{1}^{\omega} u^{-p} d u\right\}=o\left\{\omega \int_{1}^{\infty} u^{-p} d u\right\}=o(\omega)
$$

Returning now to $I_{2}(\omega)$ we have

$$
\begin{aligned}
&\left|\sum_{\nu=n+1}^{\infty} \nu E_{\nu}^{(k)} a_{\nu}^{(k)} e^{-\nu / u}\right|=\left|\sum_{\nu=n+1}^{\infty} \nu E_{\nu}^{(k)}\left\{c_{\nu}^{(k)}-c_{\nu-1}^{(k)}\right\} e^{-\nu / u}\right| \\
&=\mid \sum_{\nu=n+1}^{\infty} \nu E_{\nu}^{(k)} c_{\nu}^{(k)} e^{-\nu / u}-\sum_{\nu=n+1}^{\infty}(\nu-1) E_{\nu-1}^{(k)} c_{\nu-1}^{(k)} e^{-\nu / u} \\
&-\sum_{\nu=n+1}^{\infty}(k+1) E_{\nu-1}^{(k)} c_{\nu-1}^{(k)} e^{-\nu / u} \mid \\
& \leqslant\left|\left(1-e^{-1 / u}\right) \sum_{\nu=n+1}^{\infty} \nu E_{\nu}^{(k)} c_{\nu}^{(k)} e^{-\nu / u}\right|+\left|n E_{n}^{(k)} c_{n}^{(k)} e^{-n / u}\right| \\
&+\left|\sum_{\nu=n+1}^{\infty}(k+1) E_{\nu-1}^{(k)} c_{\nu-1}^{(k)} e^{-\nu / u}\right|,
\end{aligned}
$$

and we must now show that the three integrals

$$
\begin{aligned}
& I_{2,1}(\omega)=\int_{1}^{\omega}\left|u^{-k-1}\left(1-e^{-1 / u}\right) \sum_{\nu=n+1}^{\infty} \nu E_{v}^{(k)} c_{v}^{(k)} e^{-\nu / u}\right|^{p} d u \\
& I_{2,2}(\omega)=\int_{1}^{\omega}\left|u^{-k-1} n E_{n}^{(k)} c_{n}^{(k)} e^{-n / u}\right| p d u \\
& I_{2,3}(\omega)=\int_{1}^{\omega}\left|u^{-k-1} \sum_{\nu=n+1}^{\infty} E_{\nu-1}^{(k)} c_{\nu-1}^{(k)} e^{-\nu / u}\right|^{p} d u
\end{aligned}
$$

are each $o(\omega)$.
We use the fact that $c_{\nu}^{(k)}=o(1)$ as $\nu \rightarrow \infty$.
Dealing first with $I_{2,1}(\omega)$, we have

$$
\begin{aligned}
I_{2,1}(\omega) & =o\left[\int_{1}^{\omega} u^{-p(k+2)} d u\left\{\sum_{\nu=n+1}^{\infty} \nu^{k+1} e^{-\nu / u}\right\}^{p}\right] \\
& =o\left[\int_{1}^{\omega} u^{-p(k+2)} d u\left\{\int_{n}^{\infty} x^{k+1} e^{-x / u} d x+O\left(n^{k+1} e^{-n / u}\right)\right\}^{p}\right] \\
& =o\left[\int_{1}^{\omega} d u\left\{\int_{n / u}^{\infty} y^{k+1} e^{-y} d y\right\}^{p}\right]+o\left[\omega^{p(k+1)} \int_{1}^{\omega} u^{-p(k+2)} e^{-p n / u} d u\right]
\end{aligned}
$$

In the first of these expressions, we may replace the lower limit of the inner integral by zero, and the expression is clearly o(ω). By means of the
substitution $y=p n / u$ it is easy to see that the second expression is $o\left(\omega^{1-p}\right)=o(\omega)$.

Also $\quad I_{2,2}(\omega)=o\left\{\omega^{p(k+1)} \int_{1}^{\omega} u^{-p(k+1)} e^{-p n / u} d u\right\}$,
and the substitution $y=p n / u$ shows that this is also $o(\omega)$.
Finally

$$
\begin{aligned}
I_{2,3}(\omega) & =o\left[\int_{1}^{\omega} u^{-p(k+1)} d u\left\{\sum_{\nu=n+1}^{\infty} v^{k} e^{-\nu / u}\right\}^{p}\right] \\
& =o\left[\int_{1}^{\omega} u^{-p(k+1)} d u\left\{\int_{n+1}^{\infty} x^{k} e^{-x / u} d x\right\}^{p}\right] \\
& =o(\omega)
\end{aligned}
$$

The theorem is therefore proved for $k>0, p>1$.
Case (ii), $k=0, p>1$. We proceed as in Case (i) but replace n by r, where $r=[\omega]$. The proof that

$$
I_{2}(\omega)=\int_{1}^{\omega}\left|u^{-1} \sum_{\nu=r+1}^{\infty} \nu a_{\nu} e^{-v / u}\right|^{p} d u=o(\omega)
$$

is unaltered, except that $c_{\nu}^{(k)}$ is replaced by A_{ν}, where $A_{\nu}=\sum_{\mu=0}^{\nu} a_{\mu}$. Also, by Lemma 6,

$$
\begin{aligned}
I_{1}(\omega) & =O\left[\int_{1}^{\omega}\left\{\sum_{\nu=1}^{r} u^{-1} e^{-r / u} \nu\left|a_{\nu}\right|\right\}^{p} d u\right] \\
& =O\left\{\sum_{\nu=1}^{r}\left(\nu\left|a_{\nu}\right|\right)^{p}\right\}=o(r)=o(\omega)
\end{aligned}
$$

by hypothesis.
An independent proof of this case is not strictly necessary since summability $[C ; 0, p]$ implies ${ }^{1}$ summability $[C ; k, p], k>0, p \geqslant 1$.

