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This article introduces a model of ordinal unidimensional measurement known as Mokken
scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that
originated in the Guttman scale. I compare the Mokken model with both Classical Test
Theory (reliability or factor analysis) and parametric IRT models (especially with the one-
parameter logistic model known as the Rasch model). Two nonparametric probabilistic
versions of the Mokken model are described: the model of Monotone Homogeneity and
the model of Double Monotonicity. I give procedures for dealing with both dichotomous
and polytomous data, along with two scale analyses of data from the World Values Study
that demonstrate the usefulness of the Mokken model.

1 Introduction

Mokken scale analysis is a combination of a measurement model and a procedure that
is commonly used to assess people’s abilities or attitudes. It analyzes each respondent’s
pattern of responses to a set of questions, or items, that are designed to be indicators
of a single latent variable, i.e., the ability or attitude under study. Mokken scaling is a
nonparametric probabilistic version of Guttman scaling (Guttman 1950), and it is used
similarly to other techniques for data reduction that allow for the unidimensional mea-
surement of latent variables. But it has a number of advantages over other measurement
models; for example, it includes an item parameter that shows how items differ in their
distribution, it is probabilistic rather than deterministic, and it can be applied in situ-
ations in which latent variables must be operationalized with only a small number of
indicators.

Before presenting Mokken’s scaling model and procedure in detail, I will show why its
predecessor the Guttman scaling model may often be preferable to better known and more
easily available measurement methods like reliability analysis and factor (or component)
analysis. Next I will place Mokken scale analysis in the context of the successors to Guttman
scaling, and finally introduce it in its own right. The article ends with two applications of
Mokken scale analysis.

Author’s note: The author would like to thank Melissa Bowerman for her editorial help, and Rob Mokken, Ivo
Molenaar, and two anonymous reviewers for their comments on a previous version.
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Table 1 Hypothetical data set conforming to a perfect Guttman scale

Frequency of
occurrence of

Response type V1 V2 V3 V4 V5 V6 response pattern

1 0 0 0 0 0 0 50
2 0 0 0 0 0 1 3
3 0 0 0 0 1 1 2
4 0 0 0 1 1 1 35
5 0 0 1 1 1 1 5
6 0 1 1 1 1 1 3
7 1 1 1 1 1 1 2

Total 2 5 10 45 47 50 100

To understand the relationship between Guttman scaling on the one hand and reliability
and factor analysis on the other, consider the hypothetical data set shown in Table 1; this may
look familiar to political scientists who have analyzed surveys on political participation.
A hundred subjects responded to six dichotomous items. Each of seven different response
patterns occurs with the frequency given in the last column. Let us imagine that V1, V2,
and V3 are three indicators of party political participation (i.e., runs for office, is active
in a campaign, or goes to a party meeting; 1 = yes, does; 0 = no, does not), and that V4,
V5, and V6 are variables that tap voting behavior for three different types of office (i.e.,
president, representative, and sheriff; 1 = votes; 0 = does not vote). The first three items are
rather “unpopular”—not many subjects report engaging in the activity (p1 = .02, p2 = .05,
and p3 = .10), and the last three items are noticeably more popular (p4 = .45, p5 = .47, and
p6 = .50).

This data set was constructed to form a perfectly unidimensional Guttman scale. That is,
a subject who gives the positively keyed response (i.e., reports performing the activity) to a
more “difficult” (i.e., unpopular) item will also give the positive response to all items that are
less “difficult.” The Guttman scale is therefore a “cumulative” scale: all subjects “accumu-
late” positive responses to the items—in this case indicators of political participation—in
the same order, from the “easiest” (V6 in this example) to the most “difficult.”

In this data set, the reliability (Cronbach’s α) of the scale of six items is 0.84, but it could
be increased to 0.86 by removing item 1, or, in fact, to 0.98 by removing all of the first
three items. A principal component analysis of this data set leads to two eigenvalues larger
than 1 (the first four eigenvalues are 3.36 1.71, 0.55, and 0.26). The VARIMAX rotated
solution—the default in some standard statistical packages—leads to the results given in
Table 2, in which the first three and the last three items load on separate components.

The results of either a principal component (or factor) analysis or a reliability analysis
of this data set would have cast serious doubts on the unidimensionality of the six variables.
Adherents of factor analysis might defend this outcome on grounds that all six items load
highly on the first unrotated component, that one might recognize the two components
as “difficulty factors,” that a lower boundary of an eigenvalue of 1.00 for the substantive
interpretation of a component may be too low, or that one should use tetrachoric correlations
rather than product moment correlations.1 But there are in fact good reasons to reject

1Embretson and Reise (2000, p. 38) note, “However, tetrachoric correlations have several disadvantages. Adjusting
a whole matrix of item correlations to tetrachorics sometimes results in a singular correlation matrix, which is not
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Table 2 VARIMAX rotated component
loadings of data set in Table 1

Component 1 Component 2

V1 0.01 0.82
V2 0.12 0.91
V3 0.28 0.79
V4 0.96 0.15
V5 0.98 0.14
V6 0.96 0.12

component analysis or reliability analysis as the appropriate way to analyze variables that
form a Guttman scale.

Both component analysis and reliability analysis assume that the items can be regarded
as “parallel,” i.e., as having the same frequency distribution (the same mean and stan-
dard deviation). But it is precisely this assumption that is fundamentally violated in a
Guttman scale: items do differ in their frequency distribution, as was already recognized
in the 1940s by Ferguson (1941) and Carroll (1945). This difference constitutes the ra-
tionale for a Guttman scale, and it is the reason why a factor analysis of dichotomous
data is difficult to interpret. The order of “difficulty” of the items often has an important
theoretical interpretation that is not taken into consideration in reliability and factor anal-
yses. If items in fact form a Guttman scale, or are expected to do so, it makes sense to
analyze them with a model that takes Guttman’s model assumption of cumulativity into
account.

2 Guttman and His Successors: Item Response Theory

The Guttman scaling technique for analyzing empirical dichotomous data that form “quasi-
scales”—i.e., that do not conform perfectly to Guttman’s requirements—was originally
introduced as a “scalogram” technique. However, it had a number of shortcomings, such as
a suboptimal criterion of model fit (cf. Mokken 1971, ch. 2, for a historical overview), and
was taken out of standard statistical packages. However, nothing has been introduced in its
place in the computer packages, even though a number of important new developments are
now available.

The new developments can be divided into two major approaches, depending on whether
they regard “imperfect data”—deviations from a perfect Guttman scale—as systematic, such
that they must have a substantive interpretation, or random, such that they should be treated in
a probabilistic manner. Advocates of the first approach include Bart and Krus (1973), Dayton
and MacReady (1980), Shye (1985), and Ganter and Wille (1999). These researchers try—
each from a different perspective—to systematically represent deviations from a perfect
Guttman scale by invoking one or more separate additional dimensions. Advocates of the
second approach include Rasch (1960) and Mokken (1971). Their approach was first known
as “Modern Test Theory” [in contrast to Reliability analysis and Component analysis, which

appropriate for factor analysis. Further, the adjustments given by the tetrachoric correlations are quite substantial
for extreme p-values. Strong assumptions about normality and linearity are required to justify the adjustments.
Last, tetrachoric correlations do not make full use of the data. The adjustments are based on summary statistics
about the data.”
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are known as “Classical Test Theory” (CTT)], but it is now better known as “Item Response
Theory” (or IRT for short).

