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Abstract

In this paper, we obtain some normality criteria for families of meromorphic functions that concern the
exceptional functions of derivatives, which improve and generalize related results of Gu, Yang, Schwick,
Wang-Fang, and Pang-Zalcman. Some examples are given to show the sharpness of our results.
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1. Introduction

Let G be a domain in C, and & be a family of meromorphic functions defined in G.
& is said to be normal in G, in the sense of Montel, if for any sequence /„ e & there
exists a subsequence /„. , such that fn. converges spherically locally uniformly in G,
to a meromorphic function or oo (see [8,12,20]).

In 1979, Gu [6] proved the following well-known normality criterion, which was a
conjecture of Hayman [9].

THEOREM A. Let & be a family of meromorphic functions defined in G, and let k
be a positive integer. If, for every function f g &, f ^0,f(k)^ 1, then & is normal
in G.

This result has undergone various extensions [1,2,4,13,16,19]. Yang [18] and
Schwick [13] generalized the above theorem and obtained:
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404 Yan Xu [2]

THEOREM B. Let t/i- ^ 0 be a analytic function in a domain G and k e N. Let &
be the family of meromorphic functions in G such that f and / ( i ) — \jr have no zeros
for each f e &, then & is normal in G.

Wang and Fang [16] generalized Theorem A by allowing / to have zeros, as
follows:

THEOREM C. Let & be a family of meromorphic functions defined in G, and let k
be a positive integer. If, for every function f e &, f has only zeros of order at least
k + 1 and only poles of order at least 2, andf(k) ^ 1, then & is normal in G.

THEOREM D. Let & be a family of meromorphic functions defined in G, and let k
be a positive integer. If, for every function f € &, f has only zeros of order at least
k + 2andfik) ^ 1, then & is normal in G.

If we allow / to have zeros and replace ' 1' by a function ' rfr (z) ^ 0' in Theorem A,
does Theorem A still hold? This is a natural but somewhat difficult problem proposed
by Y. X. Gu. Recently, Pang and Zalcman [10] proved the following

THEOREM E. Let \jr (^ 0) be a function holomorphic in a domain G e t . Let &
be a family of meromorphic functions defined in G, all of whose poles are multiple
and whose zeros all have multiplicity at least 3. If, for every function f e &,
f'(z) 7̂  ir(z), then & is normal in G.

It is natural to consider the case when / ' is replaced / (t) in Theorem E. In this
paper, we shall prove the following results:

THEOREM 1. Let \js (^ 0) be a function holomorphic in a domain G C C, k € N.
Let & be a family of meromorphic functions defined in G, all of whose poles are
multiple and whose zeros all have multiplicity at least k + 2. If, for every function
f 6 &,f(k)(z) i=- ir{z), then & is normal in G.

THEOREM 2. Let i/r (̂ fe 0) be a function holomorphic in a domain G C C, k be a
positive integer. Let & be a family of meromorphic functions defined in G, all ofwhost
zeros have multiplicity at least k + 3. If, for every function f e &, fik)(z) j=- is(z)
then & is normal in G.

REMARK 1. The following example shows that the number k + 3 in Theorem 2 (fo
A: = 1) is best possible.
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EXAMPLE 1 (see [10]). Let k = 1, D = {z : \z\ < 1}, and & = {/„}, where

JnK/ z-3/n n2 n\z-3/n)'

Clearly, all zeros of /„ have multiplicity 3. But & is not normal in D. In fact,
f*(2/n2) —>• oo as n —> oo, and so by Marty's criterion, & is not normal in D.

THEOREM 3. Let \js (i/r ^ 0) be a function holomorphic in a domain G C C, k
be a positive integer. Let & be a family of meromorphic functions defined in G,
all of whose zeros have multiplicity at least k + 2. If, for every function f 6 &,
f fk\z) ^ if{z), and \jr has no simple zeros in G, then & is normal in G.

REMARK 2. The hypothesis that \j/ has no simple zeros in G cannot be omitted in
Theorem 3, as is shown by Example 1.

REMARK 3. The following example shows that the exceptional function ty (z) can-
not be extended to the meromorphic case in Theorems 1-3.

E X A M P L E 2. Let k,l e N, D = {z : \z\ < 1}, f(z) = l/zh+l, and

Clearly, there exists n , e N such that/n
( i )(z) — ifr(z) i=- 0 for n > n0. But & is not

normal in D.

