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Understanding convolutional neural networks
via discriminant feature analysis

hao xu, yueru chen, ruiyuan lin and c.-c. jay kuo

Trained features of a convolution neural network (CNN) at different convolution layers is analyzed using two quantitative
metrics in this work. We first show mathematically that the Gaussian confusion measure (GCM) can be used to identify the
discriminative ability of an individual feature. Next, we generalize this idea, introduce another measure called the cluster purity
measure (CPM), and use it to analyze the discriminative ability of multiple features jointly. The discriminative ability of trained
CNN features is validated by experimental results. Research on CNNs utilizing GCM and CPM tools offers important insights
into its operational mechanism, including the behavior of trained CNN features and good detection performance of some object
classes that were considered difficult in the past. Finally, the trained feature representation is compared between different CNN
structures to explain the superiority of deeper networks.
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I . I NTRODUCT ION

The convolution neural network (CNN) offers excellent
object classification performance due to its superior feature
representation capability. This is automatically obtained by
the backpropagation training process with a large amount
of training data. Great efforts have been exerted to ana-
lyze the trained filters in order to explain CNN’s perfor-
mance. Existing visualization methods [1–3] reconstruct
input images or visualize the responses to provide insights
into the mechanism behind the activation of certain fil-
ters. Despite partial success in explaining CNN’s perfor-
mance, such analysis is less scalable given an increasing
number of object classes and deeper network structures.
In [4], the average precision (AP) of an individual filter is
computed and used as a quantitative measure of a trained
CNN filter’s discriminative ability. An important contribu-
tion of their work is to confirm the existence of ‘GMC-like
features’.

Human brain cells that only respond to specific and
complex visual stimuli (such as the face of one’s grand-
mother) are called the grandmother cells (GMC) [5]. They
have been studied in artificial neural networks and are
believed to play a critical role in object recognition. For
example, the cat filter was extensively studied in [6] for
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its resemblance to the cat-face GMC. The term ‘GMC-
like features’ is used to refer to features or feature groups
that respond solely to one object class. A similar con-
cept is adopted in the standard feature encoding for image
classification [7, 8].

In Fig. 1, two conv_5 filters from the CaffeNet are used
to demonstrate the importance of studying the GMC-like
features. From left to right, the filters correspond to the ‘din-
ing table’ and ‘dog’ object class, respectively. In the left, no
dining table image is among the top nine activations and
there is a significant overlap in the Gaussian confusion plot
between the filter responses of the dining table and non-
dining table classes. In the right, all top nine activations
are dog images and there is little overlap in the Gaussian
confusion plot between the filter responses of the dog and
non-dog classes. The visual inspection of the top nine acti-
vations in Fig. 1 demonstrates the superior discriminative
ability of GMC-like features, but such inspection cannot
be conducted in large-scale networks due to the infeasible
workload on the human inspector. Note that the Gaussian
confusion plot reflects the important message of the top
nine activations and, therefore, motivates us to develop the
Gaussian confusion measure (GCM, see Section A), which
yields a score representing the discriminative ability of a
feature without human intervention.

For certain object classes, one CNN feature is not a
GMC-like feature by itself (see Section B). However, when a
group of features work together, they behave as a GMC-like
feature group. To understand the observation, we develop
another measure called the cluster purity measure (CPM,
see Section B) to gauge the group performance of features.

1https://doi.org/10.1017/ATSIP.2018.24 Published online by Cambridge University Press

mailto:iamxuhao@gmail.com
https://doi.org/10.1017/ATSIP.2018.24


2 hao xu, et al.

Fig. 1. None-GMC-like and GMC-like features are compared in the left and right subfigures. The first and third subfigures give the top nine activations for two
conv5 filters and the second and fourth subfigures show their Gaussian confusion plot, which reflects the distribution of a filter’s response value (see discussion
in Section A). In this example, the GMC filter (i.e., filter 142 in conv5 of the fast-RCNN [9] CaffeNet model) is mainly activated by the dog class and its Gaussian
confusion plot shows better separation.

As opposed to training an SVM for a subset of features and
evaluating the resulting AP, CPM can be directly computed
and not subject to the stochastic difference.