In IRT models the probability of the positive response to a dichotomous item depends on
both one or more subject parameters and one or more item parameters. A very popular IRT
model is the one-parameter logistic model (1PL model), also known—after its inventor, the
Danish statistician Georg Rasch—as the Rasch model (see Rasch 1960). In this model the
probability of a positive response to an item is defined as follows (where θs is the parameter
of subject s, δi is the parameter of item i , and α can be regarded as a constant for a specific
scale):

p(xis = 1 | θs, δi ) = eα(θs−δi )

1 + eα(θs−δi )
. (1)

For α = +∞, the model reduces to the Guttman scale, in which the probability of
a positive response approaches 1 if θs > δi , and approaches 0 if θs < δi . The Item Re-
sponse Function (IRF), which depicts the probability of the positive response to item i
by subjects with different subject parameters graphically, then looks like a step function
(see Fig. 1). For more regular values of α (e.g., α = 1), the IRF of a single item is a
logistic (S-shaped) function, and the IRFs for different items in a scale are all parallel
(see Fig. 2).

This model has the important property that subject and item parameters can be distin-
guished and estimated separately. The logarithm of the odds ratio of the probability of a
positive response divided by the probability of a negative response to item i is α(θs −δi ). The
logarithm of the ratio p(xis = 1 and x js = 0)/p(xis = 0 and x js = 1)—assuming stochastic
independence of the responses—is δ j − δi , which is independent of subject s. Therefore,
empirical estimates of this ratio lead to an estimation of the item parameters, which—if the

Fig. 1 Item Response Function of a Guttman item (step function).
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Fig. 2 Four IRFs of Double Homogeneous items that conform to the IPL model (Rasch model).

model holds—is independent of the scale values of the respondents, i.e., of characteristics
specific to each respondent. Given the symmetry in the model between item and subject
parameters, subject parameters can similarly be estimated independently of which specific
items are used. This is equivalent to a model in which the subject and item scores are suffi-
cient statistics. Useful introductions to the Rasch model are Andrich (1988) and Embretson
and Reise (2000).

This latter property—called “specific objectivity” or “subject (or item) invariant
measurement”—is crucially important in comparing subjects in different groups (e.g.,
across groups of subjects or over time). Andrich (1988) refers to this property as “fun-
damental measurement.” The Rasch model has become very important in fine-tuned testing
situations, especially in educational testing: it allows the equation of tests that are meant
to measure the same concept at different but overlapping levels, and it allows (comput-
erized) adaptive testing, which gives the same measurement precision with a reduced set
of items.

Embretson and Reise (2000) explain the difference between CTT and IRT in 10 new
measurement rules that imply the superiority of IRT over CTT. The following are two
examples: (1) “Old Rule: Longer tests are more reliable than shorter tests,” but “New Rule:
Shorter tests can be more reliable than longer tests” and (2) “Old Rule: Comparing test
scores across multiple forms is optimal when test forms are parallel,” but “New Rule:
Comparing test scores across multiple forms is optimal when test difficulty levels vary
between persons.”

Even though the Rasch model can be strongly recommended, its assumptions are strict,
and the model is best applied when the number of items is rather high (e.g., greater than 20).
However, in certain applications—such as omnibus-type surveys in which a large number
of different topics are treated with a small number of indicators for each concept to be
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measured—the Rasch model often does not fit very well. To deal with this problem, the
Dutch mathematician and political scientist Robert J. Mokken (Mokken 1971; Mokken and
Lewis 1982; Mokken 1997) developed two nested scaling models known jointly by his
followers as “Mokken scaling” (e.g., Niemöller and van Schuur 1983). These models also
conform to some of Embretson and Reise’s new rules, like the two examples just mentioned.
Useful introductions to the models can be found in work by Jacoby (1994, 1995); a full
description is given in Sijtsma and Molenaar (2002).

One of the two models is called the model of Monotone Homogeneity (MH model), and
the other the model of Double Monotonicity (DM model). The DM model has the property
of Ordinal Specific Objectivity, or Invariant Item Ordering, and can therefore be interpreted
as the ordinal version of the Rasch model. The IRFs in Fig. 2 conform to the DM model.
The MH model can be compared to a variant of the Rasch model in which each item has a
specific discrimination parameter αi , which replaces the constant α. As this model has two
item parameters (αi and δi ), it is known in the IRT literature as the two-parameter logistic
model (2PL model), or the “Birnbaum model” after its originator (Birnbaum 1968). In the
2PL model—or, ordinally in the MH model—the IRFs of the items with their different
item discrimination parameters will intersect. This implies that the order of popularity or
difficulty of the items is not the same for all subjects, and item invariant measurement is
not possible (see Fig. 3).

Like the Guttman scale and the Rasch model, the MH and DM models were initially
developed only for dichotomous items, but by now they can also be applied to poly-
tomous, ordered multicategory items. I will present the models for dichotomous data
first, and then generalize to the polytomous case. First I present the more general of the
two models, Monotone Homogeneity, and then discuss Double Monotonicity as a special
case.

Fig. 3 Four IRFs of Monotone Homogeneous items that conform to the 2PL model.
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3 The Mokken Model of Monotone Homogeneity for Dichotomous Items

The Mokken scaling model of Monotone Homogeneity makes three fundamental assump-
tions:

1. There is a unidimensional latent trait (e.g., an ability or an attitude) on which subjects
s ∈ S have a scale value θs , and on which dichotomous items i ∈ I have a scale value
δi . Subjects can give a positive (x = 1) or a negative (x = 0) response to each item. If
the scale values of subject and item are identical, the probability of a positive response
p(x = 1 | θs = δi ) = .50. If the scale value of the subject is a lower value than that
of the item, θs < δi , then 0.00 < p(x = 1) < 0.50, and if it is higher, θs > δi , then
0.50 < p(x = 1) < 1.00.

2. The IRF is monotonically nondecreasing. This means that the probability of a pos-
itive response to an item i increases (or at least does not decrease) with increasing
subject value θ: for all items i ∈ I and for all values θs ≤ θt we therefore assume that
pi (θs) ≤ pi (θt ). If all members of a set of items measure the same latent trait, then the
ordering of the subjects by their probability of a positive response should be the same
for all items. Mokken calls this “the requirement (or property) of similar ordering”
of a set of items.

3. Responses by the same subject are locally stochastically independent. This means
that responses to two or more items by the same subject are influenced only by θs ,
the scale value of the subject on the latent trait, and not by any other aspect of the
subject or the items.

So

P(X = x | θ) =
k∏

i=1

P(Xi = xi | θ), (2)

in which X is the vector of responses to all k items, with x as its realization, and P(Xi =
x | θ) denotes the conditional probability that a score of x has been obtained on item Ii .
This assumption of local stochastic independence is basic to most probabilistic theories of
measurement, and implies that all systematic variation in the people’s responses is due only
to the respondents’ positions on the latent trait.

It follows from these assumptions that pit —the proportion of correct answers to item i
by subjects with the sum score t—is nondecreasing over increasing score groups t , where
t is the unweighted sum score calculated on the basis of the remaining n − 1 items. This is
a testable hypothesis, and it is used in testing Mokken’s MH model.

If the three assumptions just discussed hold, then, as Mokken (1971) proved, all pairs
of items are nonnegatively correlated for all subgroups of subjects and all subsets of items.
Guttman called this requirement his First Law of Attitude. Rosenbaum (1984) proved that
this result is a special case of the more general property of Conditional Association. An
immediate implication, which will become relevant shortly, is that pik(1,0)—the probability
that a subject gives the positive response to the “difficult” item i together with the negative
response to the “easier” item k—is smaller than would be expected under conditional
marginal independence: pik(1,0) ≤ pi (1) · pk(0).

Mokken (1971, pp. 124–129) showed that the simple unweighted sum score ts , based
on the response patterns of subjects s ∈ S (whereby subject s gets the value t as the sum
of the 1- and 0-scores on the items in his response pattern), has a monotone nondecreasing
regression on his scale value θ. Thus, the unweighted sum score can be used as an estimate
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Table 3 Example output of the test of Monotone Homogeneity for one item

Proportions of
Rest score Frequencies per positive responses

Group # value(s) N item value Mean per item

1 0 240 222 18 0.07
2 1 166 137 29 0.17
3 2 115 78 37 0.32
4 3–4 181 94 87 0.48
5 5 140 46 94 0.67
6 6 112 21 91 0.81
7 7 178 3 175 0.98
8 8 107 7 100 0.93

of the subject parameter θs , just as in reliability analysis. Other methods of calculating
scores have been proposed (e.g., Schriever 1985) but will not be considered here.

