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Abstract

The conventional designmethod for high-performance concrete (HPC)mixture proportion requires
a large amount of trialmixing work to obtain the desiredHPCmixture proportion, which consumes
a lot of manpower, material resources, and time resources during the trial mixing process. In recent
years, an intelligent scheme for HPC mixture proportion design has been developed. To more
effectively optimize HPCmixture proportions, this article proposes a novel intelligent HPCmixture
proportion design method. Firstly, this article establishes a hybrid multi-objective optimization
(MOO) method for HPC mixture proportion design problem, called CNN–NSDBO–EWTOPSIS.
In this MOO framework, there are three objective functions, namely the compressive strength
(CS) of concrete, cost, and carbon dioxide emissions. Among them, based on the various compo-
nents of concrete, this article constructs a convolutional neural network (CNN) regressionprediction
model for predicting the CS of concrete. The calculation of cost and carbon dioxide emissions
involves the utilization of two polynomials. Additionally, dung beetle optimizer (DBO) is used to
optimize the hyperparameters of the CNN. Furthermore, this article incorporates the constructed
CNN regression prediction model and two polynomials as the three objective functions for HPC
mixture proportion design problem. This three-objective optimization problem is solved using a
non-dominated sorting dung beetle optimizer (NSDBO). Finally, based on the obtainedPareto front,
this article obtains a good solution using the entropy weight technique for order preference by
similarity to an ideal solution (EWTOPSIS) method. The experimental results indicate that the
proposed CNN–NSDBO–EWTOPSIS approach can achieve HPC mixture proportion design.

Introduction

Background of HPC mixture proportion problem

Concrete, as an indispensable building material in construction engineering, has a significant
impact on ensuring the stability, durability, and overall quality of structures.With the continuous
advancement in construction technology, the demand for high-strength, durable, and weather-
resistant concrete has surged, especially in projects like bridges, dams, and high-rise buildings.
Various factors influence concrete performance, with the mix ratio standing out as a key
determinant of its mechanical properties, durability, and constructability. Rational mix design
can optimize concrete performance to its fullest potential, thereby enhancing overall project
quality. Traditionally, concrete mix design heavily relied on empirical knowledge and test data,
where engineers adjusted and refinedmixtures based on past experiences and test results. Despite
its simplicity, this method has limitations and often fails to fully exploit the inherent potential of
concrete materials, falling short of meeting the evolving demands of engineering projects.
Furthermore, traditional approaches may result in the overuse of components like cement,
leading to increased project costs and environmental impact.

With the continuous advancement in artificial intelligence and machine learning technologies,
modern concrete mix design methods have garnered attention. Leveraging big data and sophisti-
cated algorithms, these methods achieve intelligent optimization of concrete mix proportions by
conducting in-depth analysis and modeling of material properties and engineering requirements.
Machine learning algorithms such as support vectormachine (SVM) (Suthaharan and Suthaharan,
2016), random forest (RF) (Belgiu and Drăguţ, 2016), and back-propagation neural network
(BPNN) (Goh, 1995) are extensively employed in concrete mix design, substantially enhancing
design accuracy and efficiency. Modern concrete mix design methods not only meet engineering
requirements but also effectively mitigate project costs and environmental impacts. By utilizing
machine learning models to accurately forecast material properties and integrating optimization
algorithms to intelligently adjust mix proportions, concrete performance can be maximized. This
approach minimizes the overconsumption of resources like cement, aligning with the principles of
sustainable construction.
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Metaheuristic optimization algorithm

Although the methods mentioned above can greatly improve the
accuracy of predicting the compressive strength (CS) of high-
performance concrete (HPC), relying on a single model to solve
this problem still has limitations. Currently, a popular contempor-
ary approach is to combine neural networks with intelligent opti-
mization algorithms. Intelligent optimization algorithms are
efficient tools for tackling complex optimization problems. They
are typically flexible and versatile, capable of finding near-optimal
solutions across a variety of problem scenarios. Unlike traditional
optimization methods such as linear programming (Dantzig, 2002)
and integer programming (Vinod, 1969), intelligent optimization
algorithms do not depend on the specific characteristics of a
problem. Instead, they guide the search process heuristically, bal-
ancing global exploration and local exploitation to find high-quality
solutions within an acceptable time. Intelligent optimization algo-
rithms can be mainly divided into four categories: evolutionary-
based, physics- and chemistry-based, swarm intelligence-based,
and human behavior-based. Classic intelligent optimization algo-
rithms include genetic algorithm (GA) (Holland, 1992), particle
swarm optimization (PSO) (Kennedy and Eberhart, 1995), simu-
lated annealing (SA) (Bertsimas and Tsitsiklis, 1993), ant colony
optimizer (ACO) (Dorigo and Di Caro, 1999), and differential
evolution (DE) (Pant et al., 2020). In recent years, some new
metaheuristic optimization algorithms have been proposed, such
as whale optimization algorithm (WOA) (Mirjalili and Lewis,
2016), grey wolf optimizer (GWO) (Mirjalili et al., 2014), sparrow
search algorithm (Xue and Shen, 2020), and dung beetle optimizer
(DBO) (Xue and Shen, 2023). These algorithms have demonstrated
strong performance across various application fields, but the no free
lunch theorem (NFL) reminds us that no single algorithm can
effectively solve all problems. Therefore, continuous improvement
and innovation in algorithms are crucial. Feng et al. (2024) proposed
the first complex-valued version of the artificial hummingbird algo-
rithm (CAHA) and optimized the parameters of the artificial neural
network (ANN) using CAHA for the short-term wind speed predic-
tion problem. Bui et al. (2018) built an expert system based on an
ANNmodel combined with an improved firefly algorithm to predict
the performance ofHPC. Jangir and Jangir (2017) developed amulti-
objective variant of the WOA and utilized it to address a range of
standard problems, including unconstrained, constrained, and
engineering design challenges. Mirjalili et al. (2017) proposed the
multi-objective ant lion optimization algorithm (MOALO) and util-
ized it to address various multi-objective engineering design prob-
lems. Zhang et al. (2023) proposed amulti-objective bald eagle search
algorithm (MOBES) and applied it to solve two-objective, three-
objective, and four-objective engineering design problems in the real
world. Jangir et al. (2024) proposed a differential evolution algorithm
based on depth information for the complex nonlinear optimization
problem of proton exchange membrane fuel cell (PEMFC) param-
eter estimation. The optimized parameters of the proposed method
resulted in a sum of squared errors (SSE) as low as 0.00002 in some
cases, indicating better accuracy and stability. In order to optimize
the parameter estimation of PEMFC, Jangir et al. (2024) used an
advanced version of artificial rabbit optimization called mutated
northern goshawk and elite opposition learning-based artificial rab-
bit optimizer (MNEARO). The experimental results showed that
MNEARO outperformed other methods in terms of computational
cost and solution quality. Jangir et al. (2024) proposed an artificial
hummingbird algorithm based on Levy chaotic horizontal vertical
crossing for the accurate estimation of PEMFC parameters. The

experimental results showed that the combination of this method
with PEMFC parameters significantly improved performance. Jangir
et al. (2024) proposed a collaborative strategy-based differential
evolution (CS-DE) algorithm for robust PEMFC parameter estima-
tion, and experimental results showed the robustness and adaptabil-
ity of CS-DE to complex PEMFC modeling tasks. Agrawal et al.
(2024) proposed a quick crisscross sine cosine algorithm(QCSCA) to
address the optimal power flow (OPF) problem in power systems
that integrate renewable energy and flexible AC transmission system
(FACTS) equipment. Experimental results showed that QCSCA
outperformed various Sine Cosine Algorithm (SCA) variants, con-
sistently minimizing generation costs, power losses, and total costs.
This study focuses on the recently popular algorithmDBO andHPC
mixture proportion design problem. Eventually, the main contribu-
tions and innovation of this paper are summarized as follows:

1. We utilized a convolutional neural network (CNN) to develop a
model predicting the CS of concrete.

2. We optimized CNN hyperparameters through DBO and selected
the optimal model as one of the objective functions in the HPC
mixture proportion design problem.

3. We employed the non-dominated sorting dung beetle optimizer
(NSDBO) algorithm to obtain the Pareto solution set and Pareto
front (PF) for a three-objective optimization problem.