Our research goal is to gain a better understanding of
the CNN by evaluating its trained features and studying the
GMC-like features. It has three major contributions. First,
we propose the GCM to automatically evaluate the perfor-
mance of an individual filter. Second, we propose the CPM
to automatically evaluate the group performance of a set
of filters. They are both simple and efficient to train, and
are useful in the automatic evaluation of the CNN features.
Third, we study the CaffeNet and the VGG_M_1024 archi-
tectures by evaluating its filters using the proposed metrics.
Our study provides an explanation of their stellar perfor-
mance, reveals CNN’s capability in detecting certain object
(e.g. the dining table, see Section B), identifies potential
issues with feature representations, and verifies the benefits
of using deeper networks.

The rest of this paper is organized as follows. Related
work is reviewed in Section II. Two metrics are intro-
duced in Section III to evaluate whether a filter or a group
of filters qualifies as the GMC-like feature. Experimental
results based on the evaluation of the GMC-like features are
reported in Section IV. Concluding remarks are provided in
Section V.

I I . RELATED WORK

A) GMC-like features
To better understand CNN trained features and their rep-
resentations, several methods are proposed to find locally
optimal visual inputs for individual filters in [3, 10, 11].
Despite starting from different input priors, these methods
were capable of selecting images that maximally activate
a filter. By examining visualization results, one can verify
the existence of GMC-like features as well as identify the
targeted image content associated with the GMC-like fea-
ture. Besides visually inspecting features, Agrawal, et al. [4]
evaluated conv5 features with respect to their AP on the
PASCAL-VOC 2012 dataset and showed the existence of
GMC-like features for several object classes.

B) CNN interpretability
The exact purpose of filters in a convolution layer has
been studied since early days of CNN research. It was
observed in [12, 13] that the conv1 features are low-level
features such as edge, color, or texture. The deeper con-
volution layers extract higher-level features by assembling
lower level features in the previous layer with different
weights [14]. The pooling layers provide spatial and possi-
bly rotation invariance to feature extraction [15]. The fea-
tures assembly was studied in [16]. It was concluded that
only a local subnetwork is activated or trained for a spe-
cific input pattern. The selection is done through the local
competition of several activation functions such as recti-
fied linear, maxout and local winner-take-all. Research in
[17] reveals the CNN model structure by formulating the
CNN as a deformable part model, where the convolution
layers serve as part-feature detectors and the pooling layer
uses a distance transform to assign different weight to part-
detectors according to their relative locations. An interest-
ing study conducted in [18] indicates that object detectors
could be trained to classify scene images, which have cer-
tain similarity as part-detectors are trained to recognize
objects.

Kuo [19] and [20] studied the role of the nonlinear acti-
vation functions in CNNs. It was argued that the nonlinear
activation units act as a rectifier and prevent the sign con-
fusion problem. Without intermediate nonlinear activation
units, a negative response at the first layer multiplied by
a negative filter weight at the second layer produces the
same sign as a positive response multiplied by a positive fil-
ter weight. The same confusion occurs between a negative
response followed by a positive filter weight, and a positive
response followed by a negative filter weight.

Additional insights can be obtained by investigating the
vulnerability of CNNs. Adversarial examples [21] are gener-
ated by adding imperceptible perturbations to the original
test image so that the neural network will make a different
prediction. Goodfellow et al. [22] proposed a fast gradient
sign method to efficiently compute perturbations. Xie et al.
[23] proposed a Dense Adversary Generation algorithm to
generate adversarial examples for the semantic segmenta-
tion and object detection problems.
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Zhang et al. [24] proposed a technique to detect rep-
resentation bias of CNNs. Due to dataset bias, unrelated
co-appearing features may be used by CNNs to estimate
the target attribute. To detect such representation flaws,
the method requires additional manual annotations on the
attribute relationship. The attribute relationships encoded
by CNNs are extracted and then compared with manually
annotated relationships, where disagreements suggest flaws
in representations.

Researchers also used interpretable graphs to encode
knowledge from pretrained CNN. Zhang et al. [25] built a
graph to find the knowledge hierarchy encoded by CNN
conv-layers, where each node corresponds to a part. Zhang
et al. [26] used the decision tree to obtain interpretable
prediction rules of a trained network.

