On the absolute Nörlund summability factors of a Fourier series and its conjugate series at a point

Kôsi Kanno

Abstract

The object of this paper is to give generalizations of Okuyama's Theorem [Bull. Austral. Math. Soc. 12 (1975), 9-21, Tônoku Math. $J .(2) 28(1976), 563-581]$ on the absolute Nörlund summability factors of a Fourier series and its confugate series.

Our theorems imply many results proved by other authors: especially Theorem 1 includes the results of Bhatt and Kishor [Indian J. Math. 9 (1967), 259-267 (1968)], Dikshit [Pacific J. Math. 63 (1976), 371-379], and Lal [Publ. Inst. Math. (Beograd) 20 (34) (1976), 169-178], and we can easily deduce Lal's result [Indian J. Math. 16 (1974), 1-22] from our Corollary 2.

1. Notations and theorems

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a given sequence of constants, real or complex, such that $P_{n}=\sum_{k=0}^{n} p_{k} \neq 0$ for $n \geq 0$ and $p_{n}=P_{n}=0$ for $n<0$.

The sequence $\left\{t_{n}\right\}$ given by

Received 10 July 1978. Communicated by Drs Shin-ichi and Masako Izumi.

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}=\frac{1}{P_{n}} \sum_{k=0}^{n} P_{k} a_{n-k} \tag{1.1}
\end{equation*}
$$

defines the Nörlund means of the sequence $\left\{s_{n}\right\}$ generated by the sequence $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be absolutely summable $\left(N, p_{n}\right\}$, or summable $\left|N, p_{n}\right|$, if the sequence $\left\{t_{n}\right\}$ is of bounded variation, that is, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right| \tag{1.2}
\end{equation*}
$$

is convergent.
Let $f(t)$ be a periodic function with period 2π and integrable over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} A_{n}(t) \tag{1.3}
\end{equation*}
$$

and

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

The conjugate series to series (1.3) is

$$
\sum_{n=1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{n=1}^{\infty} B_{n}(t)
$$

In what follows, we use the following notations:

$$
\begin{aligned}
& \varphi_{x}(t)=\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} \\
& \Phi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1} \varphi(u) d u \quad(\alpha>0) \\
& \Phi_{0}(t)=\varphi(t) \\
& h(u)=\int_{u}^{\pi}(t-u)^{-\alpha} \cos k t d t ;
\end{aligned}
$$

$$
\begin{aligned}
P(n, k) & =\frac{P_{n-k}}{P_{n}}-\frac{P_{n-k-1}}{P_{n-1}} ; \\
G_{\beta-\alpha}(n ; j, l, t) & =\sum_{k=j}^{l} P(n, k) \lambda_{k} \mu_{k} k^{\beta-\alpha} \cos k t ; \\
H_{\beta-\alpha}(n ; j, l, u) & =\frac{2}{\pi \Gamma(1-\alpha)} \int_{u}^{\pi}(t-u)^{-\alpha} G_{\beta-\alpha}(n ; j, \tau, t) d t ; \\
I(n ; j, l, u) & =\int_{0}^{u} v^{\beta} \frac{d}{d v} H_{\beta-\alpha}(n ; j, l, v) d v .
\end{aligned}
$$

Moreover we write

$$
\begin{aligned}
\psi_{x}(t) & =\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\} \\
\tilde{G}_{\beta-\alpha}(n ; j, \tau, t) & =\sum_{k=j}^{\ell} P(n, k) \lambda_{k} \mu_{k} k^{\beta-\alpha} \sin k t
\end{aligned}
$$

We employ $\Psi_{\alpha}(t), \tilde{H}_{\beta-\alpha}(n ; j, \tau, u)$ with meanings similar to the above notations. Throughout the present paper we denote by $\mu(t)$ a positive bounded function, $\lambda(t)$ a positive non-decreasing function, and $\left\{p_{n}\right\}$ a non-negative, non-increasing sequence.

Given a function $\omega(t)$, we write for $n=1,2, \ldots$,

$$
\omega(n)=\omega_{n}, \quad \Delta \omega_{n}=\omega_{n}-\omega_{n+1}
$$

Let $[x]$ denote the greatest integer not greater than x; in particular we write $m=[n / 2]$ and $\tau=\left[\frac{1}{2}((2 \pi / u)-1)\right]$; and A denotes a positive constant which is not necessarily the same at each occurrence.

The purpose of this paper is to establish some generalizations of Okuyama's results [10], [11].

THEOREM 1. Let the sequence $\left\{\lambda_{n} n_{n} /(n+1)^{1-\beta}\right\}(0 \leq \beta \leq 1)$ be nonincreasing.

If the conditions

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{\lambda_{k} \mu_{k}}{k^{1-\beta_{P_{k}}}}=0\left(\frac{\lambda_{n} n^{\beta}}{P_{n}}\right)(n=1,2, \ldots), \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\lambda_{k} \mu_{k}}{k}\left|\cos \frac{\pi}{2}(\beta-\alpha+1)\right|<\infty \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} \lambda(2 \pi / t) \mid d\left\{t^{\left.-\beta_{\Phi_{\alpha}}(t)\right\} \mid<\infty}\right. \tag{1.6}
\end{equation*}
$$

hold for $0 \leq \alpha \leq \beta \leq 1$, then the series

$$
\sum_{n=1}^{\infty} \lambda_{n} \mu_{n} n^{\beta-\alpha_{A}} n^{(t)}
$$

is summable $\left|N, P_{n}\right|$ at $t=x$.
If $P_{n} \leq A \lambda_{n} n^{B}$, the right-hand side of condition (1.4) is replaced by $O(1)$.

This theorem has wider applications than the results of Bhatt and Kishore [1], Dikshit [2], and Lal [5], [6]. As special cases of Theorem l we obtain the results of Matsumoto [7].