4. We utilized the entropy weight technique for order preference
by similarity to an ideal solution (TOPSIS) multi-objective opti-
mization (MOO) analysismethod to comprehensively evaluate the
obtained PF and perform decision analysis.

5. We proposed a hybrid MOO method, called CNN–NSDBO–
EWTOPSIS.

6. We employed CNN–NSDBO–EWTOPSIS to solve the three-
objective optimizationproblemofHPCmixture proportiondesign.

The remaining part of this paper is organized as follows: In
Section “Literature review”, an overview of pertinent studies on
concrete mix design and relevant literature on DBO is provided.
Section “Preliminaries” introduces the theoretical basis of themethods
used in this article. Section “Methodology”provides a detailed descrip-
tion of the establishment of the proposed hybrid CNN–NSDBO–
EWTOPSIS framework, while Section “Experimental result and
analysis” focuses on an experiment to validate the effectiveness of
the proposed model. Finally, Section “Conclusion and future work”
presents the conclusion of this paper and proposes the following
advice and potential directions for future work.

Literature review

Research on HPC mixture proportion design

HPC, known for its excellent mechanical properties and durability,
has become a widely used material in modern construction engin-
eering. The propermixture proportion design of concrete is crucial to
ensuring the performance of HPC. Traditional mixture proportion
design methods often rely on experience and experimental data,
leading to inefficiencies and high costs. With the rapid advancement
of artificial intelligence and machine learning technologies, data-
driven optimization methods have introduced new approaches and
tools for the mixture proportion design of HPC. Chen et al. (2023)
proposed a MOO hybrid intelligent framework combining RF and
non-dominated sorting genetic algorithm version II (NSGA-II) to
effectively predict concrete durability and optimize concrete mixture
proportions. They applied this proposed method to a practical
highway project. Liu et al. (2023) proposed a method for optimizing
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the mixture proportion of recycled aggregate concrete (RAC) using
machine learning and metaheuristic techniques. They developed six
machine learningmodels to predict the CS of RAC. Based on the best
predictive model, they employed a multi-objective PSO algorithm
with a competitionmechanism to optimize three scenarios involving
four objective functions of RAC: CS, material cost, carbon footprint,
and energy intensity. Tipu et al. (2023) aimed to maximize CS while
minimizing costs and carbon dioxide emissions. They proposed
using the XGBoost model and NSGA-II to achieve these objectives.
The XGBoostmodel was employed to predict the CS of concrete, and
NSGA-II was utilized for three-objective optimization. Zhang et al.
(2020) proposed a MOO method combining machine learning and
metaheuristic algorithms to optimize concrete mixture proportions.
They utilized a multi-objective PSO algorithm to refine the mixing
ratios and achieve optimal goals. Their experiments revealed that
BPNNs perform better on continuous data (such as strength), while
RF algorithms yieldhigher prediction accuracy formore discrete data
(such as slump). Using theirMOOmodel, they successfully obtained
the PF for the MOO of both HPC and plastic concrete mixtures.
Zhang et al. (2025) proposed an innovative method for mix propor-
tion design and optimization. It pioneers the application of response
surface methodology in the multi-parameter mix design and opti-
mization ofmanufactured sand concrete, significantly enhancing the
efficiency of the design process and providing more accurate solu-
tions for the diversified production of manufactured sand concrete.
Mandal and Rajput (2025) explored the application of machine
learning techniques in optimizing ceramic waste concrete. They
discussed a range of computational paradigms, including decision
trees, RFs, XGBoost, ANNs, bagging, adaptive boosting (AdaBoost),
gradient boosting, regressionmodels, and SVMs. Zhang et al. (2025)
developed an intelligent predictive model for the CS of RAC using
machine learning techniques, based on 1,255 mix design datasets
compiled from published literature and laboratory experiments.
Furthermore, they established an intelligent mix proportioning
model capable of generating optimal mixtures to meet specified CS
targets. Wang et al. (2025) proposed a method based on the charac-
terization of aggregate physical properties to address the varying
requirements for CS, flexural strength, and cost-effectiveness in
different types of RAC. Neural networks were employed to capture
the complex nonlinear relationships between input parameters and
target performance indicators. The algorithmwith the highest fitting
accuracy was selected as the objective function and integrated with
NSGA-II to obtain the PF. Finally, the ideal point method was
applied to identify Pareto-optimal solutions, enabling the selection
of optimalmix proportion schemes tailored to different performance
preferences.ConcreteCS is a critical objective in the concretemixture
design process, and it is a primary focus of our attention. Asteris and
Kolovos (2019) researched the prediction of CS in self-compacting
concrete using ANNs. Kumar and Pratap (2024) investigated the use
of machine learning methods to accurately predict the CS of high-
strength concrete. Feng et al. (2020) proposed an intelligent predic-
tion method for concrete CS based on machine learning techniques.
This method utilizes the AdaBoost algorithm. Naderpour et al.
(2018) utilized ANNs to predict the CS of RAC. Hariri-Ardebili
et al. (2024) applied the principle of AutoML solutions to predict
the most important mechanical property of various concrete data-
sets, namely CS, for benchmark testing.

Research on dung beetle optimizer

Since its proposal at the end of 2022, DBO has attracted widespread
attention from many scholars due to its fast convergence speed,

high solving accuracy, and strong optimization ability. So far, there
have been some improvements and applications. Li et al. (2024)
proposed an improved DBO to optimize the parameters of the
BiLSTM model, thereby improving the predictive performance of
the dual-optimization wind speed prediction model. Zhu et al.
(2024) introduced a quantum-inspired hybrid dung beetle opti-
mizer (QHDBO), which combines quantum computing techniques
with multiple strategy integration, effectively applying it to address
engineering challenges. (He et al. (2024) developed an improved
dung beetle optimizer (IDBO) and utilized it to optimize the
parameters of variation mode decomposition. Jiachen and Li-hui
(2024) proposed an IDBO combined with the dynamic window
approach (DWA) for path planning problems in both static and
dynamic environments. (Cai et al. (2024) combined an IDBO with
two deep learning models for predicting groundwater depth. To
enhance the accuracy of specific dynamic subject recognition, Li
et al. (2024) proposed a model that integrates an IDBO to optimize
a long short-term memory (LSTM) network for specific dynamic
subject identification. Wang et al. (2023) introduced a quasi-
adversarial learning-based DBO (QOLDBO) that integrates
Q-learning, applying it effectively to address classical engineering
problems. Mai et al. (2024) introduced a novel maximum power
point tracking (MPPT) technology for photovoltaic systems, util-
izing the DBO to maximize output power across diverse weather
conditions. Tu et al. (2024) designed a Q-learning-based multi-
swarm beetle optimizer (MODBO-QL) to solve the optimal sched-
uling model for Hybrid Integrated Energy System (HIES). During
the machining process, parts are prone to generating higher surface
residual stresses in the cutting direction (CD), thereby reducing
production costs. To address this issue, Xue et al. (2023) employed a
MOO method that combines DBO–BPNN and improved particle
swarm optimization (IPSO) algorithm. Wen-Chao et al. (2023)
proposed a method combining variation mode decomposition
(VMD) and gated recursive unit (GRU) in DBO, where DBO is
used to optimize the parameters of GRU. Zhang et al. (2024)
improved the hybrid kernel extreme learning machine model on
the basis of the DBO to measure and analyze the Water-energy-
food nexus (WEFN) recovery ability of China’s Beidahuang Group.
Table 1 lists additional studies on DBO covering various improve-
ments and widespread applications, demonstrating the significant
potential of DBO.

Preliminaries

CNN multi-input regression prediction

CNNs not only excel in image processing, but also demonstrate
powerful capabilities in multi-input regression prediction tasks.
Multi-input regression prediction involves gathering data frommul-
tiple input sources to predict one or more continuous output vari-
ables. This approach is particularly suitable for modeling complex
systems, such as forecasting the CS of concrete, as it can manage the
nonlinear relationships between multiple input variables.