3.1 Testing Whether a Set of Items forms a Mokken Scale that Conforms
to the Requirement of Monotone Homogeneity

How do we know whether a set of items forms a Mokken scale? I will first give a simple
test of Monotone Homogeneity, and then describe a full search procedure for finding a
maximum set of items, from a potentially larger pool, which conform to the requirements
of a Mokken scale.

The test of Monotone Homogeneity is rather simple, and can best be illustrated with an
example. Given a Mokken scale with k items, we test whether the probability of a positive
response to any given item increases with increasing scale values of the subjects. A subject’s
scale value is based on the rest scores—the subject’s sum score on the remaining k − 1
items. The k − 1 items give rise to k different possible scale values (0 − (k − 1)), and so
we can differentiate the subjects into k different groups, depending on their rest score.

My example is based on the responses of 1019 Dutch respondents in the European
Values Study 1990, who answered nine questions about religious beliefs, e.g., “Do you
believe in God, in Heaven, in the Devil, in Hell?” “Yes” was the positive response and “No”
the negative response. The question singled out for inspection here is “Do you believe in
reincarnation?” For this test I have specified that each of the (k) rest score groups should
consist of at least 100 subjects. With k = 9 items, this requirement led me to collapse the
adjacent rest score groups 3 and 4. The results are given in Table 3.

The first rest score group (group 1, with the scale score of 0 on the remaining eight
items) consists of 240 subjects. Of these, only 18 gave the positive response to the ninth
(reincarnation) item. So for this rest score group the proportion of subjects who gave a
positive response to the ninth item was 18/240 = 0.07. Rest score group 2, with scale

Table 4 Rest score groups 7 and 8 by item scores

Item: score 0 Item: score 1 Total

Rest score 7 3 175 178
Rest score 8 7 100 107

Total 10 275 285
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Fig. 4 Three persons (X, Y, and Z) and three items (A, B, and C) along a Guttman scale.

score 1 on the remaining eight items, consists of 166 subjects, of whom 29 gave the positive
response to the reincarnation item, which leads to a proportion of 29/166 = 0.17. As under
the assumption of Monotone Homogeneity subjects in rest score group 2 are expected to
have a higher value on the latent dimension than subjects in rest score group 1, they are
also expected to have a higher probability of giving a positive response to the ninth item.
Indeed, 0.17 is higher than 0.07. However, the pattern of increasing proportions of positive
responses to the ninth (reincarnation) item for subjects with increasing scale scores on the
remaining eight items is violated by the last two scale score groups, because the proportion
of positive responses for group 7 (0.98) is higher than for group 8 (0.93).

Is this violation statistically significant, or is it due to sampling variation? To decide,
we construct the crosstable for the two rest score groups, and test the null hypothesis that
p(x = 1) for group 7 is equal to p(x = 1) for group 8, using the hypergeometric distribution
(see Table 4).

The exact probability of this degree of violation is the probability of a cell value of
100 or less [for cell (rest score 8, item score 1)] with marginals 107, 178, 10, and 275.
A good normal approximation to this hypergeometric distribution has the normal deviate
z = 2[

√
(101 × 4) −√

(175 × 7)/
√

286] = 1.762 (see Molenaar 1973, for the derivation of
this calculation). With a one-sided significance level of 5%, this z-value is higher than the
critical value of 1.64. The violation of Monotone Homogeneity shown by rest score groups
7 and 8 is thus too large to be ascribed to sampling error. The researcher might therefore
decide to discard the item from the scale.2

3.2 The Concepts of Deterministic Model Violation and Homogeneity

We started our exposition of the Mokken scale with the test of Monotone Homogeneity,
which is a simple nonparametric probabilistic test, to demonstrate the probabilistic nature of
this Mokken model. But the Mokken scaling procedure is better known by its practitioners
for its bottom-up hierarchical clustering procedure, which identifies a maximal subset of
items that conform to the requirements of a Mokken scale. This procedure is generally
described in terms of amount of violation of the deterministic Guttman scaling model,
although it can be described in probabilistic terms as well. First, consider model violations
in a Guttman scale, which will allow me to introduce an important test used in Mokken’s
scaling procedure: Loevinger’s coefficient of homogeneity (Loevinger 1948).

Let us assume three items, A, B, and C, in order of difficulty, and three persons, X, Y,
and Z, in order of ability (Fig. 4).

In a perfect Guttman scale, subjects will give the positive response to items represented
to the left of their position (i.e., the “easier” items), and the negative response to items

2However, a statistically significant model violation can pragmatically be considered as not sufficiently sub-
stantively relevant, and other pragmatic considerations (e.g., an already small number of items) may lead the
researcher to reconsider whether this violation is serious enough to warrant discarding the item.
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Table 5 Three crosstables with the same marginal distributions, comparing an
empirical distribution with two theoretically expected distributions

Empirical (observed) Expected distribution Expected distribution
distribution in an ideal under the assumption of

(hypothetical) cumulative scale stochastic independence

i = 1 i = 0 Total i = 1 i = 0 Total i = 1 i = 0 Total

j = 1 18 2 20 20 0 20 12 8 20
j = 0 42 38 80 40 40 80 48 32 80
Total 60 40 100 60 40 100 60 40 100

represented to the right (i.e., the “more difficult” items). Four types of transitivity relations
are possible, of which only one can violate the model3: if subject Z dominates item B (i.e.,
subject Z gives the “positive” response to item B), and item B dominates item A (i.e., item
B is “more difficult” than item A), then subject Z will (i.e., is expected to, according to the
model) dominate item A as well. This violation can be empirically observed: a subject who
gives the positive response to a difficult item should also—but does not necessarily—give
the positive response to an easier item.

The concept of model violation thus revolves around a triple of objects consisting of
one subject and two items. The number of model violations in a data set is defined as the
number of transitivity relations among all such triples that are violated. As both subjects and
items are involved, it is possible to attribute model violations to either subjects or items. It is
usually not clear from the data or the theory as to which attribution is more plausible. But it is
generally in the interest of researchers to keep their (representative) samples intact, and not
to draw conclusions unless they can be supported by the whole sample and generalized to a
wider population. Researchers may also be interested in identifying the most prototypical
indicators of a specific concept, and judge that deleting items that are not homogeneous
with the rest contributes to better measurement. Researchers therefore usually attribute
violations to items rather than subjects, and we will initially do the same. Later, however,
model violation will also be defined on the basis of the subjects, in terms of “person fit.”

Homogeneity, whether of items or subjects, is defined by relating the number of model
violations observed [denoted as the number of “errors observed” or “E(obs)”] to the number
of violations that can be expected under the model of stochastic independence [denoted as
“E(exp)”]. This can be shown very simply with the example in Table 5.

Consider two items with popularity pi = .60 and p j = .20. Item j is the more difficult of
the two, so in the situation of the perfectly cumulative model the cell ( j = 1, i = 0) should
be empty. In the case of stochastic independence the frequency of this cell is calculated as
the product of the marginals, divided by the grand total: (20 × 40/100) = 8. The observed
frequency of this “error cell” is 2. Following Loevinger (1948), the homogeneity of a pair of
items can be defined as Hi j = 1− E(obs)/E(exp), in which E(obs) = 2 and E(exp) = 8, or
Hi j = 0.75. This coefficient of homogeneity can be rewritten as the ratio of the covariance
between items Xi and X j and their maximal obtainable value, given the marginal distribution
of both items.