Some recent works aim to build interpretable alterna-
tives to CNNs. Sabour et al. [27] introduced the CapsNet
using units named ‘capsules’ [28]. They are groups of neu-
rons. A capsule is implicitly associated with a visual entity.
Instead of a scalar output, each capsule outputs a vec-
tor, whose orientation corresponds to certain properties
(e.g., size and deformation) of the entity. The length of the
vector encodes the probability of existence. The routing-
by-agreement mechanism allows the model to build a
hierarchical relationship between entities. Experiments on
the MNIST [29] dataset showed that each dimension of the
capsule output vector possessed semantic meanings such
as width and stroke thickness. Chen et al. [30] proposed a
variant of the generative adversarial network (GAN) named
the InfoGAN, which aims to obtain an interpretable rep-
resentation in an unsupervised manner. It is achieved by
maximizing the mutual information between a subset of
input noise variables and the generated images. Experi-
ments on the MNIST dataset [29], SVHN dataset [31], 3D
image datasets of faces [32] and chairs [33] and CelebA face
datasets showed that the subset of latent variables corre-
spond to visual properties such as the digit width in the
MNIST dataset, the lighting condition in the SVHNdataset,
rotation in the 3D images, and the hair style in the celebA
dataset.

C) Object detection networks
Since Girshick et al. [12] introduced the RCNN to solve the
object detection problem, many efforts have been done to
improve its efficiency and accuracy. The spatial pyramid
pooling (SPP) was proposed in [34] to share convolution
computations. Girshick [9] added the bounding box regres-
sion and extended the finetuning to all layers for better
accuracy. The time-consuming region proposal extraction
was replaced by the region proposal network to speed up
detection to near real-time in [35]. Deeper network con-
figurations [36, 37] offered even better performance in the
benchmarking datasets at the price of a higher training
cost with more parameters. Although the performance can
be further improved with larger networks, we are more
interested in understanding the reason for their success. By
understanding the strength and weakness of a network, it

helps stretch the performance furthermore at a reasonable
cost of added parameters.

I I I . EVALUAT ION METR ICS

To train a CNN for object detection, each training sam-
ple contains an object in a region of interest (ROI) with
class label c. The filter responses in convolution layers indi-
cate trained features. In conv1, filters act as low-level feature
extractors. As more information is aggregated in deeper
convolution layers, filters become more discriminative and
class-specific. As a result, filters will be activated by more
specific inputs.

The problem of interest can be stated as follows. Given an
ROI which has an object inside, we extract one value from
the filter response at the conv5 layer by max pooling. There
are 256 filters at the conv5 layer and, consequently, we obtain
a response vector of dimension 256 for each input ROI. Our
question is whether there exists one or a group of filters that
can help separate an object class from other classes. In the
following, we propose two metrics that offer a quantitative
answer to this question.

A) Gaussian confusion measure
We use N testing data samples to test a CNN for a spe-
cific object class, say, class c. The testing samples consist
of both positive ones that are in class c and negative ones
that are not in class c. To analyze a specific filter, we take
its response value from the 256-D response vector and col-
lect N response values, each is associated with a class label.
They can be classified into two groups according to their
class labels; namely, in class c or not in class c. Consequently,
we can draw two distribution curves of response values for
the two groups. This explains the Gaussian confusion plots
in Fig. 1, where the y-axis is the normalized histogram value
and the x-axis is a specific filter response value. As shown
in Fig. 1, each filter response can be well approximated by a
Gaussian (or normal) function denoted by N(m, σ), where
m is the mean and σ is the standard deviation.

We can state the problem mathematically below. For a
set of testing samples (�xi, yi), where �xi is the ROI and yi is
the class label, we use Fi(fkj) to denote the response value
of fkj which is the jth filter in the kth convolution layer. We
group the response values according to their class labels into
C groups, whereC is the number of class labels in the testing
dataset.

To get the GCM from a given filter, fkj, and a given object
class, c ∈ C, we need to compute the mean and standard
deviation of twohypotheses:H0 andH1, whereH0 states that
the object belongs to class c while H1 states that the object
does not belong to class c.N0 andN1 indicate the number of
objects belonging to the two hypotheses, respectively.

