Proceedings of the Edinburgh Mathematical Society (2003) **46**, 679–686 © DOI:10.1017/S0013091501000839 Printed in the United Kingdom

ON *M*-STRUCTURE AND WEAKLY COMPACTLY GENERATED BANACH SPACES

EDUARDO NIETO

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain (enieto@ugr.es)

(Received 11 September 2001)

Abstract – It is well known that every non-reflexive M-ideal is weakly compactly generated (in short, WCG). We present a family of Banach spaces $\{V_s : 0 < s < 1\}$ which are not WCG and such that every V_s satisfies the inequality

 $\|\varphi\| \ge \|\pi\varphi\| + s\|\varphi - \pi\varphi\| \quad \forall \varphi \in V_s^{***},$

where π is the canonical projection from V_s^{***} onto V_s^* . In particular, no V_s can be renormed to be an M-ideal.

Keywords: M-ideal; M(r, s)-inequality; weakly compactly generated (WCG) Banach space

2000 Mathematics subject classification: Primary 46B20

1. Introduction

Let X be a Banach space. Recall that X is an M-ideal if

$$\|\varphi\| = \|\pi\varphi\| + \|\varphi - \pi\varphi\| \quad \forall \varphi \in X^{***},$$

where π denotes the canonical projection from X^{***} onto X^* (for complete information about *M*-ideals, see [6]). *X* is said to be *weakly compactly generated* (in short, WCG) if *X* is the closed linear span of a weakly compact subset of *X*. Fabian and Godefroy showed in [4] (cf. [6]) that every non-reflexive *M*-ideal is WCG. Indeed, it is proved in [1] that if *X* is an Asplund space with the property that for each $\varphi \in X^{***}$, $\|\varphi - \pi\varphi\| < \|\varphi\|$ whenever $\pi\varphi \neq 0$, then *X* is WCG.

Following [1] and [2], a Banach space X satisfies the M(r, s)-inequality if

$$\|\varphi\| \ge r \|\pi\varphi\| + s \|\varphi - \pi\varphi\| \quad \forall \varphi \in X^{***}$$

holds for given $r, s \in [0, 1]$. It is clear that the notion of M(1, 1)-inequality coincides with that of M-ideal.

Following Johnson and Lindenstrauss [7], for every $s \in [0, 1[$, we present a Banach space V_s which is not WCG and which satisfies the M(1, s)-inequality, resolving the open

E. Nieto

question formulated in [1] of whether there are Banach spaces satisfying the M(1, s)inequality without being WCG. As a consequence, V_s cannot be renormed to be an Mideal (see Remarks 2.6 below). In Remarks 2.6, we collect some properties derived from the M(1, s)-inequality. For instance, we show that for every $s \in [0, 1[, V_s^* \text{ contains no}$ proper norming subspaces, V_s is an Asplund space, V_s has the unique extension property, $V_s^* = \overline{\lim}(w^* \operatorname{-sexp} B_{V_s^*})$ (where $w^* \operatorname{-sexp} B_{V_s^*}$ denotes the set of the weak* strongly exposed points of $B_{V_s^*}$), and V_s has property (u) of Pełczyński.

In a Banach space X, the closed unit ball is denoted by B_X . The Banach space of all bounded linear operators on X will be denoted by $\mathcal{L}(X)$. For a set $A \subset X$, we denote by lin A its linear span.

In the next section, we exhibit some techniques for constructing Banach spaces satisfying the M(r, s)-inequality.

2. Example

First, we show some results which will be a key tool in the construction of examples of Banach spaces satisfying the M(r, s)-inequality. The next result generalizes a result in [8].

Proposition 2.1. Let X be a Banach space and $r, s \in [0, 1]$. If there exists a net (V_{α}) in $\mathcal{L}(X^{**})$ satisfying

- (1) for each α , Im $V_{\alpha} \subset X$;
- (2) for each $x^* \in X^*$ and $x^{**} \in X^{**}$, $\lim_{\alpha} x^* (V_{\alpha} x^{**}) = x^{**} x^*$; and
- (3) for each $x \in B_X$ and $x^{**} \in B_{X^{**}}$,

$$\limsup_{\alpha} \|rV_{\alpha}x + s(x^{**} - V_{\alpha}x^{**})\| \leq 1;$$

then X satisfies the M(r, s)-inequality.