By employing a multi-input CNNmodel, various types of input
data (such asmaterial composition, environmental conditions, etc.)
can be integrated and analyzed. Convolution layers automatically
extract features from these inputs, while pooling layers reduce
dimension and prevent overfitting. Finally, the extracted features
are transformed into the final predicted values through fully con-
nected layers. This method effectively captures the complex char-
acteristics of the input data, thereby enhancing the accuracy and
robustness of the predictions.
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Related research has demonstrated that using CNNs for multi-
input regression prediction has broad application prospects in the
fields of engineering and science. For instance, Pourdaryaei et al.
(2024) proposed a suitable technique for forecasting electricity
prices using a multi-head self-attention and CNN-based approach.
Similarly, Buchanan and Crawford (2024) proposed a model that
combines feature recognition and many-to-one mapping capabil-
ities of classical CNN with the probability characteristics of Gauss-
ian process regression (GPR) for predicting battery health status.
Wan et al. (2024) explored the application of CNN in predicting the
partitioned homogeneous properties (PHPs) of electronic product
wiring structures and found that CNN models can accurately
predict the performance of previously unpaired wiring structures,
which can be directly applied to product-level reliability finite

element analysis (FEA) and improve the efficiency of reliability
assessment. Bhadra et al. (2024) developed an end-to-end 3D CNN
model for predicting soybean yield using RGB images based on
multi-temporal drones and approximately 30,000 sample plots.

Dung beetle optimizer

Based on the distinct social roles among dung beetles, the DBO
categorizes the population into four groups: ball-rolling dung bee-
tles, spawning dung beetles, small dung beetles, and thief dung
beetles. The dung beetles’ location is represented as follows:

X = Xiji= 1,2,…,Nallf g (1)

For different purposes, the positions of the four dung beetle
subpopulations are represented by distinct symbols as follows:

R= Reje= 1,2,…,Nrollf g (2)

S= Smjm= 1,2,…,Nspawn
� �

(3)

L= Lhjh= 1,2,…,Nlittlef g (4)

T = Tzjz = 1,2,…,Nthief
� �

(5)

X =R∪S∪L∪T (6)

Nroll +Nspawn +Nlittle +Nthief =Nall (7)

If the dimension of the optimization problem is D and the
corresponding fitness function is f , then the position of each beetle
is represented as a solution to the problem as follows:

Xi = xi,1,xi,2,…,xi,Df g (8)

The individual fitness value is represented as f Xið Þ. The repre-
sentations of Re, Sm, Lh, Tz, and their corresponding fitness values
are similar to Xi . The algorithm updates the positions of dung
beetles according to different strategies, evaluates their survival
ability based on fitness, and assumes that a smaller fitness value
indicates better optimization results. Themathematical expressions
for the optimal and worst positions are as follows:

Xb = Xi ∈X, i= 1,2,…,Nallj∀Xj, f Xið Þ≤ f Xj
� �� �

Xw = Xi ∈X, i= 1,2, ::,Nallj∀Xj, f Xj
� �

≤ f Xið Þ� �(
(9)

The final optimal position Xb represents the best solution to the
problem.

(1) Update the position of the roller-ball dung beetles

The position update for roller-ball dung beetles is divided into two
scenarios: obstacle-free and obstacle-present.

When δ < γ, roller-ball dung beetles are in an obstacle-free state,
where δ is a random number and δ∈ 0,1½ �, γ = 0:9. The position
update formula is as follows:

Rt + 1
new,e =R

t
e + α× k×R

t�1
e + u×Δx (10)

Δx = Rt
e�Xw

�� �� (11)

Here, t represents the current iteration number, and Rt
e is the e-th

dung beetle’s position after the t-th iteration. k is a constant and
k∈ 0,0:2ð � represents the positional deviation coefficient. α is a

Table 1. Literature survey on the DBO

References Method Application

Wei et al. (2023) SA-based hybrid dung
beetle optimizer (SDBO)
algorithm

Seismic wave inversion
and imaging endeavors

Xu et al. (2024) DVMD–DBO–LSSVM–EC Monthly runoff prediction

Zhang et al.
(2024)

An improved dung beetle
optimizer (IDBO) and a
deep reinforcement
learning-based twin
delayed deep
deterministic policy
gradient (TD3)
algorithm

A novel edge offloading
system based on
unmanned aerial
vehicles (UAVs) and
mobile edge service
vehicles (MESVs)

Huang et al.
(2024)

CMDBO–TSVM Parameter selection of
TSVM

Liu and Jiang
(2024)

IDBO Parameter optimization of
the improved complete
ensemble empirical
modal decomposition
with adaptive noise
(ICEEMDAN)

Zhao et al. (2023) DBO Parameter optimization of
SVM, RF, and KELM

Jiang et al.
(2023)

DBO and SVR A quantitative method for
determining fatty acids
in stored wheat using an
olfactory sensor
technique

Bai et al. (2023) WPD and IDBO–KELM Traditional diagnostic
models for laser
gyroscopes

He et al. (2024) MIDBO Optimal scheduling of
flood control in reservoir
groups

Yuan et al. (2023) DBO–CNN Water-body detection in
synthetic aperture radar
(SAR) images

Fu et al. (2024) VMD–PE–IDBO–TCN State of health (SOH) in
lithium-ion batteries

Li et al. (2024) A cascaded extended state
observer sliding mode
control (CE-SMC)
method based on the
osprey-dung beetle
fusion optimization
algorithm

Wind-thermal coordinated
system
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natural coefficient used to model the impact of environmental
factors on the direction of movement. When λ < η, α is 1, otherwise
α is �1, where λ is a random number and λ∈ 0,1½ �, η= 0:1, u is a
constant, and u∈ 0,1½ � . XW represent the worst global position,
while Δx is used to simulate changes in lighting intensity.

When δ≥ γ is in an obstacle state, the position is updated as
follows:

Rt + 1
new,e =R

t
e + tan θð Þ Rt

e�Rt�1
e

�� �� (12)

where θ is the deflection angle represented by radians, θ is a random
number, and θ∈ 0,π½ �. If θ is 0,π=2,π, the position is not updated. In
the above position update formula, Rt + 1

new,e is the candidate position
obtained from the individual’s t + 1iteration, whichwill be compared
with the previously best-known optimal position and retained; that
is, if f Rt + 1

new,e

� �
> f Rt

e

� �
, Rt + 1

e =Rt
e, otherwise R

t + 1
e =Rt + 1

new,e.

(2) Update the position of the spawning dung beetles

Some of the dung balls collected by the beetles are used as food,
while the rest are transported to a secure location for spawning,
where they serve as brooding balls to nurture the next generation.
The boundaries of the area where the brooding balls are located are
strictly limited in Eq. (13):

Lb∗ =Max Xb∗ × 1�Qð Þ,Lb� �
Ub∗ =Min Xb∗ × 1�Qð Þ,Ub� � (13)

where Ub∗ and Lb∗ represent the upper and lower boundaries of
the spawning area, respectively. Xb∗ represents the current best
position of all beetles in the population, Q= 1� t=T , T is the
maximum iteration number, and Ub and Lb are the upper and
lower boundaries, respectively.

After transporting the brooding ball to the designated spawning
area, spawning dung beetles will lay one egg inside it during each
iteration. The brooding ball’s position is then updated as follows:

Bt + 1
new,m =Xb∗ + a1 × Bt

m�Lb∗
� �

+ a2 × Bt
m�Ub∗

� �
(14)

where Bt
m represents them-th brooding ball’s position after the t-th

iteration, a1 and a2 are two random vectors of size 1 ×D, and D is
the dimension.

(3) Update the position of the little dung beetles

Once the juvenile dung beetles inside the brooding ball reach
maturity, they emerge from it to forage for food. Therefore, to
achieve the goal of space exploration, it is essential to define an
optimal foraging area to guide their search. The boundary of this
optimal foraging area is defined as follows:

Lb0 =Max Xb × 1�Qð Þ,Lb� �
Ub0 =Min Xb × 1+Qð Þ,Ub� � (15)

whereXb represents the global best position and Ub0and Lb0 represent
the upper and lower bounds of the optimal foraging area, respectively.
The definitions of Q, Lb, and Ub are the same as in Eq. (13). The
formula for updating the little dung beetles’ position is as follows:

Lt + 1new,h = L
t
h +C1 × Lth�Lb0

� �
+C2 × Lth�Ub0

� �
(16)

where Lth represents the h-th little beetle’s position after the t-th
iteration,C1 is a randomnumber that follows a normal distribution,
C1 ∈ 0,1½ �, andC2 is a random vector, with each component ranging
between 0 and 1.

