OPPENHEIM'S INEQUALITY FOR THE SECOND IMMANANT

BY
RUSSELL MERRIS

AbSTRACT. Denote by d_{2} the immanant afforded by S_{n} and the character corresponding to the partition $\left(2,1^{n-2}\right)$. If $n \geq 4$, the following analog of Oppenheim's inequality is proved:

$$
d_{2}(A \circ B) \geq\left(\prod_{t=1}^{n} a_{t}\right) d_{2}(B)
$$

for all n-by- n positive semidefinite hermitian A and B.
Let χ be an irreducible character of the symmetric group S_{n}. The immanant afforded by χ is the complex valued function of the n-by- n (complex) matrices $A=\left(a_{i j}\right)$ defined by

$$
d_{\chi}(A)=\sum_{\sigma \in S_{n}} \chi(\sigma) \prod_{t=1}^{n} a_{t \sigma(t)} .
$$

The irreducible characters of S_{n} correspond in a natural way to the partitions of n. For example, $\boldsymbol{\epsilon}$, the alternating character, corresponds to the partition $\left(1^{n}\right)$ and d_{ϵ} is the determinant. In 1930, A. Oppenheim proved the following inequality for the Hadamard product, $A \circ B$, of positive semidefinite hermitian matrices (write $A, B \geq 0$):

$$
\begin{equation*}
\operatorname{det}(A \circ B) \geq\left(\prod_{t=1}^{n} a_{t t}\right) \operatorname{det}(B) \tag{1}
\end{equation*}
$$

In this note, we prove an analogous result for the "second immanant."
Denote by χ_{2} the character of S_{n} corresponding to the partition ($2,1^{n-2}$). Then

$$
\chi_{2}(\sigma)=\epsilon(\sigma)(F(\sigma)-1), \quad \sigma \in S_{n},
$$

where $F(\sigma)$ is the number of fixed points of σ. We will write d_{2} for the immanant afforded by χ_{2}. This second immanant has been the object of several recent studies. (See, e.g., [3], [4], and [6].)

Theorem. If $n \geq 4$, then

$$
\begin{equation*}
d_{2}(A \circ B) \geq\left(\prod_{t=1}^{n} a_{t}\right) d_{2}(B), \tag{2}
\end{equation*}
$$

for all $A, B \geq 0$.

Received by the editors April 13, 1986, and, in revised form, June 24, 1986.
AMS Subject Classification (1980): 15A15, 15A57.
The research leading to this note was supported by the office of Naval Research through contract No. 85K0335.
(C) Canadian Mathematical Society 1986.

Before proving the theorem, we give an application and show that the assumption $n \geq 4$ is necessary. If we denote by J_{k} the k-by- k matrix each of whose entries is one, and let $A=J_{k} \oplus J_{n-k}$, then

$$
A \circ B=\left(\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}
\end{array}\right),
$$

where B_{11} is the leading k-by- k principal submatrix of B, and B_{22} is the complementary principal submatrix. With this choice for A, Inequality (2) becomes

$$
d_{2}\left(\begin{array}{cc}
B_{11} & 0 \tag{3}\\
0 & B_{22}
\end{array}\right) \geq d_{2}(B), \quad B \geq 0 .
$$

This analog of the Fischer Inequality was obtained previously in [4].
In case $n=2, d_{2}$ is the permanent, and (2) is actually reversed: Indeed, $\operatorname{per}(A \circ B) \leq a_{11} a_{22} \operatorname{per}(B)$ is equivalent to $0 \leq\left|b_{12}\right|^{2} \operatorname{det}(A)$ in the 2-by-2 case. If $n=3$, then

$$
d_{2}(A)=2 a_{11} a_{22} a_{33}-a_{12} a_{23} a_{31}-a_{13} a_{21} a_{32}
$$

Letting

$$
A=\frac{1}{3}\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right] \quad \text { and } \quad B=\frac{1}{3}\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

we find that

$$
d_{2}(A \circ B)=\frac{1460}{729}<\frac{56}{27}=\left(\prod_{t=1}^{3} a_{t t}\right) d_{2}(B) .
$$