THEOREM 2. Let $\left\{\Delta p_{n}\right\}$ be non-negative non-increasing. Assume that $n \lambda_{n} \mu_{n}, n^{I-\beta} / \lambda_{n} \mu_{n}$, and $\lambda_{n}{ }^{\mu} n^{\prime} / p_{n}$ are all non-decreasing, where $0 \leq \beta \leq 1$. If the conditions (1.4),

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\lambda(2 \pi / t) \mu(2 \pi / t)}{t^{1+\beta}}\left|\Psi_{\alpha}(t)\right| d t<\infty \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\lambda(2 \pi / t)}{t^{\beta}}\left|d \Psi_{\alpha}(t)\right|<\infty \tag{1.8}
\end{equation*}
$$

hold for $0 \leq \alpha \leq \beta \leq 1$, then the semies

$$
\sum_{n=1}^{\infty} \lambda_{n} \mu_{n} n^{\beta-\alpha_{n}} B_{n}(t)
$$

is summable $\left|N, p_{n}\right|$ at $t=x$.
THEOREM 3. Let $\left\{\lambda_{n} \mu_{n} / n^{1-\beta}\right\}$ be a non-increasing sequence. If the
conditions (1.4),

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\lambda(2 \pi / t)}{t^{\beta}}\left|d \Psi_{\alpha}(t)\right|<\infty, \text { and } \Psi_{\alpha}(+0)=0 \tag{1.9}
\end{equation*}
$$

hold for $0 \leq \alpha \leq \beta \leq 1$, then the series

$$
\sum_{n=1}^{\infty} \lambda_{n} \mu_{n} n^{\beta-\alpha_{B}}(t)
$$

is sumable $\left|N, p_{n}\right|$ at $t=x$.
In the two theorems above, if $P_{n} \leq A \lambda_{n} n^{\beta}$, then the right-hand side of (1.4) is replaced by $O(1)$.

If the property

$$
\frac{d}{d t} \lambda(2 \pi / t)=A \frac{\lambda(2 \pi / t) \mu(2 \pi / t)}{t}
$$

holds for a suitable constant A, it is easy to see that (1.9) implies (1.7).

2. Proof and corollaries of Theorem 1

We need some lemmas for the proof of Theorem 1.
LEMMA 1. Let $\left\{a_{n}\right\}$ be a given sequence; then for any x, we have

$$
(1-x) \sum_{k=r}^{s} a_{k} x^{k}=a_{r} x^{r}-a_{s} x^{s+1}-\sum_{k=r}^{s-1} \Delta a_{k} x^{k+1}
$$

where r and s are integers such that $s \geq r \geq 0$.
LEMMA 2. For $0 \leq a \leq b \leq \infty$ and any n,

$$
\left|\sum_{k=a}^{b} p_{k} \exp i(n-k) u\right| \leq A P_{\tau}
$$

uniformly in $0 \leq u \leq \pi$.
LEMiNA 3. For all $k \geq 0$ and $1 \leq a \leq b \leq \infty$,

$$
\sum_{n=a}^{b} P(n, k)=\sum_{n=a}^{b}\left(\frac{P_{n-k}}{P_{n}}-\frac{P_{n-k-1}}{P_{n-1}}\right) \leq 1 .
$$

The proofs of the above lemmas are quite easy and we omit them.
LEMMA 4. For $0<t \leq \pi$, and $0 \leq \alpha \leq \beta \leq 1$,

$$
\int_{0}^{t} u^{\beta-\alpha} \cos k u d u=\frac{t^{\beta-\alpha} \sin k t}{k}+O\left(1 / k^{\beta-\alpha+1}\right)
$$

and

$$
\int_{t}^{\pi} u^{\beta-\alpha} \cos k u d u=\frac{\pi \Gamma(\beta-\alpha+1)}{2 k^{\beta-\alpha+1}} \cos \frac{\pi}{2}(\beta-\alpha+1)-\frac{t^{\beta-\alpha} \sin k t}{k}+O\left(1 / k^{\beta-\alpha+1}\right),
$$

where if $\alpha=\beta$ we may obviously omit the last term in both cases.
Proof. By integration by parts, we have
$\int_{0}^{t} u^{\beta-\alpha} \cos k u d u$

$$
\begin{aligned}
& =\left[\frac{\sin k u}{k} u^{\beta-\alpha}\right]_{0}^{t}+\frac{\alpha+1-\beta}{k}\left[\int_{0}^{\pi / k} u^{\beta-\alpha} \frac{\sin k u}{u} d u+\int_{\pi / k}^{t} u^{\beta-\alpha-1} \sin k u d u\right\} \\
& =\frac{t^{\beta-\alpha} \sin k t}{k}+\frac{\alpha+1-\beta}{k}\left\{\left(\frac{\pi}{k}\right)^{\beta-\alpha} \int_{\xi}^{\pi / k} \frac{\sin ^{\beta} k u}{u} d u+\left(\frac{\pi}{k}\right)^{\beta-\alpha-1} \int_{\pi / k}^{n} \sin k u d u\right\} \\
& =\frac{t^{\beta-\alpha} \sin k t}{k}+O\left(1 / k^{\beta-\alpha+1}\right),
\end{aligned}
$$

where $0 \leq \xi \leq \pi / k \leq \eta \leq t$. The second formula is obvious by

$$
\frac{2}{\pi} \int_{0}^{\pi} u^{\beta-\alpha} \cos k u d u=\frac{\Gamma(\beta-\alpha+1)}{k^{\beta-\alpha+1}} \cos \frac{\pi}{2}(\beta-\alpha+1)
$$

Proof of Theorem 1. We suppose $0<\alpha<1$, because we can treat $\alpha=0$ or 1 more easily (see [3], [10]). Since

$$
\begin{aligned}
A_{k}(x) & =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos k t d t \\
& =\frac{2}{\pi \Gamma(1-\alpha)} \int_{0}^{\pi} \cos k t \int_{0}^{t}(t-u)^{-\alpha} d \Phi_{\alpha}(u) d t \\
& =\int_{0}^{\pi} \frac{2}{\pi \Gamma(1-\alpha)} \int_{u}^{\pi}(t-u)^{-\alpha} \cos k t d t d \Phi_{\alpha}(u),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \sum_{k=j}^{\ell}\left(\frac{P_{n-k}}{P_{n}}-\frac{P_{n-k-1}}{P_{n-1}}\right) \lambda_{k} \mu_{k} k^{\beta-\alpha_{A_{k}}(x) \quad(1 \leq j \leq \imath \leq n)} \\
& =\int_{0}^{\pi} \cdot d \Phi_{\alpha}(u) \frac{2}{\pi \Gamma(1-\alpha)} \int_{u}^{\pi}(t-u)^{-\alpha}\left\{\sum_{k=j}^{\tau} P(n, k) \lambda_{k} \mu_{k} k^{\beta-\alpha} \cos k t\right\} d t \\
& =\int_{0}^{\pi} d \Phi_{\alpha}(u) \frac{2}{\pi \Gamma(1-\alpha)} \int_{u}^{\pi}(t-u)^{-\alpha} G_{\beta-\alpha}(n ; j, \tau, t) d t \\
& =\int_{0}^{\pi} H_{\beta-\alpha}(n ; j, \imath, u) d \Phi_{\alpha}(u) \\
& =\left[H_{\beta-\alpha}(n ; j, \tau, u) \Phi_{\alpha}(u)\right]_{0}^{\pi}-\int_{0}^{\pi} u^{\beta} \frac{d}{d u} H_{\beta-\alpha}(n ; j, \tau, u)\left\{u^{\left.-\beta_{\Phi_{\alpha}}(u)\right\} d u}\right. \\
& =-\left[u^{-\beta_{\Phi}}(u) \int_{0}^{u} v^{\beta} \frac{d}{d v} H_{\beta-\alpha}(n ; j, \tau, v) d v\right]_{0}^{\pi} \\
& +\int_{0}^{\pi} \int_{0}^{u} v^{\beta} \frac{d}{d v} H_{\beta-\alpha}(n ; j, z, v) d v d\left\{u^{-\beta_{\Phi}}(u)\right\}
\end{aligned}
$$