(4) Update the position of the thief dung beetles

Not all dung beetles will actively push the ball; some will instead
steal the dung balls collected by others. The formula for updating
the thief dung beetles’ position is as follows:

Tt + 1
new,z =X

b + S× g × Tt
z�Xb∗�� ��+ Tt

z�Xb
�� ��� �

(17)

whereXb represents the global best position andXb∗holds the same
meaning as defined in Eq. (13). Tt

z denotes the z-th thief dung
beetle’s position after the t-th iteration, while S is a constant set to
0.5. Finally, g is a D dimensional random row vector, with each
component between 0 and 1.

The flowchart of DBO is shown in Figure 1, and the pseudo-code
of DBO is shown in Algorithm 1.

Algorithm 1 The pseudo-code of DBO algorithm.

Require: Themaximum iterations T , the size of the population Nall.
Ensure: Optimal position Xb and its fitness value Fb.

1: Initialize the particle’s population i =1, 2,…, Nall and define
its relevant parameters.

2: while (t < = T ) do.
3: for i = 1 to Nall do.
4: if i == roller-ball dung beetle then.
5: δ =rand(1);
6: if δ < 0.9 then.
7: Select α value;
8: Use Eq. (10) to update the roller-ball dung beetle’s

position;
9: else.
10: Use Eq. (12) to update the roller-ball dung beetle’s

position;
11: end if.
12: end if.
13: if i == spawning dung beetle then.
14: Use Eq. (14) to update the spawning dung beetle’s

position;
15: end if.
16: if i == foraging dung beetle then.
17: Use Eq. (16) to update the foraging dung beetle’s

position;
18: end if.
19: if i == stealing dung beetle then.
20: Use Eq. (17) to update the stealing dung beetle’s

position;
21: end if.
22: end for.
23: if the newly generated position is better than before then.
24: Update it;
25: end if.
26: t = t + 1;
27: end while.
28: return Xb and its fitness value Fb.

Methodology

In this article, we propose a MOO approach to enhance the design
of concrete mixture proportions. An application program based on
Matlab has been developed to facilitate this method. The detailed
operational procedures of the proposed method are depicted in
Figure 3. Within this development framework, a hybrid CNN–
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NSDBO–TOPSIS intelligent method is employed to improve the
CS, cost-effectiveness, and reduce carbon dioxide emissions of
concrete. This method comprises the following four main steps.

Development of a CNN-based regression predictionmodel for CS
in HPC

Data processing
Based on practical engineering and prior studies, the mixture
proportion parameters for HPC include the amounts of cement
(C), mineral powder (MP), fly ash (FLA), water (W), superplasti-
cizer (SP), coarse aggregate (CA), and fine aggregate (FA). These
components significantly impact the performance of concrete.
Therefore, these key components are used as input variables for
the CNN model. Running a CNN model requires setting crucial
hyperparameters, specifically the learning rate and the number of
convolutional kernels. It is essential to recognize that the concrete

mixture proportion factors vary in dimensions and value ranges. To
prevent any input quantity from being disproportionately large and
skewing the output results, the samples are scaled to fit within [0,1].
This ensures that each parameter contributes equally. The formula
for normalizing the input variables is as follows:

Xnorm =
X�Xmin

Xmax�Xmin
(18)

where Xnorm is the normalized data value and X is the initial value,
with Xmax and Xmin being the initial maximum and minimum
values, respectively.

To assess the forecasting capability of CNN, the dataset is
typically split into a training set and a test set. CNN is then
employed to train a model using the training set, which is subse-
quently used to make predictions on the testing set. The disparity
between the forecast outcomes and the true data is computed to
assess the predictive efficacy of the model.

Figure 1. Flowchart of DBO.
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CNN hyperparameter selection
In this study, we chose to optimize the learning rate and the number
of convolution kernels in the CNN for several important reasons:

(1) The Importance of Learning Rate

The learning rate is a crucial hyperparameter that significantly
affects the training process and the results of CNN models. It
determines the step size for eachweight update, directly influencing
the convergence speed and final performance of the model. If the
learning rate is too high, the model may oscillate and fail to
converge; if it is too low, the training process will be slow and
may get stuck in local optima. Therefore, selecting an appropriate
learning rate is essential for enhancing the training efficiency and
prediction accuracy of the model.

(2) The Importance of the Number of Convolution Kernels

The number of convolution kernels determines the richness of the
features extracted by each convolution operation. More convolu-
tion kernels can capture more image details and features, thereby
enhancing the model’s expressive power. However, too many con-
volution kernels can increase computational complexity and the
risk of overfitting, while too few kernels may result in the model
failing to learn important features in the data. Thus, finding a
balanced number of convolution kernels is key to optimizing
CNN performance.

(3) Complementary Optimization Effects

The learning rate and the number of convolution kernels have
complementary effects on the training and prediction capabilities
of CNNmodels. The learning rate adjusts the pace of model weight
updates, while the number of convolution kernels affects the depth
and breadth of feature extraction. Optimizing these two hyperpara-
meters together can comprehensively improve the training effi-
ciency and prediction performance of the model.

(4) Balance Between Practicality and Computational Cost

Compared to other hyperparameters, such as the number of net-
work layers or batch size, adjusting the learning rate and the
number of convolution kernels requires relatively lower computa-
tional resources, but can significantly improve model performance.
Therefore, optimizing these two hyperparameters can yield sub-
stantial performance gains at a reasonable computational cost,
making it an efficient and practical optimization strategy. By using
intelligent optimization algorithms (such as DBO) to optimize the
learning rate and the number of convolution kernels in CNN
models, the optimal configuration can be automatically found. This
ensures that the model achieves optimal performance during both
training and prediction phases.

Validation metrics for regression predictive model
The CNN regression prediction model is an algorithm based on
CNN designed for predictive tasks. The primary concept of the
CNNmodel is to extract features from input data using convolution
operations and then progressively process these features through
pooling layers and fully connected layers to achieve prediction
objectives. In this study, the CNN model was utilized to predict
the CS of HPC. To validate the efficacy of the CNN regression
prediction model, four widely employed statistical metrics were
employed to evaluate its prediction accuracy. For detailed infor-
mation on these indicators, please refer to Table 2. These indicators
allow us to comprehensively evaluate the accuracy and effectiveness
of the CNN model in predicting the CS of HPC.

MOO of the HPC mixture proportion

Definition of the objective function
(1) Objective function of concrete CS based on the DBO–CNN

model

To enhance both the calculation rate and accuracy of the optimiza-
tion procedure, the regression model obtained from the optimized
CNN and the mixture proportion is utilized as one of the fitness
functions ofNSDBO.The regression function based on theCNN is as
follows:

CS=CNNRegress ConcreteComposð Þ (19)

where CS represents the CS of concrete, while ConcreteCompos refers
to the various components that constitute the concrete mixture.

(2) Cost function of concrete

The raw material prices in this article are based on the prices in the
Pearl River Delta region. There are 7 types of raw materials used,
including C price (PC), FLA price (PFLA), MP price (PMP), FA price
(PFA), CA price (PCA), W price (PW), and SP price (PSP). The
average prices of various raw materials obtained through market
research are shown in Table 3.

The unit cost of concrete in the objective function is calculated
using Eq. (20).

Cost = CCPC +CFLAPFLA +CMPPMP +CFAPFA +CCAPCA

+CWPW +CSPPSP (20)

In Eq. (20), CC, CFLA, CMP, CFA, CCA, CW, and CSP, respectively,
represent the amount of C, FLA, MP, FA, CA, W, and SP per cubic

Table 2. The four performance metrics adopted in the experiment section

Metrics Explanation Equations

R2 R2, also known as determination
coefficient, evaluates the
goodness of fit between the
model and the data, ranging
from 0 to 1. The closer the
value is to 1, the better the
model fits the data.

R2 = 1�
PN

i = 1
yi�ŷið Þ2PN

i = 1
yi�yið Þ2

RMSE Root mean squared error
measures the average
deviation between the
predicted values and the true
values. A smaller RMSE value
denotes higher prediction
accuracy.

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i = 1 yi �byið Þ2

q

MAE Mean absolute error is
determined by calculating the
absolute differences between
the predicted and actual
values and then averaging
these differences across the
dataset. A smaller MAE
indicates higher predictive
accuracy of the model.