Proof. Let $\varepsilon > 0$ and $\varphi \in X^{***}$, and consider $x^{**} \in B_{X^{**}}$ and $x \in B_X$ such that

$$\pi\varphi(x) > \|\pi\varphi\| - \varepsilon, \qquad (\varphi - \pi\varphi)(x^{**}) > \|\varphi - \pi\varphi\| - \varepsilon.$$

By (2) and (3), there is α sufficiently large such that

$$\pi\varphi(V_{\alpha}x) > \|\pi\varphi\| - \varepsilon$$
$$\|rV_{\alpha}x + s(x^{**} - V_{\alpha}x^{**})\| \leq 1 + \varepsilon,$$
$$|\pi\varphi(x^{**} - V_{\alpha}x^{**})| < \varepsilon.$$

Hence,

$$(1+\varepsilon)\|\varphi\| \ge \varphi(rV_{\alpha}x + s(x^{**} - V_{\alpha}x^{**}))$$

= $r\pi\varphi(V_{\alpha}x) + s(\pi\varphi(x^{**} - V_{\alpha}x^{**}) + (\varphi - \pi\varphi)(x^{**} - V_{\alpha}x^{**}))$
> $r(\|\pi\varphi\| - \varepsilon) - \varepsilon s + s(\|\varphi - \pi\varphi\| - \varepsilon).$

Letting $\varepsilon \to 0$, the result follows.

681

Corollary 2.2. Let X be a Banach space and $r, s \in [0,1]$. If there exists a net (T_{α}) in $\mathcal{L}(X)$ satisfying

- (1) for each α , Im $T^{**}_{\alpha} \subset X$;
- (2) for each $x^* \in X^*$ and $x^{**} \in X^{**}$, $\lim_{\alpha} x^*(T^{**}_{\alpha}x^{**}) = x^{**}x^*$; and
- (3) for each $x \in B_X$,

$$\limsup_{\alpha} \sup_{y \in B_X} \|rT_{\alpha}x + s(y - T_{\alpha}y)\| \leq 1;$$

then X satisfies the M(r, s)-inequality.

Proof. This follows from the weak^{*} density of B_X in $B_{X^{**}}$ and the above result. \Box

Proposition 2.3. Let X be a Banach space, $r, s \in [0, 1]$ and a net (T_{α}) in $\mathcal{L}(X)$. The following assertions are equivalent.

- (1) $\limsup_{\alpha} \sup_{x,y \in B_X} \|rT_{\alpha}x + s(y T_{\alpha}y)\| \leq 1.$
- (2) $\limsup_{\alpha} \sup_{x^* \in B_{X^*}} (r \|T_{\alpha}^* x^*\| + s \|x^* T_{\alpha}^* x^*\|) \leq 1.$

Proof. For each α , consider the operator $V_{\alpha}: X \oplus_{\infty} X \longrightarrow X$ defined by

$$V_{\alpha}(x,y) = rT_{\alpha}x + s(y - T_{\alpha}y) \quad \forall x, y \in X.$$

Then (1) means that $\limsup_{\alpha} \|V_{\alpha}\| \leq 1$, and (2) means that $\limsup_{\alpha} \|V_{\alpha}^*\| \leq 1$. \Box

Now we present a Banach space V similar to the Banach space U given in [7, Example 1]. Let $\{N_{\gamma} : \gamma \in \Gamma\}$ be a collection of infinite subsets of the integers such that $N_{\gamma} \cap N_{\gamma'}$ is finite for $\gamma \neq \gamma'$, and such that Γ has the cardinality of the continuum. Denote

$$V_0 = \left\{ (y, z) \in \ell_{\infty} \bigoplus_{\infty} c_{00}(\Gamma) : \lim_{n} \left(y(n) - \sum_{\gamma \in \Gamma_n} z(\gamma) \right) = 0 \right\},$$

where for each $n \in \mathbb{N}$, $\Gamma_n = \{\gamma \in \Gamma : n \in N_\gamma\}$, ℓ_∞ and $c_{00}(\Gamma)$ are equipped with the usual sup norm $\|\cdot\|_{\infty}$. V denotes the completion of V_0 .

Observe that, given $(y, z) \in V_0$, we have that for each $\gamma \in \Gamma$, $z(\gamma) = \lim_{n \in N_{\gamma}} y(n)$. So, $||(y, z)|| = ||y||_{\infty}$. On the other hand, note that the functionals $(y, z) \mapsto y(n)$, $n \in \mathbb{N}$, form a total set in V_0^* . Hence, V^* is w^* -separable. Therefore, the proof of the next result follows from the one given in [7, Example 1].

Proposition 2.4. V satisfies the following properties.

- (1) V has a subspace X isometric to c_0 such that V/X is isometric to $c_0(\Gamma)$.
- (2) V is not WCG.
- (3) V^* is isomorphic to $\ell_1 \oplus \ell_1(\Gamma)$ and thus is not WCG.

E. Nieto

Theorem 2.5. For every $s \in [0, 1[, V \text{ admits an equivalent norm } \| \cdot \|_s$ for which $V_s = (V, \| \cdot \|_s)$ satisfies the M(1, s)-inequality.