If, in particular, we suppose that $\varphi(t)=t^{\beta-\alpha}$, in which case

$$
\Phi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1} u^{\beta-\alpha} d u=\frac{\Gamma(\beta-\alpha+1)}{\Gamma(\beta+1)} t^{\beta}
$$

and

$$
A_{k}(x)=\frac{\Gamma(\beta-\alpha+1)}{k^{\beta-\alpha+1}} \cos \frac{\pi}{2}(\beta-\alpha+1),
$$

$$
I(n ; j, 2, \pi)=A \sum_{k=j}^{\ell} P(n, k) \frac{\lambda_{k} \mu_{k}}{k} \cos \frac{\pi}{2}(\beta-\alpha+1) .
$$

If t_{n} denotes the nth $\left(N, p_{n}\right)$ mean of $\sum_{n=1}^{\infty} \lambda_{n}{ }_{n} n^{\beta-\alpha_{A}} n^{(x)}$, then by (1.1) and the above calculations

$$
\begin{aligned}
t_{n}-t_{n-1} & =\sum_{k=1}^{n}\left\{\frac{P_{n-k}}{P_{n}}-\frac{P_{n-k-1}}{P_{n-1}}\right) \lambda_{k} \mu_{k} k^{\beta-\alpha_{A_{k}}(x)} \\
& =A \sum_{k=1}^{n} P(n, k) \frac{\lambda_{k} \mu_{k}}{k} \cos \frac{\pi}{2}(\beta-\alpha+1)+\int_{0}^{\pi} I(n ; \tau, n, u) d\left\{u^{\left.-\beta_{\Phi}(u)\right\}}\right.
\end{aligned}
$$

Since, by (1.5) and Lemma 3,
$\sum_{n=1}^{\infty}\left|\sum_{k=1}^{n} P(n, k) \frac{\lambda_{k} \mu_{k}}{k} \cos \frac{\pi}{2}(\beta-\alpha+1)\right|$

$$
\leq \sum_{k=1}^{\infty} \frac{\lambda_{k} \mu_{k}}{k}\left|\cos \frac{\pi}{2}(\beta-\alpha+1)\right| \sum_{n=k}^{\infty} P(n, k)<A
$$

to prove our theorem it is enough to show that

$$
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|<A+\int_{0}^{\pi} \sum_{n=1}^{\infty}|I(n ; 2, n, u)| \mid d\left\{u^{\left.-B_{\Phi_{\alpha}}(u)\right\}} \mid=O(1)\right.
$$

Thus it suffices for our purpose to prove that, uniformly in $0<u \leq \pi$,

$$
\begin{equation*}
J=\sum_{n=1}^{\infty}|I(n ; \imath, n, u)|=O(\lambda(2 \pi / u)) \tag{2.1}
\end{equation*}
$$

We divide J into the following three parts:
(2.2) $J=\sum_{n=1}^{2 \tau+1}|I(n ; \tau, n, u)|+\sum_{n=2 \tau+2}^{\infty}|I(n ; \tau, \tau, u)|$

$$
+\sum_{n=2 \tau+2}^{\infty}|I(n, \tau+1, n, u)|
$$

$$
=J_{1}+J_{2}+J_{3}
$$

say.
Using the first and second mean value theorems, we have
(2.3) $\left.h(u)=\iint_{u}^{u+\pi / k}+\int_{u+\pi / k}^{\pi} \cdot\right)(t-u)^{-\alpha} \cos k t d t$

$$
\begin{aligned}
& =\cos k \xi \int_{u}^{u+\pi / k}(t-u)^{-\alpha} d t+(k / \pi)^{\alpha} \int_{u+\pi / k}^{\eta} \cos k t d t \\
& \quad(u \leq \xi \leq u+\pi / k \leq n \leq \pi) \\
& =\frac{k^{\alpha-1}}{(1-\alpha) \pi^{\alpha-1}} \cos k \xi+\frac{k^{\alpha-1}}{\pi^{\alpha}}[\sin k t]_{u+\pi / k}^{\eta} .
\end{aligned}
$$

Thus
(2.4) $H_{\beta-\alpha}(n ; j, \imath, u)$

$$
=\frac{2}{\pi^{1+\alpha} \Gamma(1-\alpha)} \sum_{k=j}^{l} P(n, k) \lambda_{k} \mu_{k^{k}}{ }^{\beta-1}\left\{\frac{\pi \cos k \xi}{1-\alpha}+\sin k n+\sin k u\right\} .
$$

Moreover, for some $\zeta(0 \leq \zeta \leq u)$,

$$
\begin{aligned}
I(n ; j, \tau, u) & =\int_{0}^{u} v^{\beta} \frac{d}{d v} H_{\beta-\alpha}(n ; j, \tau, v) d v \\
& =u^{\beta} \int_{\zeta}^{u} \frac{d}{d v} H_{\beta-\alpha}(n ; j, \tau, v) d v \\
& =u^{\beta}\left[H_{\beta_{-\alpha}}(n ; j, \tau, v)\right]_{\zeta}^{u} .
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
|I(n ; j, \imath, u)| \leq A u^{B} \sum_{k=j}^{l} P(n, k) \lambda_{k} \mu_{k} k^{B-1} . \tag{2.5}
\end{equation*}
$$

Using (2.5),

$$
\begin{align*}
J_{1} & \leq A u^{\beta} \sum_{n=1}^{2 \tau+1} \sum_{k=1}^{n} P(n, k) \lambda_{k} \mu_{k} k^{\beta-1} \tag{2.6}\\
& =A u^{\beta} \sum_{k=1}^{2 \tau+1} \cdot \lambda_{k} \mu_{k} k^{\beta-1} \sum_{n=k}^{2 \tau+1} P(n, k) \\
& \leq A u^{B} \lambda_{2 \tau+1} \sum_{k=1}^{2 \tau+1} k^{\beta-1}=O(\lambda(2 \pi / u)),
\end{align*}
$$

by our assumptions and Lerma 3. For the same reasons,

$$
\begin{align*}
J_{2} & \leq A u^{\beta} \sum_{n=2 \tau+2}^{\infty} \sum_{k=1}^{\tau} P(n, k) \lambda_{k} \mu_{k} k^{\beta-1} \tag{2.7}\\
& =A u^{\beta} \sum_{k=1}^{\tau} \lambda_{k} \mu_{k} k^{\beta-1} \sum_{n=2 \tau+2}^{\infty} P(n, k) \\
& \leq A u^{\beta} \lambda_{\tau} \tau^{\beta}=O(\lambda(2 \pi / u)) .
\end{align*}
$$