MAE = 1
N

PN
i = 1 yi �byij j

MAPE Mean absolute percentage error
is calculated by dividing the
difference between the actual
value and the predicted value
by the actual value. The
smaller the MAPE, the better
the model’s performance.

MAPE = 1
N

PN
i = 1

yi�ŷi
yi

��� ���∗100%
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meter of concrete (kg/m3), and Cost represents the unit cost of
concrete (Yuan/m3).

(3) Carbon dioxide emissions function of concrete

Cement production is one of the main sources of carbon dioxide
emissions. In the process of cement production, limestone (calcium
carbonate) is heated to high temperature to form lime (calcium
oxide), which releases carbon dioxide. Therefore, the cement pro-
duction process directly leads to a large amount of carbon dioxide
emissions. In order to reduce carbon dioxide emissions, cement
should be used less. Therefore, it is necessary to establish another
objective function (related to carbon dioxide emissions), and
Eq. (21) has been used.

CO2 = 0:9 ×CC (21)

Variable constraints
(1) Constraints on ingredient ranges

The research integrates upper and lower bounds for concrete
ingredients, delineated by Eq. (22). These constraints define
the acceptable search space for all variables, ensuring compliance
with predefined limits. Typically, the upper and lower bounds
for ingredients are determined by the regulatory standards gov-
erning concrete mixture proportion design in the respective
country.

Ai,min ≤Ai ≤Ai,max (22)

where Ai is the ithvariables value and Ai,max and Ai,min are the upper
and lower bounds of the ith variable, respectively.

Table 4 presents the range considered in this investigation,
detailing the permissible values for each ingredient. Adhering to
these constraints ensures that the mix design remains within
acceptable bounds and complies with regulatory standards.

(2) Constraints on ingredient volumes

The overall volume of concrete is fixed at 1m3, calculated according
to Eq. (23).

Vtotal = 1m
3 =

CC

ρC
+
CMP

ρMP
+
CFLA

ρFLA
+
CW

ρW
+
CSP

ρSP
+
CCA

ρCA
+
CFA

ρFA
(23)

where ρC ,ρFLA,ρMP ,ρFA,ρCA,ρW , and ρSP are density in kg/m3,
whereas CC ,CFLA,CMP ,CFA,CCA,CW , and CSP are quality in kg of
C, FLA, MP, FA, CA, W, and SP, respectively.

(3) Constraints on ingredient proportion

In the proportion constraint, relationships among variables
are defined by setting specific ratios. Ratio constraints SCM/C,
W/C, C/CA, C/(FA + CA), and CA/(FA + CA) are considered.
Eq. (24) defines the boundaries for the ratio constraint values in
Table 5.

Bi,min ≤Bi ≤Bi,max (24)

where Bi is ratio constraints and Bi,min and Bi,max are theminimum
and maximum values of the ith ratio constraint.

Non-dominated sorting dung beetle optimizer

Once the fitness function and constraints are defined, NSDBO (Zhu
et al., 2023) is employed to perform MOO of HPC mixture pro-
portion. This aims to get a Pareto solution set that achieves the
optimal mixture proportion with the lowest economic cost and
minimal carbon dioxide emissions while maximizing the CS of the
concrete. Non-dominated sorting is an efficient and powerful
method commonly used in MOO algorithms. It ranks solutions
based on the degree of their Pareto optimal. Solutions that are not
dominated by any other solutions are given rank 1. Those domin-
ated by only one solution are given rank 2, those dominated by two
others are given rank 3, and this pattern continues accordingly. The
solutions are then selected based on their ranks to improve the
quality of the population. The main steps required to obtain PF
through NSDBO are as follows:

(1) First, define the population size, dimension, maximum iter-
ations, upper and lower limits of decision variables, and Pareto
archive size, randomly initialize the dung beetles population,
and store them into matrices. Calculate the fitness value for
each individual in the population, identify the non-dominated
solutions in the initial population, and store them in the Pareto
archive. Then, compute the crowding distance for each mem-
ber of the Pareto archive.

(2) Then, update the positions of the roller-ball dung beetles,
spawning dung beetles, little dung beetles, and thief dung
beetles. Therefore, a new generation of offspring has been
obtained.

(3) Update population fitness. The parent and offspring popula-
tions aremerged together. Perform the non-dominated sorting,
and calculate the crowding distance. Start adding each front
based on rank and crowing distance until the whole Pareto
archive is filled.

This process continues until the algorithm reaches its maximum
number of iterations or another stopping criterion is satisfied. At
that point, the Pareto-optimal solution set is produced. The flow-
chart of NSDBO is shown in Figure 2.

Table 3. Unit price of each raw material

Raw
Material

C
(PC)

MP
(PMP)

FLA
(PFLA)

W
(PW)

SP
(PSP)

CA
(PCA)

FA
(PFA)

Unit price
(Yuan/kg)

0.5 0.4 0.28 0.005 0.16 0.11 0.125

Table 4. Variable weights and range restrictions

Variables
Unit C MP FLA

W
kg/m3 SP CA FA

Age
Days

Upper Limit 540 360 260 247 33 1145 993 365

Lower Limit 102 0 0 121 0 708 594 1

Density(kg/m3) 1440 2800 2500 1000 1200 2700 2600 –

Table 5. Constraints on the ratios between variables

Constraints Lower limit Upper limit

SCM/C 0 0.35

W/C 0.3 0.6

C/CA 0.2 0.6

C/FA + CA 0.05 0.33

CA/FA + CA 0.4 0.65
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Intelligent decision-making through EWTOPSIS method

Employing the EWTOPSIS method, we conducted a thorough
evaluation and decision analysis for 60 individuals within the PF,
representing 60 mixture proportion optimization schemes, to pin-
point the optimal solutionwithin this frontier. Thismethod, using a
normalized decision matrix, is a MOO analysis technique. It
incorporates the principle of information entropy to ascertain the
objective weights of the indicators, computes the Euclidean dis-
tance between each assessed object and the ideal target, ranks the
schemes according to their relative proximity, and identifies the
optimal solution (Lv et al., 2023). This approach accurately captures
the significance of the evaluated indicators, thereby enhancing the
objectivity of the evaluation results. The calculation method is
outlined as follows:

(1) Establish the initial assessment matrix

Define the initial assessment matrix as the set of assessment criteria
for the 60 mixture proportion optimization schemes in the PF. It
can be represented as follows:

A=

a11 a12 ⋯ a1j
a21 a22 ⋯ a2j
… … ⋯ …

ai1 ai2 ⋯ aij

0BBB@
1CCCA (25)

where A is the initial assessment matrix, aij represents the j-th
evaluation index value in the i-th mix proportion optimization
scheme, i =1,2,…,m, j=1,2,…, n, m is the number of optimized mix
proportion schemes, and n is the number of assessment indicators.

(2) Build a standardized decision matrix

Perform dimensionless processing on matrix A and normalize all
indicators. The dimensionless formulas corresponding to each
indicator type are shown in Eqs. (26) and (27).

Positive indicators:

bij =
aij�min aij

� �
max aij

� ��min aij
� � (26)

Reverse indicators:

bij =
max aij

� ��aij
max aij

� ��min aij
� � (27)

where bij represents the elements in the normalized decisionmatrix.

(3) Calculate the entropy weight of evaluation indicators

The formula for calculating entropy weight is shown in Eq. (28).

wj =
1� ejPn

j= 1
1� ej
� � (28)

where wj is the entropy weight of the j-th assessment indicator;

ej = �k
Pm
i= 1

f ij ln f ij

� 	
, representing the information entropy of the

j-th assessment indicator; k= 1= lnm ; f ij = 1 + bij
� �

=
Pm
i= 1

1 + bij
� �

.

(4) Construct weighted decision matrix

cij =wj × bij (29)

where cij is the element in the weighted decision matrix.

(5) Determine positive and negative ideal solutions

C + = c +1 ,c
+
2 ,…,c +n

� �
C� = c�1 ,c

�
2 ,…,c�n

� �(
(30)

where C + and C� represent the positive ideal solution set and the
negative ideal solution set, respectively; c +n and c�n represent positive
ideal solutions and negative ideal solutions, respectively.

(6) Determine the Euclidean distance between the optimization
scheme of each mix proportion and the positive and negative
ideal solutions

D+
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j= 1

c +ij � cij

 �2

s

D�
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j= 1

c�ij � cij

 �2

s
8>>>>><>>>>>:

(31)

Figure 2. Flowchart of NSDBO.
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whereD+
i and D�

i , respectively, represent the distance between the
i-th mix ratio optimization scheme and the positive and negative
ideal solutions.

