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ADMISSIBLE ESTIMATORS OF 6' IN SOME EXTREME 
VALUE DENSITIES 

BY 
R. SINGH 

1. Introduction. Let the random variables X9 Y, Z have respectively the extreme 
value densities as 

6 (1) /*(*;*) = { 0> otherwise 

(2) My,»~\ 0> otherwise 

(3) /*;/»)-{ 0J otherwise 

where 0>O, A>0 and /x are real numbers. 
If â is any estimator of the parametric function g(6), the loss function L0 is 

assumed to be 

U M ) = [(*-g(0))!g(e)]2-

We prove the following: 

THEOREM. Let the loss function be L0. 
(a) If X has density (1) then 

80(X) = [(n + 2r)/(n + r)]Xr 

is an admissible minimax estimator of 6% r> —n/2. 
(b) If Y has density (2) then 

8o(Y) = [(n-2s)/(n-s)]Y° 

is an admissible minimax estimator of Xs, s<n/2. 
(c) IfZ has density (3) then 

80(Z) = [(l+2a)l(l+a)]e-«z 

is an admissible minimax estimator ofe~m, a> — \. 
As a particular case of (a) we have 
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COROLLARY 1. If Xl9..., Xn represent n independent observations from a rec­
tangular density on (0, 0) then 

(n+2r)l(n + r)[max,(Xl9...,Xn)Y 

is an admissible minimax estimator of 6r, r> —n/2, with respect to the loss L0. 
Before proving the theorem in §2 we make the following 

REMARKS, (i) Karlin [1] proved two theorems (his Theorems 2 and 3 on pp. 
418-419) which when applied to densities (1), (2), and (3) state, respectively, 

(a') the estimator 80(X) is an admissible estimator of 6\ r>0; 
(b') 80(Y) is an admissible estimator of Ar, r < 0 ; 
(c') 80(Z) is an admissible estimator of e~m, a > 0 . 
Thus our theorem extends the admissibility of 80 in (a) to negative powers 

r of 6, r> —n/2; in (b) to positive powers,? of À, s<n/2; in (c) to negative values of 
a> —\. 

Although we have not been able to extend Theorems 2 and 3 of Karlin (in their 
general form) to values of a> — \, our theorem follows as we have been able to 
use, in our proof, the exact form of the densities involved. 

(ii) The restriction r> — n/2 in (a), r<n/2 in (b) and a> — \ in (c) is necessary, 
for otherwise the risk of the estimator 80 is not defined. 

(iii) Under the loss function L0, an estimator 8(X) = CX\ C constant, has risk 

R(CX, 6) = C2(n/n + 2r)-2C(n/n + r) + l 

which is minimized with respect to C for C=(n+2r)/(n + r). Thus the estimator 
80(X) = [(n+2r)j(n+r)]Xr is the uniformly minimum risk estimator in the class of 
all estimators of the type CXr. Its risk is given by 

(4) i?(So,0) = [rAz + r] 2 . 

It may be noted that 6r has a UMVUE given by S1(X) = [(n + r)/r]Xr. This 
follows from the fact that 31(A

r) is a function of the sufficient and complete statistic 
X, and has expected value £'(S1(A

r)) = 6r. But, being of the type CX\ it is clearly 
uniformly inferior to S0(X). 

Similar remarks apply to 80(Y) and S0(Z). 

2. Discussion of the proof. Karlin's approach to establish admissibility can be 
briefly stated as follows. To prove the admissibility of 80 for g(6), assume that there 
is an estimator 8 better than 80. This leads to the inequality 

(5) T(6) = j(80-8)2f(x;e)dx 

<2J(80-8)(80-g(6))f(x;S)dx 

holding for all 6. In order to demonstrate that 80 is admissible it is enough to show 
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that (5) is possible provided S(X) = S0(x) a.e. This is done as follows. Suppose there 
exists an increasing function F(9) with the property that r.h.s. of (5), integrated 
with respect to dF(9), reduces to zero. This implies that J T(9) dF(9)<0, proving 
thereby that T(0)=0 a.e., which in turn implies the desired result 8(x) = 80(x) a.e. 
One way to look for F{9) is to choose it so that 

jg(0)f(x; 9) dF(6) = 80(x) jf(x; 9) dF{9\ 

Proof, (a) Let 8 be an estimator better than 80. Then the inequality (5) in our 
case becomes 

(6) T(0) = f (80 -8)29~nxn-1dx 
Jo 

2C (80-8)(80-9y-nxn-1dx < 

holding for all 9. On applying Schwarz inequality to the r.h.s. of (6) and then using 
(4) we get 

(7) f (80-8)(80-9
r)9- n * n - 1 dx < M 2 r 

(8) T(0) < M 2 r 

where kl9 k2 depend on n and r but not on 9. Let dF(6) = 0~2r ~1 dd and let 0 < a < b 
be real numbers. Integrating (6) with respect to dF(6) we have 

C T(6)e-2r-1d0 <2 Ç f f ( 8 0 - S ) ( 8 o - ^ " B ^ n " 1 ^ l * " 2 r " 1 ^ -
J a J a LJo J 

The r.h.s., after an interchange of order of integration (which is justified on 
account of (7) and (8)) is equal to Ib—Ia, where Ia is obtained on replacing b by 
a in 

/„ = 2 f (8o-S)xn-1U\8o-0
r)9-2r-n-1de\ dx 

= 2 f (80-S)xn-1[b-n-r-xrb-n-2r](n+r)-1dx. 

Applying Schwarz inequality to the r.h.s. after taking absolute values we find 

\ib\ < k,b-%T{b)r2 

where k3 = (2/n+r)[n-ll2 + (n+2r)~112] is independent of 6. It follows therefore 
that 

(9) T T(0)9-2r-1 d9 < k3[b-r(T(b))ll2 + a-r(T(a))112]. 

Below we show that there exist two sequences of real numbers {at} and {6y} such 
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that di -> 0 => T(adar2r -* 0 and i , -> oo => T^bj2r -> 0. If we let * -> 0 along 
{̂ } and è -> oo along {6y} in (9) we get 

implying the desired result S(A:) = S0(X) a.e. 
To prove the existence of the two sequences asserted above we first note that 

(8) and (9) imply 

(10) r T(0)d-2r-1 dO < oo. 

Suppose T(6)d-2r>e>0 for d> 0O. Then 

r T(9)d-2r-1 de > P (c/0) de = +oo, 
Jo Je0 

contradicting (10). Thus there exists a sequence {bj} with the desired property. 
The existence of the sequence {at} can be proved in a similar way. This completes 
the proof of the admissibility part. The minimaxity of S0 follows from the fact 
that R(S0i e) is constant with respect to the loss L0. The proof of part (b) and (c) 
can be either given in a similar way or deduced from that of (a) as follows. 
(b) Let 7= 1/X and A= 1/0 in the density (2). We get the density of X as in (1). 
Therefore, [(n+2r)/(n + r)]Xr is admissible for 0r. That is, [(n + 2r)/(n + r)]Y-r is 
admissible for A~r for r>n/2. If we set s= — r, we get the assertion in (b). 
(c) Let Y=ez and X=eu in (3). Then Z has the same density as in (2) with n = 1. 
Therefore, [(l-2^)/(l-^)]7 s is admissible for As. That is, [(l-2.y)/(l-.y)]é?sZ is 
admissible for esli for s<n/2. If we set s= —a we get the assertion in (c). 
This completes the proof of our theorem. 
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