The homogeneity of the entire scale, H , is defined in terms of the ratio of the total sum of
all errors observed versus expected, or, alternatively, as the ratio of the sum of all pairwise

3It is not possible to violate transitivity relations (1) among three items, or (2) among three subjects, or (3) among
two subjects and one item.
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covariances versus the sum of all pairwise maximal covariances (Mokken 1971):

H = 1 −
∑k

i= j+1

∑k−1
j=1 E(obs)i j

∑k
i= j+1

∑k−1
j=1 E(exp)i j

or

∑k
i= j+1

∑k−1
j=1 cov(Xi , X j )

∑k
i= j+1

∑k−1
j cov(Xi , X j )max

. (3)

Item coefficients of homogeneity, Hi for item i , are similarly defined as

Hi = 1 −
∑k

j=1, j �=i E(obs)i j
∑k

j=1, j �=i E(exp)i j

or

∑k
j=1, j �=i cov(Xi , X j )

∑k
j=1, j �=i cov(Xi , X j )max

. (4)

3.3 Statistical Test and Search Procedure

The coefficients of homogeneity, Hi j , Hi , and H , play a central role in testing or constructing
a Mokken scale. It is important not to conclude that the homogeneity in a specific data
set is “high enough” without considering whether—given the sample size and the item
difficulty—the values could have been attained by chance. To control for this, Mokken
(1971, pp. 160–164) formulated a test of the null hypothesis that Hi j (or Hi , or H ) is 0
in the population, i.e., that all item pairs are stochastically independent of one another. He
showed that for the Hi j coefficient, as the simplest example, the statistic Zi j = (N − 1)2 ·
(pi j − pi · p j )/[pi (1 − pi ) · p j (1 − p j )]2 has a standard normal distribution for a large
N (i.e., a large number of subjects in the sample). Statistics Zi and Z , which test the null
hypothesis for Hi and H , respectively, are derived similarly.

As a rule of thumb, Mokken (1971) suggested that in order to accept a set of items as a
Mokken scale, we require that each Hi j > 0, and that each Hi > 0.30. This also implies that
H > 0.30. This rule has withstood the test of time. As the Hi j coefficient can be interpreted
as the correlation coefficient between items i and j , divided by its maximal attainable
value given the marginal frequencies of both items, the lower boundary of homogeneity
of each item ensures that most correlations are substantial. In terms of the Rasch model
[see Eq. (1)] this is equivalent to finding a high enough value for α that corresponds to
well-discriminating items, or in more practical terms, to a high enough index of person
separation (Andrich and Douglas 1977).

When items do not constitute a homogeneous set of indicators of the same latent trait,
most scaling and other data reduction techniques—including reliability analysis, factor
analysis, and Rasch scaling—use a “top-down” approach to find the “best” subset of in-
dicators, first investigating the whole set and then deleting the “worst” item (in reliability
analysis this is the “alpha if item deleted” procedure). In contrast, the search strategy in
the Mokken scaling procedure consists of a “bottom-up” hierarchical clustering procedure,
with the homogeneity coefficient serving as the clustering criterion. The procedure consists
of the following steps:

a. Find the best smallest scale, i.e., that pair of items with the highest Hi j coefficient.
This coefficient must be higher than a user-specified lower boundary (usually 0.3).
If two or more item pairs are tied for the highest coefficient, select the pair with the
most difficult (or “unpopular”) items.

b. Find the next best item in the scale, and iterate this step. For each next best item we
require the Hi j ’s for this item, in combination with all other items already in the scale,
to be positive, and the item’s Hi to be higher than the user-specified lower boundary.
Zi must be larger than a user-specified criterion (usually related to an α-level of 0.05).
In order to avoid “capitalizing on chance,” as is possible in hierarchical clustering
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procedures, the α-level is decreased each time a new item has been added to the
scale. The new scale should have the highest H -value, compared to the addition of
any other item. If two or more items are tied for the highest H -value, select the item
with the highest Hi -value, and—if necessary to discriminate between items—the
most difficult item. The search procedure stops when there are no further items that
fulfill these requirements, or when all the items have been incorporated into the scale.

Sometimes an item that was selected in an earlier phase of the search procedure may, by
the end of the procedure, have an Hi -value that has fallen below the user-specified boundary.
Such an item may need to be removed. But in practical applications over the last 30 years
this has rarely happened.

3.4 Person Fit: Number of Guttman Errors

A violation of the deterministic cumulative model is, as noted, most typically attributed
to one or more “bad” or nonhomogeneous items. But sometimes it is useful to investigate
the subjects who stand out with unlikely response patterns. Why do these subjects behave
differently? We first determine which subjects are the least homogeneous with the rest of
the sample by calculating and comparing the total number of simple “Guttman errors” in all
the subjects’ response patterns—i.e., the transitivity violations (Meijer 1994). For example,
if we have five items ABCDE, ordered from easy to difficult, then subject 1, with response
pattern 10101, makes three Guttman errors (violations in the pairs BC, BE, and DE), and
subject 2, with response pattern 00111, has six errors (the pairs AC, AD, AE, and BC,
BD, BE). Subjects’ numbers of Guttman errors can be regarded as their values on a new
variable (see also Meijer and Sijtsma 2001, for a recent overview of person-fit measures).
The Mokken scaling program (MSP) determines the number of Guttman errors for each
subject, and stores this in a file that can be used for additional analysis.

3.5 The Model of Double Monotonicity and Accompanying Model Tests

Each item in a set of monotone homogeneous items allows us to rank a set of persons in the
same order on the latent continuum. However, Monotone Homogeneity is not sufficient to
establish a uniform rank ordering of items, i.e., an ordering in which all subjects perceive the
items in the same rank order of difficulty. To ensure the same ordering of items by subjects a
stronger requirement is needed. This is the model of Double Monotonicity (Mokken 1971).4

A set of monotone homogeneous items, I , satisfies the condition of Double Monotonicity
with respect to a set of subjects, J , irrespective of their value on the latent continuum,
if, for all pairs of items (i, k) ∈ I , it holds that if for some subject with scale value θ0,
pi (θ0) < pk(θ0), then for all subjects ∈ J , irrespective of their value on the latent continuum,
pi (θ j ) ≤ pk(θ j ), where item i is assumed to be the more difficult of the two items. This
is the ordinal variant of Rasch’s requirement of specific objectivity, or item-independent
subject measurement, a model property that increases the validity of comparisons of scale
scores of subjects on the same scale in different data sets.

According to the model of Double Monotonicity, the order of the manifest probabilities
pi reflects an ordering of the items according to their difficulty that is uniform across
(sub)groups of persons. The more general model of Monotone Homogeneity, discussed
previously, does not imply this: the item response functions of any two items may intersect

4Rosenbaum (1987) introduced an equivalent concept, according to which one item is uniformly more difficult
than another when its item response function is higher or equal to that of the other.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pg
00

2  
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/pan/mpg002


P1: GZC

OJ006-02 March 26, 2003 12:6

Mokken Scaling 151

because they may increase with different slopes. For two groups of subjects, one with a
lower and one with a higher value than the scale value indicated by the intersection point,
the manifest probabilities will indicate different orders of difficulty of the items.

There are several procedures for assessing whether a set of items conforms to the re-
quirement of Double Monotonicity. As a first procedure, one can test whether the order of
difficulty of the items is the same across subgroups of subjects (e.g., men vs. women, age
groups), using the order of the marginal probabilities of the positive response for the total
sample as a baseline. In the case of discrepancies from the baseline, a binomial test is carried
out (Molenaar 1973) to determine whether the samples might nevertheless have come from
populations in which the items have the same marginal probability. If this hypothesis must
be rejected, then the model assumption of Double Monotonicity is violated for this pair of
items in these subgroups of subjects.