For the calculation of J_{3}, we see

$$
\begin{aligned}
& I(n ; j, \imath, u)=I(n ; j, \imath, \pi)-\int_{u}^{\pi} v^{\beta} \frac{d}{d v} H_{\beta-\alpha}(n ; j, \imath, v) d v \\
& =I(n ; j, \imath, \pi)-\left[v^{B_{H-\alpha}}(n ; j, \imath, v)\right]_{u}^{\pi} \\
& +\beta \int_{u}^{\pi} v^{\beta-1} d v \frac{2}{\pi \Gamma(1-\alpha)} \int_{v}^{\pi}(t-v)^{-\alpha} G_{\beta-\alpha}(n ; j, \tau, t) d t \\
& =I(n ; j, \tau, \pi)+u^{\beta} H_{\beta-\alpha}(n ; j, \tau, u) \\
& +\frac{2 \beta}{\pi \Gamma(1-\alpha)} \int_{u}^{\pi} G_{\beta-\alpha}(n ; j, \tau, t) d t \int_{u}^{t} v^{\beta-1}(t-v)^{-\alpha} d v \\
& =I(n ; j, \imath, \pi)+u^{\beta} H_{\beta-\alpha}(n ; j, \imath, u) \\
& +\frac{2 \beta}{\pi \Gamma(1-\alpha)} \int_{u / \pi}^{1} w^{\beta-1}(1-w)^{-\alpha} d \omega \int_{\theta}^{\pi} t^{\beta-\alpha_{G}}{ }_{\beta-\alpha}(n ; j, \tau, t) d t \\
& \text { (by the second mean value theorem, where } u \leq \theta \leq \pi \text {) } \\
& =A \sum_{k=j}^{\tau} P(n, k) \frac{\lambda_{k} \mu_{k}}{k} \cos \frac{\pi}{2}(\beta-\alpha+1)+u^{\beta_{H^{\prime}}}(n ; j, \tau, u) \\
& +O\left\{\sum_{k=j}^{\ell} P(n, k) \lambda_{k} \mu_{k} k^{\beta-\alpha-1} \theta^{\beta-\alpha} \sin k \theta\right) \quad(\text { by Lemma 4). }
\end{aligned}
$$

Thus, using (1.5) and (2.4), we have
(2.8) $\quad J_{3} \leq A \sum_{n=2 \tau+2}^{\infty} u^{\beta}\left\{\left|G_{\beta-1}(n ; \tau+1, n, \xi)\right|+\left|\tilde{G}_{\beta-1}(n ; \tau+1, n, n)\right|\right.$

$$
\left.+\left|\tilde{G}_{\beta-1}(n ; \tau+1, n, u)\right|\right\}+A \sum_{n=2 \tau+2}^{\infty} \theta^{\beta-\alpha}\left|\tilde{G}_{\beta-\alpha-1}(n ; \tau+1, n, \theta)\right|+A
$$

Now we put

$$
G_{\gamma}^{*}(n ; j, L, \omega)=\sum_{k=j}^{l} P(n, k) \lambda_{k} \mu_{k} k^{\gamma} e^{i k \omega}
$$

where $\gamma=\beta-\varepsilon-1 \quad(\varepsilon=0$ or $\alpha)$ and $u \leq \omega \leq \pi$. Then, by (2.8), in order to prove that $J_{3}=O(\lambda(2 \pi / u))$, it is enough to prove that

$$
\text { (2.9) } \begin{aligned}
\omega^{\gamma+1} & \sum_{n=2 \tau+2}^{N}\left|G_{\gamma}^{*}(n, \tau+1, n, \omega)\right| \\
& \leq \omega^{\gamma+1}\left\{\sum_{n=2 \tau+2}^{N}\left|G_{\gamma}^{*}(n, \tau+1, m, \omega)\right|+\sum_{n=2 \tau+2}^{N}\left|G_{\gamma}^{*}(n ; m+1, n, \omega)\right|\right\} \\
& =K_{1}+K_{2}=O(\lambda(2 \pi / u)), \text { as } N \rightarrow \infty .
\end{aligned}
$$

Now using Lemma 1, we get

$$
\begin{aligned}
\left|G^{*}(n ; j, \imath, \omega)\right| & \leq A \omega^{-1}\left[P(n, j) \lambda_{j} \mu_{j} j^{\gamma}+P(n, 2) \lambda_{2} \mu_{2} Z^{\gamma}\right. \\
& \left.+\sum_{k=j}^{\tau-1}\left\{\frac{P_{n-k-1}}{P_{n-1}}-\frac{P_{n-k}}{P_{n}}\right) \lambda_{k+1} \mu_{k+1}(k+1)^{\gamma}+\sum_{k=j}^{2-1} P(n, k) \Delta\left(\frac{\lambda_{k} \mu_{k}}{k^{-\gamma}}\right)\right] .
\end{aligned}
$$

Hence
K_{1}
$\leq A \omega^{\gamma}\left[\sum_{n=2 \tau+2}^{N} P(n, \tau+1) \lambda_{\tau+1}{ }^{\mu}{ }_{\tau+1}(\tau+1)^{\gamma}+\sum_{n=2 \tau+2}^{N} \frac{P_{n} p_{n-m}-p_{n}{ }^{P}{ }_{n-m}}{P_{n} P_{n-1}} \lambda_{m} \mu_{m}{ }^{\prime}{ }^{\gamma}\right.$
$\begin{aligned}+\sum_{n=2 \tau+2}^{N} \sum_{k=\tau+1}^{m} & \left(\frac{p_{n-k-1}}{P_{n-1}}-\frac{p_{n-k}}{P_{n}}\right) \lambda_{k+1} \mu_{k+1}(k+1)^{\gamma} \\ & \left.+\sum_{n=2 \tau+2}^{N} \sum_{k=\tau+1}^{m} P(n, k) \Delta\left(\frac{\lambda_{k} \mu_{k}}{k_{k}-\gamma}\right)\right]\end{aligned}$
$\leq A \omega^{\gamma}\left[\lambda_{\tau+1} \tau^{\gamma} \sum_{n=2}^{N} \tau+2(n, \tau+1)+\sum_{n=2 \tau+2}^{N} \frac{p_{n-m}}{P_{n-1}} \lambda_{m}{ }^{\mu}{ }_{m}{ }^{\prime}{ }^{\gamma}\right.$
$+\sum_{k=\tau+1}^{[N / 2]} \lambda_{k+1} \mu_{k+1}(k+1)^{\gamma} \sum_{n=2 k}^{N}\left(\frac{p_{n-k-1}}{P_{n-1}}-\frac{p_{n-k}}{P_{n}}\right)$
$\left.+\sum_{k=\tau+1}^{[N / 2]} \Delta\left(\frac{\lambda_{k} \mu^{\mu}}{k^{-}-\gamma}\right) \sum_{n=2 k}^{N} P(n, k)\right] \leq$