Case (iii), $k>0, p=1$. In this case we have

$$
\begin{aligned}
I_{1}(\omega) & =O\left(\int_{1}^{\omega} d u \sum_{\nu=1}^{n} u^{-k-1} \nu^{k} e^{-v / u} \nu\left|a_{v}^{(k)}\right|\right) \\
& =O\left(\sum_{\nu=1}^{n} \nu^{k+1}\left|a_{v}^{(k)}\right| \int_{1}^{\omega} u^{-k-1} e^{-v / u} d u\right) \\
& =O\left(\sum_{\nu=1}^{n} \nu\left|a_{\nu}^{(k)}\right| \int_{\nu / \omega}^{v} y^{k-1} e^{-y} d y\right) \\
& =o(n)=o(\omega)
\end{aligned}
$$

For $I_{2}(\omega)$ we merely replace p by unity throughout the argument in Case (i).

[^2]Case (iv), $k=0, p=1$. The truth of the theorem in this case may be inferred from Case (iii) and the consistency theorem for strong Cesàro summability which has been quoted above. For the sake of completeness, however, and because the preceding arguments require modification in this case, we think it desirable to insert a short independent proof.

The proof that $I_{2}(\omega)=o(\omega)$ presents no difficulty. Also, if $r=[\omega]$ and $0<\delta<1$, we have

$$
\begin{aligned}
I_{1}(\omega) & =O\left(\int_{1}^{\omega} u^{-1} d u \sum_{\nu=1}^{r} \nu\left|a_{\nu}\right| e^{-\nu / u}\right) \\
& =O\left(\omega^{\delta} \sum_{\nu=1}^{r} \nu\left|a_{\nu}\right| \int_{1}^{\omega} u^{-1-\delta} e^{-\nu / u} d u\right) \\
& =O\left(\omega^{\delta} \sum_{\nu=1}^{r} \nu^{1-\delta}\left|a_{\nu}\right| \int_{0}^{\infty} y^{\delta-1} e^{-y} d y\right) \\
& =O\left(\omega^{\delta} \sum_{\nu=1}^{r} \nu^{1-\delta}\left|a_{\nu}\right|\right) .
\end{aligned}
$$

Denoting ${ }^{1} \sum_{\mu=0}^{\nu} \mu\left|a_{\mu}\right|$ by B_{ν} and noting that $B_{\nu}=o(\nu)$ by hypothesis, we have, on summing by parts,

$$
\begin{aligned}
\omega^{\delta} \sum_{\nu=1}^{r} \nu^{1-\delta}\left|a_{\nu}\right| & =\omega^{\delta} \sum_{\nu=1}^{r-1} B_{\nu}\left\{\nu^{-\delta}-(\nu+1)^{-\delta}\right\}+B_{r}(\omega / r) \\
& =O\left(\omega^{\delta} \sum_{\nu=1}^{r-1} \nu^{-\delta-1} B_{\nu}\right)+o(\omega) \\
& =o\left(\omega^{\delta} \sum_{\nu=1}^{r-1} \nu^{-\delta}\right)+o(\omega) \\
& =o\left(\omega^{\delta} r^{1-\delta}\right)+o(\omega)=o(\omega)
\end{aligned}
$$

The theorem is therefore completely proved.
${ }^{1}$ The subsequent argument is substantially due to Winn. See Winn, 7.

REFERENCES.

1. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities (Cambridge, 1934).
2. J. M. Hyslop, Proc. Glasgow Math. Assoc., 1 (1951), 16-20.
3. E. Kogbetliantz, Bull. des Sciences Math. (2), 49 (1925), 234-256.
4. B. Kuttner, Journal London Math. Soc., 21 (1946), 118-122.
5. J. Marcinkiewicz, Journal London Math. Soc., 14 (1939), 162-168.
6. R. E. A. C. Paley, Proc. Cambridge Phil. Soc., 26 (1930), 429-437.
7. C. E. Winn, Math. Zeitschrift, 37 (1933), 481-492.

University of the Witwatersrand, Johannesburg, South Africa.

[^0]: ${ }^{1}$ Hyslop, 2. For the cases $k=1, p=1$ see respectively Kuttner, 4, and Winn, 7. For applications of strong summability to Fourier series see Paley, 6, and Marcinkiewicz, 5.
 ${ }^{2}$ Hyslop, 2.

[^1]: ${ }^{1}$ Kogbetliantz, 3.
 ${ }^{2}$ Hardy, Littlewood and Pólya, 1, 229.

[^2]: ${ }^{1}$ Hyslop, 2.