2. Some lemmas

To prove our results, we need the following lemmas.

LEMMA 1 ([16]). Let f be a non-polynomial rational function and k be a positive
integer. Iff(k)(z) ^ 1, then

J \Z) = —z + ak-\Z + • • • + «o H ;—.
J k\ (z + b)m

where ak_\, ... , OQ, a (^ 0), b are constants and m is a positive integer.

LEMMA 2 ([16]). Let f be a meromorphic function of finite order in the plane, k
be a positive integer. If all zeros off are of order at least k + 2 andf(k) (z) 7̂  1, then
f (z) is a constant.
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LEMMA 3 ([5]). Let f be a transcendental meromorphic function of finite order
and let b(z) be a polynomial which does not vanish identically. Iff has only zeros of
order at least 2, thenf — b(z) has infinitely many zeros.

Here we shall use the standard notation of value distribution theory (see [7,17]),
T(r,f), m{r,f), N(r,f), N(r,f),.... Wedenoteby S(r,f) any function satisfying

S(r,f) = o{T(r,f)},

as r -> oo, possibly outside a set with finite measure.

LEMMA 4 ([15]). Iff is a transcendental meromorphic function and k 6 N, then,
for every e > 0,

(k - 2)N{r,f) + N U j) < 2N (r, j) + N (ry - M + sT(r,f) + S(r,f).

LEMMA 5. Let f be a transcendental meromorphic function, k (> 2), / be positive
integers. If f has only zeros of order at least 3, then f((c> — zl has infinitely many
zeros.

PROOF. Suppose t h a t / ( t ) — z' has finitely many zeros. Then

(2.1)

By the logarithmic derivative theorem, we have

1
m(r,-J+m[ r,

<m(r,

= m

r,f) - N (r,l)N(r,f) - N (r, JJ^\ + S(r,f).
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Thus

(2.2) T(r,f) <(l+ l)N(r,f) + N (r, 1//)

By Lemma 4 and noting that k > 2, then, for every s > 0, we have

(2.3) (l+l)N(r,f) + N(r,l/f)

f) + N(r,l/f)
< 2N{r, \/f) + N (r, l//(i+/+1)) + sT(r,f) + S(r,f).

Combining (2.2) and (2.3), we obtain

(2.4) T(r,f) < IN (r, j) + N (r, fJ_^ +sT(r,f) + S{rJ).

Recalling that the zeros of/ are of order > 3 and setting s = 1/6, from (2.1) and (2.4),
we get

,f) < 6N (r, fJ_^ + S(r,f) = S(r,f),T(r,

which contradicts the fact that / is a transcendental meromorphic function. Lemma 5
is proved. •

LEMMA 6. (i) Let k be a positive integer, and let Q(z) be a rational function
all of whose zeros are of order at least k + 2 and all of whose poles are multiple with
the possible exception ofz = 0. Then, for each positive integer I, Q^k)(z) = zl has a
solution in C.

(ii) If all zeros of Q{z) have multiplicity at least k + 3, then (i) is still valid without
the hypothesis on poles of Q(z)-

(iii) If I ^ 1, then (i) still holds without the hypothesis on poles of Q(z).

PROOF. Fix / and suppose that Q(k)(z) - z' ^ 0 for all z £ C. If Q is a polynomial,
then Q(k)(z) = z' + a, where a ^ 0, so that

Q(z) = « T l y z k + ' + lzk + CiZ" + c*k~2 + • • •+ <*-'•
where c\, c 2 , . . . , Ck-\ are constants. Obviously, / ^ 1. Since all zeros of Q have
multiplicity at least k + 2, then Q(M)(z) = Qik)(z) = • • • = Q'(z) = 0 whenever
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Q(z) = 0. But Q(k+l)(z) = lz'-' vanishes only for z = 0. Then (2(0) = 0, so that
a = Qw(0) = 0, a contradiction. Thus Q cannot be a polynomial.