The mean and standard deviation of hypothesis H0 can
be computed as

m0(fkj, c) = 1
N0

∑
∀i,s.t.yi=c

Fi(fkj), (1)
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σ0(fkj, c) =
√

1
N0

∑
∀i,s.t.yi=c

[Fi(fkj) − m0(fkj, c)]2. (2)

The mean and standard deviation of hypothesis H1 can be
computed as

m1(fkj, c) = 1
N1

∑
∀i,s.t.yi �=c

Fi(fkj), (3)

σ1(fkj, c) =
√

1
N1

∑
∀i,s.t.yi �=c

[Fi(fkj) − m1(fkj, c)]2. (4)

To decidewhether a filter is activated, we should choose a
threshold denoted by t. Then, the false positive is the proba-
bility of theGaussian distributionN(m1, σ1) falls in [t,+∞).
The false negative is the probability of the Gaussian distri-
butionN(m0, σ0) fall in (−∞, t]. The sumof these two error
types can be written as:

Qkj(t, c) =
∫ t

−∞
N(m0(fkj, c), σ0(fkj, c))

+
∫ ∞

t
N(m1(fkj, c), σ1(fkj, c)),

(5)

It is typical to set

t = 1
2
[m0(fkj, c) + m1(fkj, c)]. (6)

The specific object class that minimizes Qkj(t, c) in
equation (5) is a candidate class for us to search for its GMC
response. Mathematically, we have

cgmc = argmin
c∈C

Q(t, c). (7)

Finally, we define the GCM of filter fkj with respect to its
corresponding cgmc as:

GCM(fkj) = Qkj(t, cgmc)

Ej{Qkj(t, cgmc)}
/

m0(fkj, cgmc)

Ej{m0(fkj, cgmc)} . (8)

The numerator and the denominator of GCM in
equation (8) are the normalized decision error and the

normalized mean of the null hypothesis, respectively. Intu-
itively, a GMC-like feature should have a higher mean
response, m0(fkj, c), due to the higher correlation between
objects of the same class. Besides, it should have a lower
decision error Qkj(t, c) since it can differentiate positive
and negative samples at higher accuracy. As a result,
GCM approaches 0 and a larger number for GMC-like
and non-GMC-like features, respectively. This is sup-
ported by experimental results given in Fig. 2, where
we show both the mean response value and the deci-
sion error of 256 conv5 features in a fast-RCNN trained
CaffeNet with 40,000 iterations. Only three filters match
the above description and the GCM successfully picks
them out.

The GCM provides an effective feature evaluation tool
based on the statistics of the response values of a filter
given different inputs. Its validity is verified via applying
Gaussian tests to the response values extracted from Pas-
cal [38] dataset. It is also more thorough than evaluating
the filter by APs since the GCM can model the under-
lining statistics of the filter (rather than testing the filter
with a dataset). However, GCM is limited to the exami-
nation of a single filter. Thus, a new metric is needed for
evaluating the group discriminative ability of a number of
filters.

B) Cluster purity measurement
The CPM is proposed to evaluate how multiple filters per-
form jointly in differentiating object classes. As compared
with the AP evaluation method introduced in [4], the CPM
metric does not require the separate training of an SVM.

To evaluate theCPMscore on a set of n filters fk�j, �j∈J in the
kth convolution layer (J represents the set of filter indexes),
the testing samples (�xi, yi) are organized into two groups,�c
and ��c. The first group contains testing samples belonging
to class c while the second group contains testing samples
not belonging to class c. In testing, the filter responses vec-
tor, �Fi(fk�j), corresponding to the selected set of filters can
be obtained at the convk layer. The responses vectors are

Fig. 2. The red and blue bars correspond to the decision error, Qkj(t, c), and the null mean response, m0(fkj, c), of the 256 conv5 filters of the fast-RCNN CaffeNet
with 40,000 iterations, respectively. The blue bar is plotted bottom-up using the main vertical axis while the red bar is plotted top-down using the secondary vertical
axis. The red dots indicate filters of indices 132, 178, and 205 (from left to right), which have the GCM score of 0.05, 0.9, and 0.17, respectively. These filter responses
have low decision errors so that they are selected as GMC-like features. The top nine activations and the Gaussian confusion plot for each of these three cases are
presented for validation.