Finally, by $P(n, k)=\left(P_{n} p_{n-k}-p_{n} P_{n-k}\right) / P_{n} P_{n-1}$, we get

$$
\begin{aligned}
K_{2} & \leq A \omega^{\gamma+1} \sum_{n=2 \tau+2}^{N}\left|G_{\gamma}^{*}(n, m+1, n, \omega)\right| \\
& =A \omega^{\gamma+1} \sum_{n=2 \tau+2}^{N}\left|\sum_{k=m+1}^{n}\left(\frac{p_{n-k}}{P_{n-1}}-\frac{p_{n} P_{n-k}}{P_{n} P_{n-1}}\right) \lambda_{k} \mu_{k} k^{\gamma} e^{i k \omega}\right| \\
& \leq A \omega^{\gamma+1}\left[\sum_{n=2 \tau+2}^{N} \frac{1}{P_{n-1}}\left|\sum_{k=m+1}^{n} p_{n-k} \lambda_{k} \mu_{k} k^{\gamma} e^{i k \omega}\right|\right.
\end{aligned}
$$

$$
\left.+\sum_{n=2 \tau+2}^{N} \frac{P_{n}}{P_{n}^{P} n-1}\left|\sum_{k=m+1}^{n} P_{n-k} k_{k} \mu_{k} k^{\gamma} e^{i k \omega}\right|\right]
$$

$$
=A \omega^{\gamma+1}\left[K_{21}+K_{22}\right]
$$

say. Since $\left\{\lambda_{k} \mu_{k} k^{\gamma}\right\}$ is non-increasing,

$$
\begin{aligned}
K_{21} & \leq \sum_{n=2 \nu}^{N} \frac{\lambda_{m^{\mu} m^{m}}{ }^{\gamma}}{P_{n-1}} \max _{m+1 \leq l \leq n}\left|\sum_{k=m+1}^{\tau} p_{n-k} e^{i k \omega}\right| \\
& \leq A P_{\nu} \nu^{-\varepsilon} \sum_{n=\nu}^{\infty} \frac{\lambda_{n}{ }^{\mu} n^{n^{\gamma+\varepsilon}}}{P_{n}} \leq A P_{\nu} \frac{\lambda_{\nu} \nu^{\gamma+1}}{P_{\nu}}=o\left(\nu^{\gamma+1} \lambda_{\tau}\right),
\end{aligned}
$$

by Lemma 2 and Condition (1.4), where $v=[1 / \omega]$. Similarly,

$$
\begin{aligned}
K_{22} & \leq \sum_{n=2 v+2}^{N} \frac{p_{n}}{P_{n}^{P}{ }_{n-1}} \frac{P_{n-m}}{P_{n-m}} \lambda_{m}{ }^{\mu} m^{m^{\gamma}} \max _{m+1 \leq l \leq n}\left|\sum_{k=m+1}^{\ell} p_{n-k} e^{i \hbar \omega}\right| \\
& \leq A P_{v} \sum_{n=2 v+2}^{\infty} \frac{\lambda_{m}{ }_{m} m^{\gamma}}{P_{m}} \leq A P_{v} \cdot \lambda_{\nu} \nu^{\gamma+1} / P_{v}=o\left(v^{\gamma+1} \lambda_{\tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq A \lambda_{2 \tau}+A \omega^{\gamma}\left[\sum_{n=2 \tau+2}^{N} \frac{P_{m}}{P_{m}} \lambda_{m}{ }^{\mu} m^{m}{ }^{\gamma}+\sum_{k=\tau+1}^{N} \lambda_{k+1}{ }^{\mu}{ }_{k+1}(k+1)^{\gamma} \frac{p_{k-1}}{P_{2 k-1}}+\sum_{k=\tau+1}^{N} \Delta\left(\frac{\lambda_{k} \mu_{k}}{k^{-\gamma}}\right)\right] \\
& \leq A \lambda_{2 \tau}+A \omega^{\gamma}\left[p_{\tau} \tau^{-\varepsilon} \sum_{n=\tau}^{\infty} \frac{n^{\gamma+\varepsilon} \lambda_{n} \mu_{n}}{P_{n}}+p_{\tau} \tau^{-\varepsilon} \sum_{k=\tau}^{\infty} \frac{k^{\gamma+\varepsilon} \lambda_{k} \mu_{k}}{P_{k}}+\lambda_{\tau+1}(\lambda+1)^{\gamma}\right] \\
& \text { \{because }\left\{p_{n}\right\} \text { and }\left\{\lambda_{k} \mu_{k} / k^{-\gamma}\right\} \text { are non-increasing) } \\
& \leq A \lambda_{2 \tau}+A \omega^{\gamma}\left(\tau^{\gamma+1} \lambda_{\tau} p_{\tau} / P_{\tau}+\tau^{\gamma} \lambda_{2 \tau}\right) \\
& =O(\lambda(2 \pi / u)) \quad\left(\text { by }(1.4) \text { and } \tau p_{\tau} \leq P_{\tau}\right) \text {. }
\end{aligned}
$$

For the case $P_{n} \leq A n^{\beta} \lambda_{n}$, the above estimations of K_{1}, K_{2} also hold because, for example $\omega^{\gamma} \tau^{-\varepsilon} p_{\tau} \leq \omega^{\gamma} \tau^{-l-\varepsilon} P_{\tau} \leq A(\omega \tau)^{\gamma} \lambda_{\tau} \leq A \lambda_{\tau}$. Collecting these estimations, we obtain (2.9).