Set

Then/ is a non-polynomial rational function and/(4)(z) ^ 1. By Lemma 1,

/ (z) = — zk + ak.xz
k~l + • • • + +

k\ (z + b)m

where at_i, . . . , ao, a (^ 0), b are constants and m is a positive integer. Thus

( 2 . 5 ) e ( ) i ! * + ' * > a

There exists a point z0 such that Q(zo) = 0> and then

Since a / 0, we know that zo ^ 0. Solving for zo from (2.6) and (2.7), we obtain
Zo = -bl/(m + k + l). Thus fc ^ 0, and by (2.5),

f!(z + bl/jm + t + /)
(2'8) Qiz) = (* + Q!( + br
Again by (2.5), we get

,2.9,

+ + fc + w + .
Equating coefficients of z

m+;+'- ' in (2.9), we obtain bl = mb, so that m = I since
b ^ 0. Since all nonzero poles of Q are multiple, we have I = m > 2. Then, by
equating coefficients of z

m+k+l-2 in (2.9), we have

( ' '

bl \2 m(m -
)

Thus / = —Jt, a contradiction and (i) is proved.
The assumptions in (ii) or (iii) imply that m = I > 2. As in the proof of (i), we also

have (2.10). Then the proofs of (ii) and (iii) are almost the same as the proof of (i).
Here we omit the details. •
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The well-known Zalcman's lemma is a very important tool in the study of normal
families. It has also undergone various extensions and improvements. The following
is an up-to-date version, which is due to Pang and Zalcman [11] (see also [2,3,16,21,
22]).

LEMMA 7. Let k be a positive integer and let & be a family of functions meromor-
phic in a domain G, such that each function f e & has only zeros of multiplicity
at least k, and suppose that there exists A > 1 such that \f(A> (z) | < A whenever
f (z) = 0, / e &. If & is not normal at zo 6 G, then, for each 0 < a < k, there
exist a sequence of points zn e G, zn —>• Zo, a sequence of positive numbers pn —> 0,
and a sequence of functions fne& such that

, . . fn(Zn + PnS) ...
gntf) = " • gtf)

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C, all of whose zeros have multiplicity at least k, such that
g*(Z) < g#(0) = kA + 1. Moreover, g has order at most 2.

Here, as usual, g#(f) = |£'(£)|/(1 + |g(£)|2) is the spherical derivative.

3. Proof of theorems

PROOF OF THEOREM 1. Since normality is a local property, without loss of gener-
ality, we may assume G — D = [z • \z\ < 1}, and

= z' + a z M
al+xz

M + •••= z'<p(z), (z € D),

where / > 1, <p(0) = 1, <p(z) ^ 0 for 0 < |z| < 1, and it is enough to show that &
is normal at each z e D. By Theorem C, we only need to prove that & is normal at
z = 0.

Consider the family ^ = {g(z) = f (z)/rff(z) : f € &,z € D). Iff € &, then
/ « ( 0 ) ^ T/T(O) = 0, so t h a t / (0) £ 0 since all zeros of / have multiplicity at least
k + 2. Thus, for any g e &, g(0) = f (0) /^(0) = co.

We first prove that $ is normal in D. Suppose, on the contrary, that & is not normal
at zo € D. Then by Lemma 7, there exist a sequence of functions gn e &, a sequence
of complex numbers zn -> Zo and a sequence of positive numbers pn -> 0, such that

Pn
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converges spherically uniformly on compact subsets of C. G(£) is a nonconstant
meromorphic function on C, all zeros of G(£) have multiplicity at least k + 2, and
moreover G(£) is of order at most two.

We distinguish two cases:
Case 1: zn/pn —• oo. By simple calculation, we have

- • • • - gn(z)——— . j

Thus, using notation zn = zn + pn$ for brevity, we have

Ml)
/ ,

r / n ,
8nZn) \(l - * ) ! ( z B ) * * ( / -

+ ••• + —

On the other hand, we have lim^ooCp,./^) = 0 and

,. Pn(P
U)(.Zn) -

hm -—— = 0 ,
<P(Zn)

n—*oo

uniformly on compact subsets of C Therefore, on every compact subsets of C which
contains no poles of G(£), we have

flk)(7 )J „ v,*.ny /-•(i)/1.\

MZn)

Since f^k){z)/Mz) ^ 1. by Hurwitz's theorem, we know that either G(t)(£) ^ 1 or
= 1 for any £ e C that is not a pole of G(£). Clearly, these also hold for
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all f e C. If G w (£) ¥" 1, then by Lemma 2, G(£) is a constant, a contradiction. If
G w (£) = l,then

G(£) = - f * + Q-i**"1 + • • • + co,

which contradicts the fact that all zeros of G(f) have multiplicity at least jfc + 2.
Case 2: zn/pn —> a, a finite complex number. Then

gniPnt) gn(Zn + Pn<£ - Zn/Pn)) „ , . . •. „ , . , ^
= Gn(S ~ Zn/Pn) ~+ G(£ - «) =7 = T

Pn Pn

spherically uniformly on compact subsets of C. Clearly, all zeros of G(f) have
multiplicity at least k + 2, and £ = 0 is a pole of G(£) with multiplicity at least /, and
the other poles of G(£) are multiple.