https://doi.org/10.1017/ATSIP.2018.24 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2018.24


understanding convolutional neural networks 5

Fig. 3. The response vectors of filter 188 (top left) and 212 (bottom left) in the 40000 iteration CaffeNet model are plotted in the 2D space. The blue dots in the plot
corresponds to response vectors obtained from testing samples of cars and the red dots corresponds response vectors obtained from others. The plot in the right
takes the top 200 responses vectors that are closest to the point P (shown as the star on the top right). The CPM score in this example is 0.87.

n-dimensional vector. They can be split into two groups
according to if the testing sample came from �c or ��c. An
example of the response vector in the 2D case is shown in
Fig. 3.

In operation, the CNN prefers a high response from a
filter when it ‘fires’ on an input. The recent success in the
Binary network [39] further proves the fact that most of
CNN filter’s behavior can be considered as an ON/OFF
switch. This motivates the CPM metric for a set of fil-
ters that better discriminates a certain object class jointly.
For this reason, we define a characteristic point at P =
maxi{�Fi(fk�j)} for an object class, where the max operation
is taken over each dimension in the filter responses vector
in the n-dimensional space.

As shown in Fig. 3, most points closer to P correspond
to the ‘car’ testing samples. To quantitatively measure this

property, we define the CPM metric as a measure of the
percentage of points corresponding to the target object class
within the top K closest points to point P. Mathematically,
we have

CPM(�F(fk�j), c) = Nc

K
, (9)

where Nc is the number of responses vectors �Fi(fk�j), which
are within the top K points closest to P, and correspond
to testing samples with class label yi = c. We set K = 200
empirically in the experiment.

In practice, we use the GCM metric to rank features’
discriminative ability on each object class individually
and, then, use the CPM metric to evaluate the joint
discriminative ability of a selected group of features that
perform well on a certain object class.

Fig. 4. The red and blue bars correspond to the decision error, minc Qkj(t, c), and the null mean response value,m0(fkj, c), of the 256 conv5 filters of the fast-RCNN
CaffeNet with 40,000 iterations, respectively. (Note that these bars are different from those in Fig. 2, where Qkj(t, c) and m0(fkj, c) were plotted for c =“person”).
The red bar is plotted top-down using the secondary vertical axis while the blue bar is plotted bottom-up using the main vertical axis. The red dots highlight filters
7, 132, and 246 from left to right. These filters have low decision errors and are selected as GMC-like features. The blue dots highlight filters 35, 45, and 51. These
filters have higher decision errors and their responses are selected as none-GMC-like features. The top nine activations and their deconv results are presented to
validate whether it is a GMC-like or none-GMC-like feature.
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Fig. 5. From left to right: the top nine activations and the 20 classes Gaussian confusion plot of filters 188, 212, and 172 in conv5 of the fast-RCNN CaffeNet with
40,000 iterations. The CPM score is 0.54 for filter 188 alone, 0.86 for filter 188 and filter 212 - it reaches 0.90 for the three filters group. The filters correspond to the
tail, window, and head of the car, respectively.

https://doi.org/10.1017/ATSIP.2018.24 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2018.24


understanding convolutional neural networks 7

Fig. 6. From left to right: the top nine activations and the 20 classes Gaussian confusion plot of filters 16, 180, and 220 in conv5 of the fast-RCNN CaffeNet Model
with 40,000 iterations. The CPM score is 0.36. These filters correspond to dishes, cups, an ellipse contour, respectively. Filters 16 and 180 are not related to a dining
table itself but rather objects placed on top of it.
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Fig. 7. The top nine activations and the 20 classesGaussian confusion plot of filters 56, 164, and 206 in conv5 of the fast-RCNNCaffeNetModel with 40,000 iterations
are shown from left to right. The CPM score is 0.61. These filters are all dedicated to detecting blue or gray color in the input, which are the typical background
associated with “airplanes”.
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I V . EXPER IMENTAL RESULTS

We use the latest fast-RCNN [9, 40] implementation as the
baseline. Since our objective is to analyze trained features,
we disable the bounding box regression to avoid confu-
sion. The analyzed network structure is the CaffeNet and
VGG_M_1024, pretrained with the ImageNet CLS dataset
[41]. To visualize filter responses (i.e., features) and top
activations, we use the deconv network [3] and visualiza-
tion toolbox from [11]. Furthermore, deconv images and top
nine activations are extracted separately using the PASCAL-
VOC 2012 dataset with the whole image as the ROI. To
save space, we also generate the 20 classes Gaussian con-
fusion plot by combining all 20 individual Gaussian confu-
sion plots.