In particular, (2) is invalid. In this case, however, the reversed inequality is also invalid: If $B=J_{3}$, then $d_{2}(B)=0$. Taking $A=I_{3}$, the identity matrix, we see that

$$
d_{2}(A \circ B)=d_{2}(A)=2>0=\left(\prod_{t=1}^{3} a_{t t}\right) d_{2}(B) .
$$

Proof. If either A or B has a zero on the main diagonal, then both sides of (2) are zero and we are finished. Otherwise, we may write $A=C \circ \hat{A}$, where the (i, j)-entry of C is $c_{i j}=\left(a_{i i} a_{j j}\right)^{1 / 2}$ and the (i, j)-entry of \hat{A} is a $a_{i j} / c_{i j}$. Denote by \mathscr{C}_{n} the set of n-by- n correlation matrices, i.e.,

$$
\mathscr{C}_{n}=\left\{X=\left(x_{i j}\right) \mid X \geq 0 \quad \text { and } \quad x_{i i}=1 \text { for all } i\right\} .
$$

Then $\hat{A} \in \mathscr{C}_{n}$. Moreover, since d_{2} is a multilinear function of its rows (or columns),

$$
d_{2}(A \circ B)=\left(\prod_{t=1}^{n} a_{t t}\right) d_{2}(\hat{A} \circ B)
$$

Therefore, our desired inequality can be replaced by $d_{2}(\hat{A} \circ B) \geq d_{2}(B)$, for all $B \geq$ 0 and $\hat{A} \in \mathscr{C}_{n}$. Modifying B in the same way, we find that it suffices to prove

$$
\begin{equation*}
d_{2}(\hat{A} \circ \hat{B}) \geq d_{2}(\hat{B}), \tag{4}
\end{equation*}
$$

for all $\hat{A}, \hat{B} \in \mathscr{C}_{n}$. It is proved in [1, Corollary 2] that the spectrum of B majorizes the spectrum of $\hat{A} \circ B$ when B is hermitian and $\hat{A} \in \mathscr{C}_{n}$. (See [5] for an outstanding treatment of majorization.) On the other hand, it was shown in [4] that if $n \geq 4$, the restriction of d_{2} to \mathscr{C}_{n} is a Schur-concave function of the spectrum, i.e., if $X, Y \in \mathscr{C}_{n}$, and if the spectrum of Y majorizes the spectrum of X, then $d_{2}(X) \geq d_{2}(Y)$. Thus, (4) is immediate from these two previous results.

Denote by χ_{k} the character of S_{n} corresponding to the partition ($k, 1^{n-k}$) and by d_{k} (rather than $d_{x_{k}}$) the corresponding immanant.

Conjecture. If $2<k \leq n / 2$, then

$$
d_{k}(A \circ B) \geq\left(\prod_{t=1}^{n} a_{t t}\right) d_{k}(B)
$$

for all $A, B \geq 0$.
In this notation, d_{n} is the permanant. It was conjectured in [1] (also see [2]) that $\operatorname{per}(A \circ B) \leq\left(\Pi a_{t t}\right) \operatorname{per}(B)$ for all $A, B \geq 0$ and for all n.

References

1. R. B. Bapat and V. S. Sunder, On majorization and Schur products, Linear Algebra Appl. 72 (1985), pp. 107-117.
2. J. Chollet, Is there a permanental analogue to Oppenheim's inequality? Amer. Math. Monthly 89 (1982), pp. 57-58.
3. R. Grone, An inequality for the second immanant, Linear and Multilinear Algebra 18 (1985), pp. 147-152.
4. R. Grone and R. Merris, A Fischer inequality for the second immanant, Linear Algebra Appl., 87 (1987), 77-83.
5. A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
6. R. Merris, The second immanantal polynomial and the centroid of a graph, SIAM J. Algebraic and Discrete Methods, 7 (1986), 484-503.
7. A. Oppenheim, Inequalities connected with definite hermitian forms, J. London Math. Soc. 5 (1930), pp. 114-119.