Two other procedures, similar to the test of Monotone Homogeneity, are available to
compare the order of the probability of the positive response to pairs of items for groups
of subjects that are distinguished by their sum scores on the remaining k − 2 items: the
“restscore group method” and the “restscore splitting method” (see Sijtsma and Molenaar
2002, for elaboration).

A fourth test is based on the probability of joint (non)occurrence of pairs of items in
subjects’ response patterns. If, according to subject j , the order of difficulty of three items,
i , k, and l, is i < k < l [or, pi (θ j ) ≤ pk(θ j ) ≤ pl(θ j )], then, given local stochastic
independence, the order of the probabilities of giving the positive response to both items in
each pair of items is

pi j (θ j ) ≤ pik(θ j ) ≤ p jk(θ j ). (5)

If the order of the marginal popularity of the three items is the same for all subjects,
then the order of probabilities shown in Eq. (5) holds for all subjects, and the following
relationship between the probabilities of the positive response to both items in the item pairs
should be observed:

pi j ≤ pik ≤ p jk . (6)

In a square symmetrical matrix (called the P1,1 matrix) in which the items are ordered
from difficult to easy, the cell elements—which contain the proportion of subjects who give
the positive response to both items in the pair—are hypothesized to increase from left to
right and from top to bottom. To test Double Monotonicity we can test this hypothesis.

The cell proportions of the joint negative responses (i.e., the proportion of subjects who
give the negative responses to both items in a pair) in such a matrix (called the P0,0 matrix)
should decrease from left to right and from top to bottom. Comparable results have been
demonstrated for the P1,0 and the P0,1 matrices, in which only one of the two items in an
item pair gets the positive response (Coombs and Lingoes 1978; Rosenbaum 1987).

3.6 Deciding When to Discard an Item

Different model tests of Monotone Homogeneity or of Double Monotonicity may single
out different items as violating the model. What to do then? The best strategy is to remove
one item at a time to see what effect this has on the rest score for the other items because
the remaining number of violations for pairs involving these other items may be reduced
by different amounts. But which item should be discarded first? As simulation studies have
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shown, valuable information on an item’s suitability for the scale can be gleaned from a
variety of goodness-of-fit indicators, including (a) how far coefficient Hi falls below the user-
specified lower boundary; (b) how many model violations there are, both in absolute terms
and relative to the maximal possible number of violations; and (c) how serious the violations
are in terms of z-scores that test the significance of the binomial null hypotheses. These
different indicators have been combined into a single statistic called CRIT by Molenaar and
Sijtsma (2000, p. 74). The item with the highest CRIT value (as a rule of thumb: CRIT >

80) should be discarded first. The interpretation of this statistic is still under study.

3.7 An Estimate of Reliability in Mokken Scale Analysis

In the earlier discussion of a model test for Double Monotonicity, we defined a square,
symmetrical P1,1 matrix of order k × k, in which the rows and columns contain the items
ordered from difficult to easy, and the cells contain the proportion of subjects who give
the positive response to both items in the pair. If the items conform to the requirement of
Double Monotonicity, cell proportions increase from both left to right and top to bottom.

The diagonal cells in this matrix are obviously empty, but they can be filled by interpo-
lation (or extrapolation, for the first and last cell). The diagonal cells give an estimate of
the probability of a positive response to the same item if it were offered for a second time
(i.e., pii ). This probability is used in the test–retest reliability coefficient ρ, comparable to
Cronbach’s α, first proposed by Mokken (1971, pp. 142–147), and improved by Sijtsma
and Molenaar (1987):

ρ =
∑k

i=1

[
pii − p2

i

] + 2
∑k−1

i=1

∑k
j=i+1[pi j − pi · p j ]

∑k
i=1[pi (1 − pi )] + 2

∑k−1
i=1

∑k
j=i+1[pi j − pi · p j ]

. (7)

4 Extending the Mokken Model to Polytomous Items

So far we have discussed Mokken scale analysis as a measurement model and a procedure
only as applied to dichotomous data, as in the original proposals by Guttman and Rasch.
But many items that measure abilities or attitudes in survey analysis have more than two
ordered categories, e.g., disagree strongly, disagree, agree, and agree strongly. These are
called multicategory or polytomous items. Of course, polytomous data can generally be
recoded as dichotomous data, although information is lost. But the Mokken scaling model
has also been extended to polytomous items.

Table 6 shows a hypothetical data matrix of six variables with four categories each. When
these categories are recoded such that (0,1 = 0) and (2,3 = 1), the data matrix is identical
to the one shown in Table 1 in the introduction. The six questions might deal with voters’
confidence in different national institutions, e.g., “How much confidence do you have in
the Trade Unions (V1), Parliament (V2), the Press (V3), the Legal System (V4), the Police
(V5), or the Church (V6)?”: “none at all” (0), “not very much” (1), “quite a bit” (2), or “a
great deal” (3). Respondents’ responses to these questions can be used as indicators of how
much confidence they have in their society as a whole, that is, the sum score of respondents’
answers to the six questions can be regarded as a measurement of their general feeling of
confidence.

For the data set shown in Table 6, Cronbach’s α is 0.90, but it could be increased to 0.92
by removing item 1, and it could be increased to 0.97 by removing the first three items. A
component analysis of this data set leads to two eigenvalues larger than 1 (the first three
eigenvalues are 4.25, 1.39, and 0.22). The results of the VARIMAX rotated solution are
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Table 6 Hypothetical data set of six variables with four categories each
[which, after recoding (0,1 = 0, 2,3 = 1) is identical to the data set of Table 1]

Frequency of occurrence
Response type V1 V2 V3 V4 V5 V6 of response pattern

1 0 0 0 0 0 0 25
2 0 0 0 0 0 1 25
3 0 0 0 0 0 2 1
4 0 0 0 0 1 2 2
5 0 0 0 1 2 2 1
6 0 0 0 1 2 3 1
7 0 0 1 2 2 3 17
8 0 0 1 2 3 3 18
9 0 1 2 2 3 3 2

10 0 1 2 3 3 3 3
11 0 2 2 3 3 3 1
12 1 2 3 3 3 3 2
13 2 2 3 3 3 3 1
14 3 3 3 3 3 3 1

similar to those of the component solution shown in Table 2, with the first two and the last
three items loading on separate components.

This data set was constructed as a perfect unidimensional Guttman scale for polytomous
items, comparable to our first example of a Guttman scale for dichotomous data. Again,
the standard analysis techniques (reliability analysis and factor analysis) cast doubt on the
unidimensional interpretation of the data. To do justice to the cumulativity of the responses, a
measurement model that incorporates parameters for different values of the items is needed.

In his polytomous extension of the dichotomous Mokken model, Molenaar (1991, 1997b)
solved this problem by introducing the concept of an “item step.” For each item i with m
categories, the latent trait is divided into m ordered areas that are separated by m − 1 item
steps: the positions on the latent continuum that distinguish between the subjects in or below
the m-th category and the subjects in or above the (m + 1)-th category of item i , denoted
as δi01, δi12, and δi23 (see Fig. 5 for an example with m = 4).

The m −1 item steps can be regarded as m −1 new dichotomous variables. For instance,
the values of Vi are recoded into (1,2,3 = 1)(0 = 0) for the new dichotomous variable Vi01,
into (2,3 = 1)(0,1 = 0) for the new dichotomous variable Vi12, and into (3 = 1)(0,1,2 = 0)
for the new dichotomous variable Vi23. The concept of “cumulativity” now is related to
these new variables: the item steps, rather than the original items, are now ordered in terms
of their “difficulty.”