A) Evaluating GMC features
Our experiment begins with applying the two developed
metrics, GCM and CPM, to the conv5 features extracted
from the CaffeNet. The fast-RCNN does not crop out ROIs
until it reaches the fully connected layer. Thus, we cre-
ated a new testing configuration, where the network ends
at the ROI-pooling layer to obtain network responses at a
given ROI. The ROI-pooling layer will output one maxi-
mum response value for each filter, which is used to evaluate
whether the filter is activated or not. That is, for all 256 filters
in the conv5 layer, we have a 256-D feature vector to denote
the response of each of the filters.

A few examples of GMC and none-GMC like features
are demonstrated in Fig. 4, where the top nine activations
of the GMC-like features are all of the same object classes,
and their GCM values indicate that these filters do not con-
fuse other object classes. The activations of none-GMC-like
features vary on the other hand. From left to right, filter 35
seems to look for the vertical line structure, filter 45 seems
to look for the green color, filter 51 seems to look for the
defocused background. Due to the space limit in the paper,
the full filter GCM results are included in the supplemental
material as the appendix.

B) Evaluating GMC feature groups
Besides individual GMC-like features, the proposed CPM
can find some interesting GMC-like feature groups. The top
nine activations and the 20 classes Gaussian confusion plot
of filter 188, 212, and 172 in conv5 are shown in Fig. 5.

The three filters are the top contributors of a feature
group for the “car” object. Individually, each of them has
a high decision error. They can get confused with different
object classes (e.g., “bird” and “bus”). However, when the
three work together, the discriminative power improves a
lot and the feature group will mostly respond to the “car”
images. As compared with an individual GMC, another
advantage of the feature group is its robustness against
occlusion. The GMC-like features are extremely sensitive
to occlusion. This is a real issue in general object detec-
tion since objects are often partially occluded in images.
Since theGMC-like feature group can respond to a subset of
object’s components, its detection performancewill bemore
robust when an occlusion occurs.

C) Evaluating context features
Detection of a “dining table” and a “chair” is interesting as
there is no clear definition of the object. Before applying
the CNN to object detection, the APs of using the DPM
[42] in detecting a dining table and a chair are both low.
They are 14.7 and 17.2, respectively, in the PASCAL-VOC
2012 dataset [38]. Recently, the fast-RCNN significantly
boosts the corresponding performance to 40.7 and 67.9.
We observe from our experiment that the difference in the
performance gain is due to “context features” trained by the
network.

By identifying a group of features that corresponds to
detecting “dining table” and plotting their top nine activa-
tions and the 20 classes Gaussian confusion plot in Fig. 6,
we see that the key information used in detecting a dining
table is cups and/or dishes placed on top of it. That is, while
the DPM detector attempts to model the shape or contour
of an object, there is little success in man-made objects due

Fig. 8. From left to right: (1) the top nine activations of filter 216 in conv5 layer of the 40000 iteration CaffeNet model, and (2) the Gaussian confusion plot of the
bicycle versus others, the motorbike versus others, and the car versus others.
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Fig. 9. From left to right: (1) the top nine activations of filter 141 in conv5 layer of the 40000 iteration CaffeNet model, and (2) the Gaussian confusion plot of the
cat versus others, the horse versus others, and the dog versus others.

Fig. 10. From left to right: (1) the top nine activations of filter 214 in conv5 layer of the 40000 iteration CaffeNet model, and (2) the Gaussian confusion plot of all
20 object classes.

Fig. 11. From left to right: (1) the top nine activations of filter 35 in conv5 layer of the 40000 iteration CaffeNet model, and (2) the Gaussian confusion plot of all 20
object classes.

to intra-class variation. The CNN approaches this problem
by summarizing the function of the dining table, which
is to hold cups or dishes on top of it. This is quite close
to how humans define a dining table: “an object to put
dishes on”.