Summing (2.2), (2.6), (2.7), and (2.9), we obtain (2.1).
This terminates the proof of Theorem 1.
Now we consider some applications of Theorem 1.
COROLLARY 1. If $0<\alpha \leq \beta<1, \gamma \geq 0$, and

$$
\left.\int_{0}^{\pi}\left\{\log \frac{2 \pi}{t}\right)^{\gamma} \right\rvert\, d\left\{t^{\left.-\beta_{\Phi_{\alpha}}(t)\right\} \mid<\infty, ~}\right.
$$

then the series $\sum_{n=1}^{\infty} n^{\beta-\alpha}(\log (n+1))^{\gamma-\delta_{A}}(t)$ is summable $\left|N,(\log (n+1))^{\lambda} /(n+1)^{1-\beta}\right|$ at $t=x$, where $\lambda \geq 0$, $\delta-\gamma>1$ for $\alpha \neq \beta$ and $\lambda+\delta-\gamma>1$ for $\alpha=\beta$.

We can restate Theorem 1 in the following form.
COROLLARY 2. Suppose that $\left\{\omega_{n}\right\}$ is a positive sequence such that $P_{n} \omega_{n} / n$ is non-increasing, $P_{n}{ }^{\omega} n^{\prime} / n^{\beta} \lambda_{n}$ is bounded and

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{w_{k}}{k}=o\left(\frac{n^{\beta} \lambda_{n}}{P_{n}}\right), \tag{2.10}
\end{equation*}
$$

$$
\sum_{k=1}^{\infty} \frac{w_{k} P_{k}}{k^{1+\beta}}\left|\cos \frac{\pi}{2}(\beta-\alpha+1)\right|<\infty \quad(0 \leq \alpha \leq \beta \leq 1)
$$

hold. Then under the condition (1.6) we conclude that $\sum_{n=1}^{\infty} \frac{P_{n} w_{n}}{n^{B}} A_{n}(t)$ is summable $\left|N, p_{n}\right|$ at $t=x$. If $\mathcal{P}_{n} \leq A n^{\beta} \lambda_{n}$, the right-hand side of (2.10) is replaced $O(1)$.

The next theorem is a special case of Corollary 2.
COROLLARY 3. Let $\left\{\omega_{n}\right\}$ be a positive sequence such that $w_{n} / n^{1-\alpha}$ is non-increasing and $\sum_{k=1}^{\infty} \frac{w_{k}}{k}$ is convergent. If $t^{-\alpha_{\Phi_{\alpha}}}(t) \quad(0 \leq \alpha \leq 1)$
is a function of bounded variation in $(0, \pi)$, then the series $\sum_{n=1}^{\infty} w_{n} A_{n}(t)$ is summable $|C, \alpha|$ at $t=x$.

It is worth while to compare the results of Corollaries 2 and 3 with those due to Dikshit [2], Kishore [4], Lal [5], Mehrotra [8], Mohapatra, Das, and Srivastava [9], Prasad and Bhatt [12], and Vershney [13].
3. Proofs and corollaries of Theorems 2 and 3

We need the following lemmas, which are generalizations of Lemmas 3,4 , and 6 of Okuyama [11].

LEMMA 5. $\left\{\left(P_{n}-P_{n-k}\right) / k^{1-\alpha}\right\}(k=1,2, \ldots, n)$ is a non-decreasing sequence for $0 \leq \alpha \leq 1$.

Proof.

$$
\begin{aligned}
k^{1-\alpha}\left(P_{n}-P_{n-k-1}\right)- & (k+1)^{1-\alpha}\left(P_{n}-P_{n-k}\right) \\
& =\left\{k^{1-\alpha}-(k+1)^{1-\alpha}\right\} P_{n}-k^{1-\alpha_{P}}{ }_{n-k-1}+(k+1)^{1-\alpha}\left(P_{n-k}+P_{n-k-1}\right) \\
& \geq\left\{k^{1-\alpha}-(k+1)^{1-\alpha}\right\}\left(P_{n}-P_{n-k-1}\right)+(k+1)^{-\alpha}\left(P_{n}-P_{n-k-1}\right) \\
& =\left(P_{n}-P_{n-k-1}\right)(k+1)^{-\alpha_{k}\left\{(i c+1) / k^{\alpha}-1\right\} .}
\end{aligned}
$$

Hence we have

$$
\frac{P_{n}-P_{n-k-1}}{(k+1)^{1-\alpha}}-\frac{P_{n}-P_{n-k}}{k^{1-\alpha}} \geq\left(P_{n}-P_{n-k-1}\right)\left\{(k+1)^{\alpha}-k^{\alpha}\right\} /(k+1) \geq 0
$$

LEMMA 6. Let $\left\{\Delta p_{n}\right\}$ be non-negative and non-increasing; then the sequence $\left\{\left(p_{n-k}-p_{n}\right) / k^{1-\alpha}\right\}(k=1,2, \ldots, n)$ is non-decreasing for $0 \leq \alpha \leq 1$.

This follows similarly to Lemma 5.
LEMMA 7. Suppose that $t^{1-\alpha} / \lambda(t) \mu(t)$ and $t \lambda(t) \mu(t)$ are nondecreasing for $0 \leq \alpha \leq 1$. If $g(t)$ is a function of bounded variation and

$$
\int_{0}^{\pi} \frac{\lambda(C / t) \mu(C / t)}{t^{1+\alpha}}|g(t)| d t<\infty
$$

for some constant $C>\pi$, then the series

$$
\sum_{n=2}^{\infty} \frac{\lambda_{n}{ }_{n}\left|g\left(\theta_{n}\right)\right|}{n^{1 \cdots \alpha}}
$$

converges, where θ_{n} is a continuity point of $g(t)$ such that $\pi /(n+1) \leq \theta_{n}<\pi / n, n \geq 2$.

The proof runs similarly to that of Lemma 6 of Okuyama [11].
Proof of Theorem 2. We may confine ourselves to the case
$0<\alpha=\beta<1$. When $\alpha \neq \beta$, we only use $\Lambda(t)=t^{\beta-\alpha} \lambda(t)$ instead of $\lambda(t)$. Since

$$
\begin{aligned}
B_{k}(x) & =\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sin k t d t \\
& =\frac{2}{\pi}\left[\Psi_{1}(t) \sin k t\right]_{0}^{\pi}-\frac{2}{\pi} \int_{0}^{\pi} \Psi_{1}(t) k \cos k t d t \\
& =-\frac{2}{\pi} \int_{0}^{\pi} \cos k t d t \frac{k}{\Gamma(1-\alpha)} \int_{u}^{t}(t-u)^{-\alpha_{\Psi}}(u) d u \\
& =-\frac{2}{\pi \Gamma(1-\alpha)} \int_{0}^{\pi} \Psi_{\alpha}(u) d u \int_{0}^{\pi}(t-u)^{-\alpha} k \cos k t d t
\end{aligned}
$$

we get for the nth $\left(N, p_{n}\right)$ mean \tilde{t}_{n} of $\sum_{n=1}^{\infty} \lambda_{n} \mu_{n} B_{n}(x)$,

$$
\begin{aligned}
\tilde{t}_{n}-\tilde{t}_{n-1} & =\sum_{k=1}^{n} P(n, k) \lambda_{k} \mu_{k} B_{k}(x) \\
& =-\int_{0}^{\pi} \Psi_{\alpha}(u) d u \frac{2}{\pi \Gamma(1-\alpha)} \int_{u}^{\pi}(t-u)^{-\alpha} G_{1}(n ; \tau, n, t) d t \\
& =-\int_{0}^{\pi} H_{1}(n ; \tau, n, u) \psi_{\alpha}(u) d u .
\end{aligned}
$$