These m − 1 new variables are not independent of each other. For each original variable
Vi , the difficulty order of the new item step variables is fixed with the following order of the
item step parameters (from easy to difficult): δi01 < δi12 < · · · < δim−1,m . For each pair of
polytomous items, however, the difficulty order of two item step variables, each from one of

Fig. 5 Position of the three item steps of item i with four ordered categories on a latent continuum.
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Fig. 6 Example of the position of the six item steps of two items with four ordered categories each.

the items, is not fixed.5 For instance, δ j12 may be represented anywhere with respect to all of
the m −1 item step variables of item i . For two original variables with three categories each,
e.g., i01, i12, j01, and j12, there are six possible orders of the item steps, even though i01 < i12

and j01 < j12: (1) i01 < i12 < j01 < j12; (2) i01 < j12 < i12 < j01; (3) i01 < j12 < j01 < i12; (4)
j01 < j12 < i01 < i12; (5) j01 < i12 < j12 < i01; and (6) j01 < i12 < i01 < j12. It is not the case,
for instance, that all item steps of one item must precede or follow all item steps of another
item.

They are distinguished by the different orders of popularity of the item values. Figure 6
shows only one of these orders (the frequencies in this example are hypothetical, and are
immaterial to the number of possibilities).

The homogeneity of two (or more) variables is determined by comparing the cell fre-
quencies of pairs of polytomous variables in their m × m crosstables. For dichotomous
data, each crosstable contains one “error cell.” For polytomous items, however, crosstables
contain more than one “error cell,” although these do not all violate the Guttman model to
the same extent, as will be demonstrated below. The homogeneity of a pair of items, Hi j , is
still defined as 1 − E(obs)/E(exp), except that now the number of model errors observed
and expected are based on the summation of the different error cells in the crosstable.

Each order of the item step variables gives rise to a crosstable with a specific order
of popularity of the item values. In this table, the deterministic model excludes specific
combinations of responses to the two items. An m × m crosstable has m2 cells. Each
pair of original variables has 2m − 2 item step variables that divide the latent trait into
2m − 1 areas. These areas are represented by 2m − 1 cells in the crosstable. The number of
error cells—i.e., combinations of values of the original variables that violate the Guttman
model—in the crosstable therefore is m2 −2m +1. So for two 4-category items, the number
of error cells is 16 − 8 + 1 = 9. Table 7 gives for each cell two numbers: first the expected
cell frequency, given a perfect Guttman scale with the given marginal frequencies for the
two variables i and j , and second, between brackets, the expected cell frequency if the
two items are stochastically independent. The values of the marginal frequencies of each
of the ordered categories are used to determine which cells in the crosstable contain no
model violations if the deterministic model fits. The cell values in the whole crosstable now
show the distribution of the pair of variables with the maximum possible covariation. The
empirically observed frequencies in the cells that should be empty under the deterministic
model are the numbers of error observed (these are not shown in Table 7).

The error cells in the crosstable differ, as mentioned earlier, in how seriously the responses
they represent violate the model. This can best be seen if we regard the item step variables
as new dichotomous variables for which the original Guttman model should hold. Each
response to a pair of original items is now translated into a response pattern to the new

5In parametric IRT this freedom in the ordering of the item steps is comparable to the Graded Response Model
(Samejima 1969).
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Table 7 Crosstable for two items in which the cell frequencies conform
to either the perfect Guttman scale, or (between brackets) the model of

stochastic independence

j = 0 j = 1 j = 2 j = 3 Total I = i

i = 0 20 (8) 10 (4) 10 (8) 0 (20) 40
i = 1 0 (4) 0 (2) 10 (4) 10 (10) 20
i = 2 0 (6) 0 (3) 0 (5) 30 (15) 30
i = 3 0 (2) 0 (1) 0 (2) 10 (5) 10
Total J = j 20 10 20 50 100

Table 8 Calculation of the weight (W ) of the “error cells” and the weighted frequency (W·FE)
of the expected number of model violations

Pair (i, j) FE δ j01 δ j12 δi01 δ j23 δi12 δi23 Weight (W) W.FE

0,3 20 1 1 0 1 0 0 1 20
1,0 4 0 0 1 0 0 0 2 8
1,1 2 1 0 1 0 0 0 1 2
2,0 6 0 0 1 0 1 0 5 30
2,1 3 1 0 1 0 1 0 3 9
2,2 5 1 1 1 0 1 0 1 5
3,0 2 0 0 1 0 1 1 8 16
3,1 1 1 0 1 0 1 1 3 3
3,2 2 1 1 1 0 1 1 2 4

Total 45 97

dichotomous variables. For each of these new response patterns we can calculate the number
of item step pairs in which the “more difficult” item step receives the positive response and
the “easier” item step receives the negative response. This number is called W (for weight
as a measure of the seriousness of the violation, the factor with which to multiply the errors
in the response to the original pair of items). Table 8 shows how this number is found for
the original item pairs that contain a model error. It gives the error frequencies expected
under stochastic independence (as FE—frequency of expected error). The product of W
and FE (W · FE) gives the weighted number of model violations expected under stochastic
independence. A similar calculation yields the observed number of model violations, and a
weighted coefficient of homogeneity can then be calculated using the weighted number of
(observed and expected) errors (H = 1 − E(obs, weighted)/E(exp, weighted). Molenaar
(1991) has proven that this way of defining homogeneity is identical to a definition based
on the ratio of the covariance between the two items over the maximal possible covariance,
given the marginal frequency distribution of the items.

In addition to the concepts of model violation and homogeneity, most other aspects of the
Mokken scaling procedure can also be easily extended to polytomous items. Coefficients of
homogeneity for the whole scale and for individual items are calculated by either summing
the number of weighted errors, observed and expected, or the covariances between the
pairs of items and their maximal values. As extensions of the Z -statistic described for the
dichotomous case, Z -statistics have also been developed to test whether the homogeneity
coefficients in the population may still be 0. The search procedure that selects items to form a
Mokken scale for polytomous items is identical to the procedure described for dichotomous
items.
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In the case of polytomous items the tests for Monotone Homogeneity and the tests
for Double Monotonicity are carried out for each of the dichotomous item step variables
separately. Molenaar’s statistic CRIT now applies to the combination of outcomes of the
model tests for the item step variables. Molenaar and Sijtsma (1988) have generalized
Mokken’s reliability coefficient for use with polytomous items, and Sijtsma (1998) has
shown that a coefficient of item reliability, ρi , is identical to the coefficient of homogeneity
for two independent replications of item i .

5 Examples of Mokken Scales Based on the 1990 World Values Study

Now we will turn to two examples that demonstrate the procedures described above, first
for dichotomous data, and then for polytomous data. The data come from the World Values
Study 1990, which was carried out in a large number of countries (Inglehart 1997). In each
of these examples the first question to be addressed is whether the items can be ordered in
a theoretically interesting way, i.e., a way that helps us understand the content of the latent
trait we want to study. If so, then it is essential to use a measurement model that assumes a
(cumulative) ordering, rather than models such as reliability or factor analysis that treat the
items as clusters of unordered variables. A second question to be examined is whether the
order of the items is constant, regardless of the sample (is sample-invariant). If the items
are ordered in different ways for different subsets of respondents, then a strict model like
the Rasch model is not appropriate.