Besides context features that correspond to the function
of an object, CNN also learns the context features that asso-
ciate with the most probable background of an object. In
Fig. 7, the three features have a CPM score of 0.61. How-
ever, the top nine activations and the 20 classes Gaussian
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Fig. 12. The top three filters in the CaffeNet trained to detect the “bottle” object. Their corresponding Gaussian confusion plots are shown under the top nine
activations.

confusion plot both confirm that the features are not learned
to detect ‘airplanes’ but the background.

D) Evaluating shared features
The CNN also learns shared features that have the supe-
rior discriminative ability over a few object classes. In

Fig. 8, the top nine activations and the Gaussian confu-
sion plot verify that the underlying feature tries to detect
the wheel of a motorbike or a bicycle. Although the top
nine activations include examples of the wheel of cars,
the Gaussian confusion plot indicates that the filter is
less capable of differentiating cars from others. As shown,
the feature can differentiate motorbikes and bicycles from
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other objects, but cannot separate them well. This exam-
ple demonstrates the first type of shared feature, which
corresponds to certain shared characteristics across dif-
ferent object classes such as a common part of different
objects.

There is another type of shared features, which not
only corresponds to multiple object classes but has the

discriminative ability to separate object classes. In Fig. 9, the
top nine activations and the Gaussian confusion plot ver-
ify that the feature tries to detect the ear of cats, dogs or
horses. Unlike the previous example, this feature has differ-
ent response value ranges for the three object classes and can
separate themwith small decision errors. Since this feature’s
discriminative ability is closely related to the actual response

Fig. 13. The top three filters in the VGG_M_1024 (right) trained to detect the “bottle” object. Their corresponding Gaussian confusion plots are shown under the
top nine activations.
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values, it will be deprecated in the binary network [39]. This
explains why the binary network could only achieve simi-
lar performance as the floating point network but could not
outperform it.

E) Other features
Besides the features that correspond to one or several object
classes, the CNN learns features that seem to have little
discriminative ability between classes. Usually, these fea-
tures correspond to generic texture, shape or color. In
Fig. 10, the top nine activations indicate that the filter is
looking for mesh-like texture. The corresponding Gaus-
sian confusion plot indicates that the feature can hardly
differentiate between any classes by itself.

There is also another type of filter, which is confirmed to
be an “unused” filter for classification. An example is shown
in Fig. 11, where the top nine activations indicate that the
filter is looking for parallel vertical patterns. However, the
Gaussian confusion plot of all 20 object class shows that
the feature has the same response range for all object classes.
By examining the FC1 weight assigned to this conv5 feature,
we see that it is almost ignored since the weight for this filter
is negligible. Although these type of features seem to have
little use in classification, they contribute strongly for gen-
eration tasks. The recent success in style transfer [43] relies
heavily on these generic features as they contribute to the
computation of the “style loss”.

F) Comparison between VGG_M_1024 and
CaffeNet
The VGG_M_1024 network structure used in the fast-
RCNN benchmark is selected for comparison with the Caf-
feNet. The two networks start from the same 96 conv1
features, which are combined into 256 features in conv2.
From that point on, while the CaffeNet has 384, 384, and
256 features in conv3, conv4, and conv5 layers, respec-
tively, the VGG_M_1024 has 512, 512, and 512 features
in its corresponding layers. The CaffeNet uses grouping
to divide filters into two groups due to the GPU mem-
ory limit at their development time, which results in
divided feature representation that may be less optimal
as compared with VGG_M_1024 where all features are
combined.

Due to the larger capacity in deeper convolution lay-
ers, the VGG_M_1024 model has a higher chance to learn
GMC-like features, and the feature representation learned
is more comprehensive and discriminative. An example is
the “bottle” object class, where the CaffeNet has no GMC-
like feature while the VGG_M_1024 have two GMC-like
features. As shown in Figs 12 and 13, the most discrimi-
native features trained by the CaffeNet are not GMC-like
features. Thus, the decision error is large. In contrast, there
are two GMC-like features trained by the VGG_M_1024,
leading to low decision errors. In general, features trained
from VGG_M_1024 tend to be more discriminative, and
more GMC-like features can be found in VGG_M_1024. A

Table 1. The CPM scores of the top 5 features in the CaffeNet and the VGG_M_1024 for each object class.