(7) Determine the relative closeness of each mix proportion opti-
mization scheme to the ideal solution

Oi =
D�

i

D�
i +D+

i
(32)

whereOi represents the relative closeness of the i-th optimized mix
proportion scheme.

Implementation of NSDBO in three-objective HPC mixture
proportion optimization

Three-objective optimization of concrete mixture proportions to
identify optimal ingredient proportions is conducted through the
integration of the CNN model and NSDBO algorithm, following
the steps outlined below. The workflow of this process is depicted in
Figure 3.

Step 1: The CS is represented using a CNN, while the DBO
algorithm is employed to explore and determine optimal hyper-
parameter values.

Step 2: Determine the cost and carbon dioxide (CO2) emission
by applying Eqs. (20) and (21), respectively.

Step 3: Construct a three-objective optimization task by com-
bining all objectives using Eqs. (33) and (34).

Objective function :

max f CSð Þ
min f Costð Þ
min f CO2ð Þ

8><>: (33)

Subjected to :

Range Constra int s

Volume Constra int s

Ratio Constra int s

8><>: (34)

Step 4: Utilize the NSDBO algorithm to search for optimal
solutions to the formulated MOO problems.

Step 5: Obtain non-dominated PF solutions.
Step 6: Choose a solution from the PF based on Eq. (32).

Experimental results and analysis

All experiments were conducted using MATLAB R2022b on an
Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz processor with 8 GB
RAM and running a 64-bit version of Microsoft Windows 11.
Hence, different hardware environments will definitely result in
different time-consuming outcomes.

High-strength concrete compressive strength prediction based
on CNN

Data collection and processing
The experimental dataset on concrete CS is sourced from the UCI
public databases, initially curated by Yeh (Yeh, 1998). It consists of
1133 samples. Initially, the data sample had a total of eight input
variables, namely C,MP, FLA,W, SP, CA, FA, andAge. The output,
representing concrete properties, is the uniaxial CS of the concrete.
Furthermore, the statistical distributions of the relevant parameters
are presented in Figure 4, enabling direct observation. The figure
clearly shows the range and frequency of each parameter’s distri-
bution. In addition, five new features were introduced in the dataset
(SCM/C (MP + FLA = SCM), W/C, C/CA, C/A, and CA/A). These

Figure 3. Flowchart of CNN–NSDBO–EWTOPSIS for high-strength concrete mix proportion optimization.
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features exhibit a high correlation with CS, thereby enhancing the
model’s prediction accuracy. The sensitivity analysis is shown
Figure 5. Table 6 presents detailed static data samples. The correl-
ation coefficients between variables are illustrated using the Pear-
son correlation coefficient (Benesty et al., 2009) in Figure 6. The
dataset contains no missing samples, and the variable ranges are
evenly distributed.

CNN hyperparameter selection
In this section, the experiment involves optimizing the hyper-
parameters of CNN, using the DBO. Hyperparameter tuning aims
to find the optimal hyperparameter combination for a CNN
regression prediction model to achieve the best predictive per-
formance. We choose to optimize the learning rate and the
number of convolution kernels. This process can be viewed as
an optimization problem. Specifically, the combination of hyper-
parameters is considered a vector of decision variables, analogous
to dung beetles’ position. The goal is to minimize the root mean

square error, which is treated as the objective to be optimized. The
optimal hyperparameters of the model are identified as the global
best position found in the final iteration of the DBO algorithm.
The detailed steps for using DBO in hyperparameter tuning are
illustrated in Figure 7.

In the optimization process using the DBO, fitness serves as the
primary metric for assessing individual performance, driving the
optimization process, and guiding the selection of individuals. To
enhance both the speed and accuracy of this optimization process,
we employ the root mean square error between the concrete CS
predicted by a trained CNN and the actual values as the fitness
function for the DBO. This approach effectively captures the com-
plex nonlinear relationship between the input variables and the
output objectives. Thus, the fitness function based on the CNN can
be expressed as follows:

RMSE = FitFun X,TraIn,TraOut,TraNum,DR,NumF,NumR,FSð Þ
(35)
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Figure 4. Statistical distributions of the input/output variables.
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where X represents the variables to be optimized, specifically the
learning rate and the number of convolution kernels. TraIndenotes
the input variables of the training set, while TraOut signifies the
output of the training set. TraNum stands for the maximum
number of training iterations, and DR represents the forgetting

rate. Additionally, NumF and NumR indicate the number of input
features and output features, respectively. Finally, FS denotes the
size of the convolution kernel.

The parameter settings for DBO-optimized CNN are shown in
Table 7. The hierarchical structure diagram of the constructed one-
dimensional CNN is shown in Figure 8. The iterative convergence
curve of the DBO-optimized CNN is shown in Figure 9.

Model validation
The training set is utilized to learn and establish a predictive model
for concrete CS based onDBO–CNN. Subsequently, the established
model is validated using the test set to assess its predictive perform-
ance. The prediction results and error diagrams for concrete CS
obtained from the training set are depicted in Figure 10, with
corresponding results and error diagrams for the test set shown
in Figure 11. Additionally, Figure 12(a) illustrates the scatter plot of
concrete CS obtained from the training set, while Figure 12(a)
presents the corresponding scatter plot for the test set. According
to the training outcomes of the DBO–CNN model, the following
conclusions can be drawn: the DBO–CNN model exhibits out-
standing regression learning capabilities and can serve as an effect-
ive alternative for capturing the relationship between concrete mix
proportions and CS, thereby enhancing the efficiency of concrete
design.

Furthermore, to demonstrate the effectiveness of DBO–CNN,
we trained and tested CNN, BP, GA–BP, PSO–BP, ELM, RBF, and
DBO–CNN separately on the training and testing sets. We evalu-
ated our models using the four evaluation metrics mentioned
earlier. The results are presented in Table 8, where it can be
observed that DBO–CNN achieved the best performance. We also
estimated the confidence interval based on the predicted values
using statistical methods. Assuming the prediction errors follow a

Figure 5. The importance of input variables in determining the CS of concrete.

Table 6. Statics of the dataset

Mean Std Lower Limit Upper Limit

Input

C (kg) 276.5046 103.4699 102 540

MP (kg) 74.2662 84.2468 0 359.4000

FLA (kg) 62.8078 71.5832 0 260

SCM/C 0.6607 0.5955 0 2.7879

W (kg) 182.9847 21.7139 121.7500 247

W/C 0.7677 0.3214 0.2669 1.8824

SP (kg) 6.4155 5.7964 0 32.2000

CA (kg) 964.8331 82.7882 708 1145

C/CA 0.2895 0.1143 0.1150 0.6442

FA (kg) 770.4903 79.3739 594 992.6000

C/A 0.1607 0.0633 0.0558 0.3228

CA/A 0.5561 0.0358 0.4596 0.6522

Age (days) 44.0565 60.4413 1 365

Output

CS (MPa) 35.8380 16.1005 2.3318 82.5992
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normal distribution, the confidence interval at the 95% confidence
level was calculated using the mean and standard deviation. This
calculation quantifies the uncertainty of the model’s predictions,
enhancing the reliability of decision-making. The histogram of

error distribution and the fitting curve based on normal distribu-
tion are shown in Figure 13. Taking the first sample’s predicted
value as an example, its corresponding 95% confidence interval is
[17.74, 34.83].