5.1 Religious Beliefs

Let us start with questions about religious values, using the data from the United States,
Canada, Ireland, and Sweden. The last two countries were selected as among the most
(Ireland) and least (Sweden) religious countries in the European Union. For all the coun-
tries we will distinguish between those respondents who consider themselves as religious
(value 1), and those who do not (value 0). The proportions of these respondents are given
in Table 9. We do find a clear order in the percentage of respondents who hold a specific
religious belief: “Belief in God” is mentioned most often (except among the nonreligious
Swedes, who mention “Belief in a Soul” more often). For most samples “Belief in a Soul”

Table 9 Proportion of respondents in the religious or nonreligious subgroup of respondents (+Rel:
religious; −Rel: not religious) who gave the positive (“religious”) response to an item

USA Canada Ireland Sweden

Belief in... Entire group +Rel −Rel +Rel −Rel +Rel −Rel +Rel −Rel

Hell 0.56 0.81 0.46 0.53 0.23 0.66 0.43 0.32 0.03
Devil 0.56 0.80 0.46 0.55 0.23 0.67 0.49 0.40 0.05
Life after Death 0.72 0.86 0.50 0.79 0.45 0.90 0.69 0.71 0.24
Heaven 0.76 0.94 0.61 0.84 0.42 0.96 0.72 0.68 0.16
Sin 0.77 0.94 0.72 0.81 0.53 0.93 0.76 0.62 0.19
A Soul 0.83 0.96 0.71 0.92 0.61 0.94 0.73 0.82 0.40
God 0.87 0.99 0.79 0.98 0.64 1.00 0.90 0.91 0.27

N (group size) 10306 3905 648 1677 556 1269 491 544 1216

Reading example: 81% of the 3905 religious respondents in the American sample gave the positive response to
the item “Belief in Hell” (i.e., they believe in Hell).
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Table 10 Homogeneity analysis of seven religious belief items

Discriminating
All respondents respondents

(N = 10,306, (N = 4828,
H = 0.76, H = 0.45,

RHO = 0.91) RHO = 0.66)

Belief in... Mean ItemH Mean ItemH

Hell 0.56 0.85 0.21 0.60
Devil 0.56 0.83 0.22 0.51
Life after Death 0.72 0.64 0.55a 0.13a

Heaven 0.76 0.76 0.64 0.51
Sin 0.77 0.69 0.66 0.36
A Soul 0.83 0.74 0.80 0.28
God 0.87 0.81 0.87 0.47

Note. H = 0.76, RHO = 0.91 (N = 10,306).
aNot in scale.

is more common than “Belief in Heaven,” although for the Irish respondents the opposite is
true. In each sample the least popular beliefs are “Belief in the Devil” and “Belief in Hell.”
There is, therefore, a theoretically interesting order of the items that helps us understand
the content of the latent trait.

Can we use these questions to measure a single latent trait, religious belief, that holds
for different (sub)populations? A Mokken scale analysis of the data for the entire group
of 10,306 respondents shows an H coefficient of H = 0.76, which implies a very strong
scale. The probability that this value would be found for a population in which the H -value
is actually 0 is negligible (Z = 245). All item-coefficients of homogeneity are over 0.60,
and all Z (i) values are over 120. In Table 10 the items are ordered according to their mean
value (i.e., the proportion of respondents who gave the “religious response”) from low to
high. The different popularity of the items suggests that a person who gives the positive
(religious) response to any one item is also most likely to give the positive response to all
the items listed below it.

The check of single monotonicity for the entire group, based on the rest score groups,
reveals no violations (of .03 proportion points or more). Checks of double monotonicity
show some significant violations in a few items (Belief in Heaven, Belief in Life after Death,
Belief in Sin), but none of these reach CRIT-values that warrant deleting any of the items in
the scale. Separate analyses for each of the subgroups also give high homogeneity values and
no serious violations of single or Double Monotonicity. The reliability of the scale is 0.91.

The fact that different tests of the assumption of Double Monotonicity find no serious
violations suggests that the scale will also conform to the requirements of a Rasch scale.
There is, however, an important difference in the data used in a Rasch analysis from data
used in a Mokken analysis: data from subjects whose responses do not discriminate between
items (i.e., who give either the “religious” or the “nonreligious” response to all items) are
treated differently—they are not used in conditional maximum likelihood item parameter
estimation, and they receive an extrapolated scale value. In a Mokken analysis the user has
the option to use or not to use these responses.

In this data set, subjects who give the same response to all items contribute heavily to
the amount of correlation among the items. The mean inter-item correlation drops from
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Table 11 Results of a Rasch scale analysis: item and person location parameters with their
standard error, and two statistics for item fit

Belief in... Location (SE = .04) χ2(df = 5) Residual Person score Location SE

0 −3.83 2.01
God −2.13 85 −3.08 1 −2.43 1.18
A Soul −1.42 34 2.43 2 −1.33 0.97
Sin −0.44 183 6.72 3 −0.46 0.92
Heaven −0.36 256 −10.80 4 0.39 0.93
Life after Death 0.39 1183 17.51 5 1.32 1.00
Devil 1.87 349 −4.07 6 2.48 1.20
Hell 2.08 428 −7.65 7 3.94 1.74

0.53 to 0.31 if the respondents who give the same response to all seven items are dropped
from the analysis. Still, Cronbach’s α is a sizable 0.76. A second Mokken scale analysis,
now performed on the 4828 respondents who discriminated in their responses, still gives
acceptable results: The homogeneity of the scale drops to H = 0.45 (see Table 10). “Belief
in Life after Death” is the only item that drops out of the scale, because it correlates
negatively with “Belief in Hell” and “Belief in the Devil.” Deleting this item leads to an
acceptable final result.

Finally, a Rasch analysis, using the RUMM2010 program on the 4828 discriminating
respondents, confirms our expectations that this scale forms an excellent Rasch scale, and
that the item “Belief in Life after Death” has the worst fit (see Table 11). The index of
person separation is 0.92; the mean fit statistic for the items is 0.151, and for the persons
−0.283. [Note: the user manuals (Sheridan et al. 2000, 2001) unfortunately give us little
help in interpreting these values.] Because the respondents are measured with only seven
items, the standard error of their location parameter is so high that their apparent locations
can serve only as estimates of their rank order along the latent dimension.

Why does the item “Belief in Life after Death” not pass the scrutiny of the tests? A
researcher who wants to measure the degree of religious belief in respondents in different
countries, and who has selected these items, will need to find an answer to this question. The
difference in the order with which this belief is held by different subgroups of respondents
may provide a clue as to where to look for an answer.

5.2 Confidence in National Institutions

To illustrate the analysis of polytomous data, I have selected nine questions from the World
Values Study 1990 about the amount of confidence people have in nine national institutions:
trade unions, parliament, the civil service, the press, major companies, the legal system,
the police, the armed forces, and the church. The possible responses were “a great deal”
(3); “quite a lot” (2); “not very much” (1); and “none at all” (0). It is likely that the amount
of confidence will differ systematically across institutions and across respondents, which
means that combining their responses to different items would allow us to identify their
position along a latent trait that we might call “extent of confidence in national institutions.”

As the relative amount of confidence in various national institutions may differ across
countries, we will use respondents from four countries: two in North America (the United
States and Mexico) and two in the European Union (Italy and Austria). Respondents differ
in their political ideology, as indicated by their self-placement on a left–right scale (leftist:
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Table 12 Mean values of 10 groups, based on country and left–right self placement (1–4 = left,
5 = center, 6–10 = right) in their answers about degree of confidence in 9 national institutions

USA Mexico Italy Austria
Entire
group L C R L C R L R L R

Unions 1.24 1.42 1.29 1.27 1.15 1.08 1.30 1.26 0.98 1.29 1.21
Parliament 1.29 1.41 1.40 1.49 1.10 1.06 1.26 1.04 1.15 1.44 1.38
Civil Services 1.31 1.62 1.64 1.66 0.96 0.99 1.15 0.88 1.08 1.46 1.41
Press 1.36 1.49 1.43 1.45 1.37 1.32 1.46 1.23 1.25 0.92 1.01
Companies 1.42 1.43 1.52 1.60 1.21 1.22 1.38 1.22 1.64 1.38 1.40
Legal system 1.49 1.51 1.52 1.60 1.31 1.37 1.63 1.14 1.27 1.64 1.67
Police 1.59 1.81 1.91 2.01 0.92 0.97 1.25 1.50 1.87 1.76 1.80
Army 1.64 1.83 1.98 2.08 1.35 1.39 1.62 1.09 1.66 1.07 1.17
Church 1.97 1.83 2.12 2.25 1.81 2.00 2.21 1.19 1.98 1.40 1.60

n 11680 799 1443 2311 654 1047 2433 1110 751 140 992

Note. Responses could be 3 = “a great deal”; 2 = “quite a lot”; 1 = “not very much”; and 0 = “none at all.”

score 1–4; rightist: score 6–10). As there were many American and Mexican respondents
who chose the category 5, I placed these respondents in a separate “middle” category. For
each of the resulting 10 groups (2 countries with 2 ideological categories and 2 countries
with 3 ideological categories) the mean response for each of the 9 national institutions is
given in Table 12.