Let θ_{n} be a continuity point of $\Psi_{\alpha}(u)$ such that $\pi /(n+1) \leq \theta_{n}<\pi / n$ for $n \geq 1$. Then
(3.1)

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\tilde{t}_{n}-\tilde{t}_{n-1}\right| & <A \sum_{n=1}^{\infty}\left\{\left|\int_{0}^{\theta}\right|+\left|\int_{\theta_{n}}^{\pi}\right|\right\} H_{1}(n ; \tau, n, u) \Psi_{\alpha}(u) d u \\
& =L_{1}+L_{2},
\end{aligned}
$$

say.
We define

$$
Q_{n}(u)= \begin{cases}H_{1}(n ; l, n, u) & \text { for } 0 \leq u<\theta_{n} \\ & \text { for } \theta_{n} \leq u \leq \pi\end{cases}
$$

Since $Q_{n}(u)=0$ for $n \geq 2 \tau+1 \geq \pi / u$, we have by (2.3),

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|Q_{n}(u)\right| \leq \sum_{n=1}^{2 \tau+1}\left|Q_{n}(u)\right| \\
& \leq A \sum_{n=1}^{2 \tau+1} \sum_{k=1}^{n} P(n, k) \lambda_{k} \mu_{k} k^{\alpha} \\
& \leq A \sum_{k=1}^{2 \tau+1} k \lambda_{k} \mu_{k} k^{\alpha-1} \sum_{n=k}^{2 \tau+1} P(n, k) \\
& \leq A \tau \lambda \\
& 2 \tau+1 \mu_{2 \tau+1} \sum_{k=1}^{2 \tau+1} k^{\alpha-1} \\
&=O\left(\tau^{\alpha+1} \lambda(2 \pi / u) \mu(2 \pi / u)\right)
\end{aligned}
$$

by Lemma 3 and the non-decreasing property of $\left\{k \lambda_{k} \mu_{k}\right\}$. Thus, by (1.7), we have

$$
\begin{align*}
L_{1} & \leq \int_{0}^{\pi}\left|\Psi_{\alpha}(u)\right| \sum_{n=1}^{\infty}\left|Q_{n}(u)\right| d u \tag{3.2}\\
& \leq A \int_{0}^{\pi} \frac{\lambda(2 \pi / u) \mu(2 \pi / u)}{u^{1+\alpha}}\left|\Psi_{\alpha}(u)\right| d u<\infty
\end{align*}
$$

Observing that

$$
\begin{aligned}
\int_{\theta_{n}}^{u} h(v) d v & =\int_{\theta_{n}}^{u} d v \int_{\theta_{n}}^{\pi}(t-v)^{-\alpha} \cos k t d t-\int_{\theta_{n}}^{u} d v \int_{\theta_{n}}^{v}(t-v)^{-\alpha} \cos k t d t \\
& =\int_{\theta_{n}}^{\pi} \cos k t d t \int_{\theta_{n}}^{u}(t-v)^{-\alpha} d v-\int_{\theta_{n}}^{u} \cos k t d t \int_{t}^{u}(t-v)^{-\alpha} d v \\
= & -\frac{1}{1-\alpha} \int_{\theta_{n}}^{\pi}(t-u)^{1-\alpha} \cos k t d t+\frac{1}{1-\alpha} \int_{\theta_{n}}^{\pi}\left(t-\theta_{n}^{1-\alpha} \cos k t d t\right. \\
& +\frac{1}{1-\alpha} \int_{\theta_{n}}^{u}(t-u)^{1-\alpha} \cos k t d t
\end{aligned}
$$

we get, by integration by parts and simple calculations

$$
\begin{aligned}
-\frac{2 k}{\pi \Gamma(1-\alpha)} \int_{\theta_{n}}^{\pi} h(u) \Psi_{\alpha}(u) d u & =\frac{2 k}{\pi(1-\alpha) \Gamma(1-\alpha)}\left\{-\int_{\theta_{n}}^{\pi} d \Psi_{\alpha}(u) \int_{u}^{\pi}(t-u)^{1-\alpha} \cos k t d t\right. \\
& \left.-\Psi_{\alpha}\left(\theta_{n}\right) \int_{\theta_{n}}^{\pi}\left(t-\theta_{n}\right)^{1-\alpha} \cos k t d t\right\} \\
= & \frac{2}{\pi \Gamma(1-\alpha)}\left\{\int_{\theta_{n}}^{\pi} d \Psi_{\alpha}(u) \int_{u}^{\pi}(t-u)^{-\alpha} \sin k t d t\right. \\
& \left.+\Psi_{\alpha}\left(\theta_{n}\right) \int_{\theta_{n}}^{\pi}\left(t-\theta_{n}\right)^{-\alpha} \sin k t d t\right\}
\end{aligned}
$$

Hence
(3.3)

$$
\begin{aligned}
L_{2} & \leq \sum_{n=1}^{\infty}\left|\int_{\theta_{n}}^{\pi} \tilde{H}_{0}(n ; \tau, n, u) d \Psi_{\alpha}(u)\right|+\sum_{n=1}^{\infty}\left|\Psi_{\alpha}\left(\theta_{n}\right)\right|\left|\tilde{H}_{0}\left(n ; \tau, n, \theta_{n}\right)\right| \\
& =L_{21}+L_{22},
\end{aligned}
$$

say. Considering
(3.4) $\tilde{H}_{0}(n ; j, z, u)=\frac{2}{\pi^{1+\alpha} \Gamma(1-\alpha)} \sum_{k=j}^{2} P(n, k) \lambda_{k} \mu_{k} k^{\alpha-1}\left\{\frac{\pi}{1-\alpha} \sin k \xi\right.$

$$
-\cos k \eta-\cos k u\} \quad(\operatorname{see}(2.3))
$$

we have

$$
\tilde{H}_{0}(n ; j, \tau, u)=0\left(\sum_{k=j}^{\tau} P\left(n, k \ngtr \lambda_{k} \mu_{k} k^{\alpha-1}\right) .\right.
$$