Figure 7. DBO–CNN model.
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Figure 6. Pearson correlation coefficient between variables.
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MOO of the HPC mixture proportion design based on CNN–
NSDBO–EWTOPSIS

Definition of the objective function
(1) Objective function of concrete CS based on the DBO–CNN

model

Previously, we optimized the hyperparameters of the CNN using
DBO, resulting in the DBO–CNN regression prediction model.
This model is used as the first objective function to be solved for
the design problem of HPC mixture proportion. The objective
function for maximizing the CS of concrete, max f 1, can be formu-
lated as follows:

f 1 = max CNNRegression C,MP,FLA,W,SP,CA,FA,Ageð Þf g
(36)

(2) Concrete Cost Function

In this context, the real price of concrete primarymaterials depends
on the unit prices of C, MP, FLA, W, SP, CA, and FA, which are
equivalent to 0.5, 0.4, 0.28, 0.005, 0.16, 0.11, and 0.125 yuan/kg,
respectively. The objective function for minimizing the concrete
cost, min f 2, can be formulated as follows:

min f 2 = 0:5C + 0:4MP + 0:28FLA+ 0:005W + 0:16SP

+ 0:11CA+ 0:125FA (37)

(3) Carbon dioxide emissions function of concrete

Typically, the amount of carbon dioxide produced by manufactur-
ing 1 m3 of concrete primarily depends on the quantity of cement
used. When preparing concrete, using 1 kg of cement will produce
approximately 0.9 kg of carbon dioxide emissions. The objective
function for minimizing the carbon dioxide emissions of concrete,
min f 3, can be formulated as follows:

min f 3 = 0:9C (38)

Variable constraints
For the preparation of HPC, C and FLA are commonly used as
binding materials, with super-plasticizes added to enhance work-
ability. According to HPC design specifications and engineering
practices, the dosage of each component in the HPC mixture
should fall within an acceptable range and comply with the
corresponding proportion constraints. The constraint conditions
for optimizing the HPC mixture proportion are determined
according to Eq. (39).

Figure 8. Hierarchical structure of one-dimensional CNN.

0 5 10 15 20
Iteration

0.0465

0.047

0.0475

0.048

0.0485

Er
ro

r

Evolutionary Process 

DBO-CNN

Figure 9. The iterative convergence curve of DBO-optimized CNN.

Table 7. Parameters setting of DBO–CNN

Parameters Value

Population size 5

The maximum iteration number 20

D 2

The range of learning rate [0.001, 0.01]

The number of convolution kernels (Yeh, 1998; Mirjalili et al., 2014)

TraNum 150

DR 0.2

FS 6

14 Qifang Luo et al.

https://doi.org/10.1017/S0890060425100115 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100115


0 50 100 150 200 250
Sample number

0

20

40

60

80

N
um

er
ic

al
 v

al
ue

Comparison of DBO-CNN test set prediction results
RMSE=5.3348

True value
Predict value

-20

-10

0

10

20

30

N
um

er
ic

al
 v

al
ue

Error situation of test set prediction results

0 50 100 150 200 250
Sample number

Error

Figure 11. Test output results and error output results of prediction models based on DBO–CNN.
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102≤C≤ 540

0≤MP≤ 360

0≤ FLA≤ 260

121≤W ≤ 247

0≤ SP≤ 33

708≤CA≤ 1145

594≤ FA≤ 993

1≤Age≤ 365

0≤ MP + FLAð Þ=C≤ 0:35

0:3≤W=C≤ 0:6

0:2≤C=CA≤ 0:6

0:05≤C= CA+ FAð Þ≤ 0:33

0:4≤CA= CA+ FAð Þ≤ 0:65

1 =
C

1440
+

MP
2800

+
FLA
2500

+
W
1000

+
SP
1200

+
CA
2700

+
FA
2600

(39)

Three-objective optimization results and discussion
During the optimization process, NSDBO performs four different
operations. Therefore, several parameters must be set before the
iterative optimization process, including the population size, the

maximum number of iterations, and the parameters k, b, and s. To
balance optimization effectiveness and convergence speed, the
population size is set to 60, and the maximum number of iterations
(serving as the termination criterion) is set to 100. Additionally, k
is set to 0.1, b to 0.3, and s to 0.5. To demonstrate the effectiveness
of NSDBO, we selected NSGA-II and Multi-Objective Particle
SwarmOptimization (MOPSO) as comparative algorithms, as they
have been widely used in the literature to solve similar problems.
The algorithm parameter settings are detailed in Table 9.

Error Distribution and Fitting
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Figure 13. Error distribution histogram and fitting curve based on normal distribution.

Table 8. Training and testing results of prediction models

Train results Test results

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

BP 0.88637 5.3551 4.0785 1.4173e-05 0.87398 5.977 4.6174 0.00011653

GA–BP 0.91376 4.9513 3.6402 1.0525e-05 0.83845 6.0561 4.6108 0.00018203

PSO–BP 0.86802 6.0948 4.7845 3.6057e-05 0.81579 6.8512 5.2287 0.00032205

ELM 0.76532 8.0105 6.2155 4.4319e-05 0.78497 8.3807 6.7827 0.00035562

RBF 0.83424 6.8077 5.3131 3.1934e-05 0.78154 7.7054 5.8852 0.0004256

CNN 0.93132 4.1779 3.2294 2.6001e-05 0.88434 5.6726 4.1719 0.00021343

DBO–CNN 0.93853 3.9813 3.0456 8.6408e-06 0.89118 5.3348 4.1142 9.6936e-07

Table 9. Algorithm parameter settings

Algorithm Parameters Value

NSDBO Population size 60

Maximum number of iterations 100

Repository size 60

k 0.1

b 0.3

s 0.5

NSGA-II Population size 60

Maximum number of iterations 100

Repository size 60

Tournament size 2

Distribution index of crossover operator 20

Distribution index of mutation operator 20

MOPSO Population size 60

Maximum number of iterations 100

Repository size 60

Inertia weight 0.5

Inertia weight damping rate 0.99

Personal learning coefficient 1

Global learning coefficient 2

Number of grids per dimension 7

Inflation rate 0.1

Leader selection pressure 2

Deletion selection pressure 2

Mutation rate 0.1
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With the objective function, variable constraints, and model
parameters set as described, 60 Pareto-optimal concrete mixtures
were generated using 100 iterations of NSDBO, as illustrated in
Figure 14. In the figure, the proportions of the ingredients in the
Pareto solution are shown, where the y-axis represents the CS, and
the x-axis represents all the components of the concrete mix.
Additionally, we successfully obtained the PF, and the EWTOPSIS
method was used for decision-making. Figure 15 shows the
EWTOPSIS scores corresponding to the optimal front of the three-
objective optimization problem. The solutionwith the highest score
was chosen for practical implementation. In the figure, the color of
the solutions corresponds to their assigned EWTOPSIS score. The
obtained Pareto solution set and PF are presented in Table 10. To
demonstrate the superiority of NSDBO in solving this problem, we
also employed NSGA-II and MOPSO, which have been used to
solve similar problems. The chart comparing the experimental
results is shown in Figure 16. When solving this problem, only
the spacing metric was used for evaluation because the true PF was
unknown. A smaller spacing value indicates a more evenly distrib-
uted solution set. The values of the spacing metric obtained from
the experiment are presented in Table 11. From Table 11 and
Figure 16, we can observe that the distribution of the Pareto
solution set for NSDBO is more uniform.

Conclusion and future work

Under the pressures of global warming and environmental protec-
tion, reducing the carbon footprint of building materials has
become an industry trend. Developing more intelligent HPC mix-
ture proportion design methods can meet performance require-
ments, while minimizing environmental impact and cost, thus
supporting sustainable construction practices. This article estab-
lished a hybrid MOO method, the CNN–NSDBO–EWTOPSIS
method, aimed at enhancing the CS of concrete, while reducing

its cost and carbon dioxide emissions. The proposed method con-
tains three main steps: (1) train a CNN model to establish a
regression predictive model for concrete CS by capturing the non-
linear mapping between concrete mix proportions and CS indica-
tors; (2) optimize the hyperparameters of CNN using DBO; and
(3) performMOOof concrete mixture proportion using NSDBO to
obtain the optimal concrete mixture proportion. Eventually, the
effectiveness of the proposed approach was validated using data
from the UCI public dataset.