Institutions clearly differ in how much confidence they inspire. Some, notably the trade
unions and the parliament, are perceived with little confidence, whereas others, especially
the Church, enjoy a lot. It is appropriate, then, to analyze these data with an IRT measurement
model that takes these differences into account.

Is the order in which the institutions are perceived as inspiring confidence the same across
all subgroups of respondents? There are systematic differences between the countries, as
Table 12 shows. Within each country, right-wing respondents have more confidence on the
whole in most of the institutions than left-wing respondents. Conversely, for all countries but
Mexico, left-wingers have more confidence in trade unions than do right-wingers. This is the
exception, however, because within each country the order of most of the other institutions
is the same for left- and right-wing respondents. The differences in the ordering of these
institutions in the different subgroups look serious enough that the assumption of Invariant
Item Ordering is likely to be violated, and so neither the Double Monotonicity model nor
the Rasch model will fit very well.

A Mokken scale analysis on the entire data set confirms this. Eight of the nine institutions
form an acceptable cumulative scale (with a weighted H -value of 0.40), but the item-
homogeneity of Confidence in the Church falls below the lower boundary of 0.30. To test
the model of Monotone Homogeneity, subgroups of at least 100 respondents were formed,
and violations of at least .03 proportion points were inspected. Less than 1% of the (more
than 500) appropriate comparisons lead to significant violations. The overall evaluation of
all items in the scale is good (the highest CRIT value, 42, is well within the acceptable
zone). The model of Double Monotonicity shows serious violations in each of the four
tests, except in the comparison of the item step order for subgroups of respondents on the
basis of their left–right self-placement.

Mokken scale analyses were then performed on the data from each country separately.
For all countries an acceptable cumulative scale was found, but with different subsets of
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Table 13 Mokken scaling (homogeneity analysis) results on amount of
confidence in national institutions in the United States, Mexico, Italy, and Austria

Label Mean ItemH

USA: H = 0.38, RHO = 0.75 (n = 4553)
Confidence in...
Parliament 1.45 0.43
Companies 1.54 0.36
Legal system 1.56 0.33
Civil Service 1.65 0.43
Police 1.94 0.43
Armed forces 2.01 0.31

Nonscaling items because of insufficient homogeneity:
Unions 1.30 0.26
Press 1.45 0.27
Church 2.14 0.25

Mexico: H = 0.50, RHO = 0.87 (n = 4134)
Confidence in . . .

Civil Service 1.08 0.57
Police 1.13 0.54
Parliament 1.18 0.56
Unions 1.22 0.50
Companies 1.32 0.47
Press 1.41 0.51
Legal system 1.51 0.47
Armed forces 1.52 0.42
Church 2.09 0.27

Italy: H = 0.40, RHO = 0.77 (n = 1861)
Confidence in...
Civil Service 0.96 0.41
Parliament 1.09 0.40
Legal system 1.19 0.38
Armed forces 1.32 0.40
Church 1.51 0.36
Police 1.65 0.47

Nonscaling items because of insufficient homogeneity:
Unions 1.14 0.19
Press 1.24 0.23
Companies 1.39 0.28

Austria: H = 0.41, RHO = 0.77 (n = 1132)
Confidence in...
Armed forces 1.16 0.57
Parliament 1.38 0.54
Companies 1.40 0.56
Civil Service 1.41 0.50
Legal system 1.67 0.47
Police 1.79 0.51
Press 1.00 0.25
Unions 1.22 0.29
Church 1.57 0.28
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items, and with the items in different order of “popularity” (see Table 13). For each of the
four scales, both the test for Monotone Homogeneity and all tests for Double Monotonicity
showed the amount of model violation to be within the acceptable range.

6 Discussion

Measurement models like reliability or factor analysis assume that all items are equally “pop-
ular” (i.e., have the same frequency distribution). Whenever this assumption is violated—as
when the items form a cumulative scale—an artifact can creep in whereby items do not
seem to be homogeneous enough to measure a single latent variable. In these situations a
major advantage of IRT models, including Mokken scale analysis, over CTT models is that
in introducing model parameters for items, they explicitly take into account that the items
differ in popularity.

A second advantage of Mokken scale analysis over CTT models lies in the detailed em-
phasis on model fit. All Hi j coefficients (and therefore all pairwise correlations) must be pos-
itive, and each item must be sufficiently homogeneous with the others. These requirements
lead to measurement instruments that conform to higher standards of reliability and homo-
geneity than instruments that have been inspected only in a standard reliability analysis.

A third, more practical, advantage of the Mokken scaling procedure over most other
measurement procedures is its “bottom-up” hierarchical clustering search procedure that
identifies a maximal subset of homogeneous items. Especially in exploratory research aimed
at developing new measurement instruments, this procedure helps the researcher to detect
new candidates for latent variables, even when only a limited number of items are available.

Finally, Mokken scale analysis is an IRT model that can successfully be used on small
numbers of items. Molenaar (1997a) showed that when the number of items is relatively
small, the results of a Mokken scale analysis and the more stringent Rasch scale analysis
often lead to essentially the same results.

Software for nonparametric and parametric IRT models, including Mokken scale anal-
ysis, is available as Windows-oriented, well-documented, and user-friendly stand-alone
software.6 Appendix 1 (available on the Political Analysis Web site) gives some additional
information that may be useful for readers who want to perform a Mokken scale analysis
on their own data.

The Mokken models have led to the developments of further nonparametric IRT models
that differ from Guttman’s original cumulative model in the specification of their IRF. Two
new approaches, based on Mokken’s scaling models and procedure, have been particularly
fruitful: the construction of models and procedures for nonparametric unfolding analysis
(Post and Snijders 1993; Van Schuur 1993, 1997, 1998; Van Schuur and Kiers 1994), and
for the nonparametric circumplex (Mokken et al. 2001).

Mokken scale analysis has been applied for more than 30 years. Sijtsma and Molenaar
(2002) give an overview of applications, mainly in testing and survey research. For appli-
cations in political science (many not involving surveys), consult Cingranelli and Richards

6Software for Mokken scale analysis is available as the program MSP5 for Windows from ProGamma; e-mail:
gamma.post@gamma.rug.nl; Web site: http//www.gamma.rug.nl. This program supercedes previous versions
such as SCAMMO or Mokken Scale. Other algorithms, at least in limited form, are available as SAS macros
and STATA ADO files, or as stand-alone programs (cf. Kingma and ten Vergert 1985). Software for parametric
IRT models is also available (see Embretson and Reise 2000, ch. 13, for an overview). For the Rasch analyses
discussed in this paper I used the RUMM2010 program (Sheridan et al. 2000, 2001), which performs a Rasch
analysis on dichotomous data and the Partial Credit Model and the Rating Scale Model analysis on polytomous
data. This program is available from www.rummlab.com.au; e-mail: rummlab@arach.net.au.
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(1999), Davenport (1995), Jacoby (1994, 1995), Mokken (1971), Richards, et al. (2001),
Scarritt (1996), Schneider et al. (1997), Stokman (1977), Van Schuur and Vis (2000), and
Zin et al. (1992).
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