Thus, using Lemmas 5, 6, and 7, we get by the same calculations as those of I_{21} of Okuyama [11],

$$
\begin{align*}
L_{22} & \leq A \sum_{n=1}^{\infty}\left|\Psi_{\alpha}\left(\theta_{n}\right)\right| \sum_{k=1}^{n} P(n, k) \lambda_{k} \mu_{k} k^{\alpha-1} \tag{3.5}\\
& \leq A \sum_{n=2}^{\infty} \frac{\lambda_{n} \mu_{n}\left|\Psi_{\alpha}\left(\theta_{n}\right)\right|}{n^{1-\alpha}}<\infty .
\end{align*}
$$

Next, we shall estimate L_{21}. We define

Since $R_{n}(u)=0$ for $n \leq \tau-1<\pi / u-1$, we have

$$
\begin{aligned}
L_{21} & \leq \sum_{n=1}^{\infty} \int_{0}^{\pi}\left|R_{n}(u)\right|\left|d \psi_{\alpha}(u)\right| \\
& \leq \int_{0}^{\pi} \sum_{n=\tau}^{\infty}\left|R_{n}(u)\right|\left|d \psi_{\alpha}(u)\right| .
\end{aligned}
$$

Hence, by (1.7), to prove the finiteness of L_{21}, it suffices to show that, uniformly in $0<t \leq \pi$,

$$
\begin{align*}
M & =\sum_{n=\tau}^{\infty}\left|R_{n}(u)\right| \tag{3.6}\\
& =\sum_{n=\tau}^{\infty}\left|\tilde{H}_{0}(n ; \tau, n, u)\right|=O\left(u^{-\alpha} \lambda(2 \pi / u)\right) .
\end{align*}
$$

We divide M in the following form:

$$
\begin{aligned}
M & \leq \sum_{n=\tau}^{2 \tau+1}\left|\tilde{H}_{0}(n ; \tau, n, u)\right|+\sum_{n=2 \tau+2}^{\infty}\left|\tilde{H}_{0}(n ; \tau, \tau, u)\right| \\
& +\sum_{n=2 \tau+2}^{\infty}\left|\tilde{H}_{0}(n ; \tau+1, n, u)\right| \\
& =M_{1}+M_{2}+M_{3},
\end{aligned}
$$

say. Then

$$
\begin{aligned}
M_{1} & \leq A \sum_{n=\tau}^{2 \tau+1} \sum_{k=1}^{n} P(n, k) \lambda_{k} \mu_{k} k^{\alpha-1} \\
& =A \sum_{k=1}^{\tau} \frac{\lambda_{k} \mu_{k}}{k^{1-\alpha}} \sum_{n=\tau}^{2 \tau+1} P(n, k)+A \sum_{k=\tau}^{2 \tau+1} \frac{\lambda_{k} \mu_{k}}{k^{1-\alpha}} \sum_{n=k}^{2 \tau+1} P(n, k) \\
& \leq A \lambda_{\tau} \sum_{k=1}^{\tau} k^{\alpha-1}+A \lambda_{2 \tau+1} \sum_{k=\tau}^{2 \tau+1} k^{\alpha-1}=O\left(\tau^{\alpha} \lambda_{2 \tau}\right) .
\end{aligned}
$$

Using (3.4) instead of (2.4), we may treat M_{2} and M_{3} by easier methods than those used for J_{2} and J_{3} in §2. Thus we have (3.6). Combining (3.1), (3.2), (3.3), (3.5), and (3.6), Theorem 2 is completely proved.

Since the calculations to prove Theorem 3 are similar to those for Theorem l, we omit them.

Using Theorems 2 and 3, we obtain several corollaries which are parallel to those of $\S 2$ or Okuyama's paper [11].

We shall show one of them.
COROLLARY 4. If $0<\alpha \leq \beta<1$,

$$
\int_{0}^{\pi} t^{-1-\beta}\left(\log \frac{2 \pi}{t}\right)^{\gamma}\left|\Psi_{\alpha}(t)\right| d t<\infty \quad\left(\text { or } \Psi_{\alpha}(+0)=0\right)
$$

and

$$
\int_{0}^{\pi} t^{-\beta}\left(\log \frac{2 \pi}{t}\right)^{\gamma+1}\left|d \Psi_{\alpha}(t)\right|<\infty
$$

then the series $\sum_{n=2}^{\infty} n^{\beta-\alpha}(\log n)^{\gamma} B_{n}(t)$. is summable $\left|N,(\log n)^{\lambda} / n^{1-\beta}\right|$ at $t=x$, where $0<\gamma+1<\lambda$.

References

[1] Shri Nivas Bhatt and Nand Kishore, "Absolute Nörlund summability of a Fourier series", Indian J. Math. 9 (1967), 259-267 (1968).
[2] G.D. Dikshit, "Absolute Nörlund summability factors for Fourier series", Pacific J. Math. 63 (1976), 371-379.
[3] Kôsi Kanno and Satoshi Watanabe, "On the absolute summability of factored Fourier series", Bull. Yamagata Univ. Natur. Sci. 9 (1977), 197-203.
[4] Nand Kishore, "Absolute Nörlund summability of a factored Fourier series", Indian J. Math. 9 (1967), 123-136.
[5] Shiva Narain Lal, "On the absolute Nörlund summability factors of a Fourier series", Indian J. Math. 16 (1974), l-22.
[6] Shiva Narain Lal, "On the absolute Nörlund summability of a series associated with a Fourier series", Publ. Inst. Math. (Beograd) 20 (34) 1976, 169-178.
[1] Kishi Matsumoto, "On absolute Cesàro summability of a series related to a Fourier series", Tôhoku Math. J. (2) 8 (1956), 205-222.
[8] Narain Das Mehrotra, "On the absolute Nörlund summability of a factored Fourier series", Proc. Japan. Acad. 41 (1965), 46-51.
[9] R.N. Mohapatra, G. Das and V.P. Srivastava, "On absolute summability factors of infinite series and their application to Fourier series", Proc. Cambridge Philos. Soc. 63 (1967), 107-118.
[10] Yasuo Okuyama, "On the absolute Nörlund summability factors of Fourier series", Bull. Austral. Math. Soc. 12 (1975), 9-21.
[11] Yasuo Okuyama, "On the absolute Nörlund summability factors of the conjugate series of a Fourier series", Tôhoku Math. J. (2) 28 (1976), 563-581.
[12] B.N. Prasad and S.N. Bhatt, "The summability factors of a Fourier series", Duke Hath. J. 24 (1957), 103-117.
[13] O.P. Varshney, "On the absolute harmonic summability of a series related to a Fourier series", Proc. Amer. Math. Soc. 10 (1959), 784-789.

[^0]
[^0]: Mathematical Institute, Yamagata University,
 Yamagata,
 Japan.