Based on specific case study data, several valuable findings
emerge. First, the developed CNN regression prediction model
exhibits promising predictive performance across the entire data-
set. Second, the mapping function derived from CNN training can
act as a proxy model for iterative optimization. It can rapidly and
precisely forecast the CS of each newly generated concrete mixture
proportion, thus decreasing the experimental effort in concrete
mixture proportion design, enhancing the efficiency of the iterative
computation process, and significantly improving the overall effi-
ciency of concrete mixture proportion optimization. Lastly,
NSDBO exhibits outstanding MOO capability. It effectively bal-
ances the maximization of concrete CS with the minimization of
concrete cost and carbon dioxide emissions. Therefore, the pro-
posed hybrid intelligent CNN–NSDBO–EWTOPSIS method can
effectively predict concrete CS and optimize mixture proportion.
Additionally, this method is simple to implement, is highly reliable,
and holds significant practical value in engineering practice for
concrete construction. It can also offer insights for comparable
projects. Nonetheless, this study has certain potential limitations.
First, the predictive accuracy of the CNN regression algorithm
heavily relies on the quality and diversity of the training dataset.
In this research, the 1133 data instances used for training the model
were sourced from the UCI public dataset. To ensure the applic-
ability of our proposed method across various real-world scenarios,
the dataset will be expanded in future research to include more
factors. In summary, future studies need to broaden the concrete

200 250 300 350 400 450

Cement (kg/m3)

0

50

100

C
S(

M
Pa

)

0 50 100 150 200

Mineral Powder (kg/m3)

0

50

100

200 250 300 350 400 450

Fly Ash (kg/m3)

0

50

100

120 140 160 180

Water (kg/m3)

0

50

100

C
S(

M
Pa

)

0 2 4 6 8 10

Superplasticizer (kg/m3)

0

50

100

600 800 1000 1200

CA (kg/m3)

0

50

100

500 600 700 800

FA (kg/m3)

0

50

100

C
S(

M
Pa

)

280

300

320

340

360

380

400

420

440

460

480

co
st

 (y
ua

n/
m

3 )

Figure 14. Effect of ingredient proportions on CS and cost in the obtained PF optimal solutions.
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Figure 15. Three objective PF with EWTOPSIS evaluation.

Table 10. Obtained Pareto solution set and Pareto front

PS PF

C MP FLA W SP CA FA Age CS Cost CO2

269.53 43.23 4.16 184.63 4.29 888.94 723.55 22.53 15.60 292.84 224.58

247.68 128.48 52.93 126.04 2.89 938.68 740.56 22.35 110.21 490.33 405.00

300.00 0.00 0.00 130.00 0.00 700.00 600.00 365.00 11.74 265.75 270.00

450.00 191.01 0.00 130.00 10.00 700.00 683.73 339.72 110.17 489.39 405.00

450.00 200.00 0.00 130.00 10.00 700.00 600.00 365.00 88.17 362.12 320.75

294.70 159.44 91.95 147.71 5.81 684.00 768.93 22.35 88.78 411.88 270.00

426.44 200.00 0.00 130.00 10.00 700.00 600.00 365.00 36.10 330.73 249.11

448.59 200.00 0.00 130.00 10.00 700.00 600.00 365.00 23.19 292.00 234.03

285.89 104.79 5.79 173.69 1.57 949.69 610.97 25.90 32.44 314.40 262.12

412.93 200.00 0.00 130.00 10.00 700.00 677.72 365.00 29.49 317.19 239.35

260.98 159.03 111.34 183.00 4.40 815.12 595.05 24.00 87.81 345.56 270.00

421.59 200.00 0.00 130.00 10.00 700.00 600.00 365.00 84.22 341.71 309.27

286.50 159.16 102.35 175.36 5.61 808.07 582.25 22.36 57.13 287.48 270.00

300.00 0.00 0.00 130.00 0.00 700.00 600.00 365.00 52.31 283.59 270.00

300.00 0.00 0.00 130.00 10.00 1200.00 600.00 365.00 34.13 335.16 240.78

321.04 16.11 0.00 130.00 9.26 1200.00 600.00 339.77 105.11 468.52 372.41

311.96 38.37 0.00 130.00 9.34 1200.00 600.00 335.57 30.37 339.73 224.99

297.89 101.63 46.79 125.88 2.99 912.53 706.59 25.31 93.68 429.07 305.20

300.00 30.27 3.52 130.00 10.00 1200.00 600.00 358.83 89.11 412.90 275.70

335.03 200.00 0.31 130.00 10.00 700.00 600.00 365.00 95.62 434.53 319.75

(Continued)
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Table 10. (Continued)

PS PF

C MP FLA W SP CA FA Age CS Cost CO2

265.00 64.69 60.26 179.63 0.76 943.08 621.94 24.67 100.04 450.45 339.87

379.40 200.00 1.60 130.00 10.00 700.00 600.00 365.00 19.47 296.48 224.63

374.89 200.00 0.04 130.00 9.81 700.00 600.00 358.11 106.43 475.29 380.09

395.84 200.00 0.00 130.00 10.00 700.00 600.00 365.00 107.79 482.58 389.79

343.36 200.00 0.00 130.00 10.00 700.00 600.00 365.00 103.78 471.77 367.94

324.87 200.00 0.00 130.00 10.00 700.00 600.00 365.00 107.37 478.98 386.24

300.00 179.23 0.00 130.00 9.84 700.00 600.00 362.49 109.28 487.28 398.98

300.00 6.36 0.00 130.00 10.00 700.00 600.00 365.00 92.56 426.68 312.26

300.00 63.91 0.00 130.00 10.00 1200.00 600.00 365.00 103.33 465.22 378.27

292.46 105.42 68.32 180.17 7.63 925.54 526.79 23.70 90.02 423.10 281.73

300.00 164.66 0.00 130.00 9.86 700.00 600.00 361.95 61.14 293.57 270.00

398.84 200.00 1.40 130.00 10.00 700.00 600.00 365.00 46.59 277.46 271.15

406.98 200.00 0.00 130.00 10.00 700.00 675.45 365.00 101.05 455.89 346.40

387.92 200.00 1.57 130.00 10.00 700.00 600.00 365.00 102.11 459.94 353.58

307.17 200.00 0.00 130.00 10.00 700.00 600.00 365.00 49.07 279.05 270.00

384.20 200.00 1.76 130.00 10.00 700.00 600.00 365.00 76.83 319.18 270.00

390.76 200.00 0.00 130.00 10.00 700.00 644.01 365.00 108.71 481.23 396.24

300.00 155.70 0.00 130.00 10.00 706.45 600.00 365.00 81.36 324.12 270.00

408.82 200.00 0.00 130.00 10.00 700.00 613.79 361.29 73.79 310.81 270.00

332.01 200.00 0.02 130.00 10.00 700.00 635.82 365.00 44.79 275.98 270.00

300.00 79.94 0.66 130.00 10.00 1200.00 600.00 365.00 101.36 454.34 349.41

349.39 200.00 0.00 130.00 10.00 700.00 625.18 365.00 102.30 459.10 364.03

321.21 88.07 1.42 130.00 10.00 1200.00 600.00 365.00 96.65 438.47 324.26

308.31 83.73 2.54 130.00 10.00 1200.00 600.00 365.00 90.96 420.65 296.05

300.00 190.54 0.00 130.00 10.00 700.00 600.00 358.58 102.81 459.69 358.79

322.51 200.00 0.00 130.00 10.00 700.00 615.38 358.41 97.63 442.51 329.36

300.00 86.68 3.30 130.00 10.00 1200.00 600.00 365.00 91.05 424.40 286.88

411.63 200.00 0.00 130.00 10.00 700.00 600.00 365.00 66.03 300.28 270.00

300.00 0.00 0.00 130.00 6.47 700.00 600.00 296.12 80.27 321.49 270.00

309.10 200.00 0.31 130.00 10.00 700.00 600.00 365.00 91.60 423.10 301.95

300.00 200.00 0.00 130.00 10.00 700.00 600.00 260.01 90.81 419.75 292.02

404.61 200.00 0.00 130.00 10.00 700.00 600.00 365.00 39.68 272.83 270.00

300.00 16.18 0.00 130.00 10.00 1200.00 600.00 365.00 64.28 298.12 270.00

360.16 200.00 0.00 130.00 10.00 700.00 609.48 365.00 40.81 273.64 270.00

368.84 200.00 0.00 130.00 10.00 700.00 607.93 365.00 99.22 446.46 335.80

327.13 200.00 0.02 130.00 10.00 700.00 629.96 362.00 68.65 303.56 270.00

361.42 200.00 0.01 130.00 9.86 700.00 610.27 358.14 72.04 308.27 270.00

355.62 200.00 0.01 130.00 10.00 700.00 600.00 365.00 95.95 437.17 326.54

300.00 0.00 0.00 130.00 10.00 700.00 600.00 365.00 69.69 306.13 270.00
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mixture proportion data to increase the generalization of the pro-
posed approach and enhance the optimization algorithm for more
efficient acquisition of the Pareto solution set.
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