Set Hn(0=fn(Pn0/Pk
n

+l- Then

Note that limn_00 \lf(pn£)/p'n = f' uniformly on compact subsets of C, thus

uniformly on compact subsets of C. Obviously, all zeros of / / (£) have multiplicity at
least k + 2, and all nonzero poles of / / (£) are multiple, and / /(0) ^ 0 since G has a
pole of order at least / at £ = 0 . We also have

uniformly on every compact subset of C which contains no pole of G.

CLAIM. //<*>(£) ^ £'.

Otherwise there exists £0 such that H(k)(^0) = £0'. Then / / is holomorphic at
We consider two subcases.

Case 2.1: f0 7̂  0. Since

then Hurwitz's theorem implies that H(k)(%) s f'. Thus
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where a\,a%,... , a* are constants, and

Since all zeros of H (£) have multiplicity at least k+2, then / / (*~ u (£) must have a zero
with multiplicity at least 4. Hence ai = 0. Similarly, we can deduce that a2 = a3 —
• • • = ak = 0. It follows that / / (£) = £*+'/!/(/ + jk)!. Then G(£) = £*/!/(/ + *)!,
which contradicts the fact that all zeros of G(£) have multiplicity at least k + 2.

Case 2.2: £0 = 0. Then //„(£) is holomorphic and //„(£) -> / / (£) uniformly on a
neighbourhood of 0. Indeed, / / (£) is holomorphic at 0, so G(£) has a pole of exact
order / at 0. On the other hand, for each n, the pole of gn(pn%) at 0 has also exact
order /. Then, £ = 0 is the zero of 1/ G(£) and l/gn(pn£) is of order /. Note that since
gn(Pn^)/' Pk

n —• G(£), spherically uniformly on compact subsets of C, there exist a
positive integer n0 and r > 0 such that

ft 1

' |Gf(f)|

for all n > n0 and each £ e {£ : |£| = r}. By Rouche's theorem, l/gn(pn£) has
no zeros in D'r = {£ : 0 < |£| < r} for n > n0, and then gn{pnK) has no poles in
D'r for n > n0. Thus //„(£) is holomorphic in D'r, and //„(£) ->• / / (£) uniformly
on a neighbourhood of 0. Hence, the same argument as in Case 2.1 also applies for
Case 2.2.

Now, we have tf(i)(£) ^ £'• By Lemma 3 (for k = I) and Lemma 5 (i) (for k > 2),
/ / (£) must be a rational function. However, Lemma 7 shows that f/( t )(£) = £' has a
solution in C, a contradiction. We have proved that $ is normal on D.

It remains to show that & is normal at z = 0. Since ^ is normal in D, then
the family ^ is equicontinuous in D with respect to the spherical distance. On the
other hand, g(0) = oo for each g e &, so there exists S > 0 such that \g(z)\ > 1
for all £ e ^ and each z e Dt = {z : \z\ < 8}. It follows t ha t / ( z ) # 0 for all
f e & and z € Ds. Suppose that & is not normal at z = 0. Since Ĵ " is normal in
0 < |z| < 1, the family 1/Ĵ " = {1 / / : / € &\ is holomorphic in Ds and normal in
D\ = {z '• 0 < \z\ < 5}, but it is not normal at z = 0. Thus there exists a sequence
U/ / t} C 1 / ^ which converges locally uniformly in D's, but not in Ds. The maximum
modulus principle implies that l / / n -*• oo in D's. Thus / „ —»• 0 converges locally
uniformly in D's, and hence so does {gn} C tf, where gn = fn/\}r. But |gn(z)| > 1 for
z € Dj, a contradiction. This completes the proof of Theorem 1. •

PROOF OF THEOREM 2 AND THEOREM 3. Theorem 2 and Theorem 3 can be proved
by using the same argument as in Theorem 1. The main difference is in using
Lemma 6 (ii) (to prove Theorem 2) or Lemma 6 (iii) (to prove Theorem 3). We here
omit the details. •
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