Network Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motorbike Person Plant Sheep Sofa Train Tv

CaffeNet 0.67 0.54 0.27 0.51 0.21 0.3 0.92 0.70 0.23 0.31 0.33 0.66 0.61 0.46 0.89 0.45 0.51 0.36 0.57 0.63
VGG 0.70 0.60 0.59 0.61 0.37 0.49 0.95 0.86 0.50 0.47 0.55 0.77 0.42 0.49 0.91 0.67 0.53 0.46 0.47 0.68

Table 2. The functionality summary of conv5 filters trained by the CaffeNet and the VGG_M_1024.

Feature type Filter ID Count

CaffeNet

1 Class GMC 7 16 30 38 53 56 57 59 65 72 74 95 116 130 139 157
158 183 203 205 217 220 233 239 240 241 246 253 28

Shared and distinctive
17 26 28 42 43 46 47 86 100 105 128 132 141 142 152
155 161 168 171 178 180 188 189 196 204 208 211
212 213 222 232 236 242 243 251 254

36

Shared and not distinctive 19 55 64 70 83 85 89 101 103 104 117 125 159 160 163
164 166 172 178 187 191 192 215 216 231 244 245 249 28

Other the rest of the filters 164

VGG_M_1024

1 Class GMC

28 30 35 44 51 53 77 80 82 84 86 88 92 100 153 160
178 179 190 196 214 233 247 269 288 294 304 341
367 371 390 402 417 427 430 439 446 451 457 461
469 472 473 486 503 510

46

Shared and distinctive

36 58 69 74 85 89 91 96 98 105 115 163 164 167 171
193 200 221 228 231 237 243 257 264 265 268 272 290
300 307 331 337 375 376 393 415 422 424 432 444 460
467 471 480 491 496 504 506

48

Shared and not distinctive
2 7 19 29 40 95 99 106 124 132 139 144 145 146 157
185 223 248 260 270 273 276 277 281 287 305 320 325
333 338 342 350 355 369 377 387 420 494 498

39

Other the rest of the filters 379
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summary of the feature representation for each object class
is concluded in Table 1, where the CPM scores of the top
5 features for each object class are compared between the
CaffeNet and the VGG_M_1024. The comparison further
verifies that deeper networks learn better feature represen-
tation.

G) Complete filter profile
After analyzing the complete set of CNN trained features,
we summarize different types of features trained by the Caf-
feNet and the VGG_M_1024 in Table 2, where the “1 class
GMC” features correspond to features that differentiate one
object class from the others (e.g., the dog example in Fig. 1),
the “shared and distinctive” features correspond to features
that differentiate several object classes from the others but
cannot differentiate within these classes (e.g., example in
Fig. 9), the “shared and not distinctive” feature correspond
to features that differentiate several object classes from the
others and differentiate within these classes (e.g., example in
Fig. 8), and the ‘other’ features include the rest of the more
generic features.

H) Summary
We have identified the following feature types learned by
CNNs:

(i) GMC-like features or feature groups;
(ii) context features related to the function or most proba-

ble background of the object;
(iii) distinctive or non-distinctive shared features;
(iv) non-discriminant features.

We also verified that deeper networks can learnmoreGMC-
like features so as to yield better performance.

V . CONCLUS ION

Two effective metrics (i.e., GCM and CPM) to eval-
uate trained features of CNNs were proposed in this
work. Thorough studies were conducted on deep fea-
tures learned from the CaffeNet and VGG_M_1024 net-
work based on these metrics. We identified different fea-
ture types, compared their discriminative ability, and ana-
lyzed the advantages of the deeper network structure in the
experiment. Finally, we provided a full conv5 feature profile
for both the CaffeNet and VGG_M_1024 to conclude our
study.

Understanding CNN features can help understand what
exactly has been learned in the network. Our study could
potentially contribute to the development of automatic
algorithms to determine the optimal network structure. It
provides a quantitative evaluation of learned networks by
introducing a loss term that is related to the CNN struc-
ture [44].
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