Proof. Let $s \in [0, 1]$, and define

$$a_s = \begin{cases} (1-s)/(1+s) & \text{if } s \leq \frac{1}{2}, \\ (1-s)(1+2s^2) & \text{if } s > \frac{1}{2}, \end{cases} \quad \text{and} \quad b_s = sa_s$$

It is straightforward to show that

$$a_s + s(1 + \max\{2b_s, a_s\}) = 1. \tag{(*)}$$

Now consider in $\ell_1 \oplus \ell_1(\Gamma)$ the following norm:

$$\|(y^*, z^*)\|_s = \|y^*\|_{\ell_1} + \max\{b_s(\|y^*\|_{\ell_1} + \|z^*\|_{\ell_1(\Gamma)}), a_s\|z^*\|_{\ell_1(\Gamma)}\},\$$

for all $y^* \in \ell_1, z^* \in \ell_1(\Gamma)$.

Following the correction given by Johnson and Lindenstrauss in [7], it is easy to show that $\|\cdot\|_s$ is an equivalent dual norm on V^* . In fact, from the form of the duality between V and V^* , it follows that the norm $\|\cdot\|_s$ is weak*-lower semicontinuous. As a consequence, V has an equivalent norm whose dual norm on V^* coincides with $\|\cdot\|_s$ (see [3, Theorem 3, p. 106]).

We will now prove that V_s satisfies the M(1, s)-inequality. In fact, consider the set

$$A = \{ (n, F) : n \in \mathbb{N}, F \subset \Gamma, F \text{ finite} \},\$$

ordered as follows: $(n, F) \leq (m, G)$ if $n \leq m$ and $F \subset G$. For each $F \subset \Gamma$, we define

$$N_F = \bigcup_{\gamma \in F} N_\gamma,$$

and for each $(n, F) \in A$, we consider $P_{n,F} : V \longrightarrow V$ defined as follows: for $(y, z) \in V_0$, $P_{n,F}(y, z) = (y_0, z_0)$, where

$$y_0(m) = \begin{cases} y(m) & \text{if } m \leqslant n, \\ \sum_{\gamma \in \Gamma_m \cap F} z(\gamma) & \text{if } m > n \text{ and } m \in N_F, \\ 0 & \text{otherwise} \end{cases}$$

and

$$z_0(\gamma) = \begin{cases} z(\gamma) & \text{if } \gamma \in F, \\ 0 & \text{if } \gamma \notin F. \end{cases}$$

We extend $P_{n,F}$ to V by continuity.

682

We prove that for each (n, F), $\operatorname{Im} P_{n,F}^{**} \subset V$. In fact, it is clear that if $(y, z) \in V^{**} = \ell_{\infty} \oplus \ell_{\infty}(\Gamma)$, then $P_{n,F}^{**}(y, z) = (y_0, z_0)$, where

$$y_0(m) = \begin{cases} y(m) & \text{if } m \leq n, \\ \sum_{\gamma \in \Gamma_m \cap F} z(\gamma) & \text{if } m > n \quad \text{and} \quad m \in N_F, \\ 0 & \text{otherwise} \end{cases}$$

and

$$z_0(\gamma) = \begin{cases} z(\gamma) & \text{if } \gamma \in F, \\ 0 & \text{if } \gamma \notin F. \end{cases}$$

So, $P_{n,F}^{**}(y,z) \in V$.

We now show that for each $x \in V$ and $(y^*, z^*) \in V^*$, $||x - P_{n,F}(x)|| \to 0$ and $||(y^*, z^*) - P_{n,F}^*(y^*, z^*)||_s \to 0$. Indeed, let $\varepsilon > 0$, and suppose that $x = (y, z) \in V_0$. For (n, F) large enough, we have that $\{\gamma \in \Gamma : z(\gamma) \neq 0\} \subset F$ and

$$\left| y(n) - \sum_{\gamma \in \Gamma_n \cap F} z(\gamma) \right| < \varepsilon \quad \text{if } n \in N_F,$$
$$|y(n)| < \varepsilon \quad \text{if } n \notin N_F.$$

So, $||(y,z) - P_{n,F}(y,z)|| < \varepsilon$.

On the other hand, it is easy to show that $P_{n,F}^*(y^*, z^*) = (y_0^*, z_0^*)$, where

$$y_0^*(m) = \begin{cases} y^*(m) & \text{if } m \leq n, \\ 0 & \text{if } m > n \end{cases}$$

and

$$z_0^*(\gamma) = \begin{cases} \sum_{m > n, \ m \in N_{\gamma}} y^*(m) + z^*(\gamma) & \text{if } \gamma \in F, \\ 0 & \text{if } \gamma \notin F. \end{cases}$$

Hence,

$$\begin{split} \|(y^*, z^*) - P^*_{n,F}(y^*, z^*)\|_s \\ &\leqslant \sum_{m=n+1}^{\infty} |y^*(m)| \\ &+ \max\bigg\{ b_s \bigg(2 \sum_{m=n+1}^{+\infty} |y^*(m)| + \sum_{\gamma \notin F} |z^*(\gamma)| \bigg), a_s \bigg(\sum_{m=n+1}^{+\infty} |y^*(m)| + \sum_{\gamma \notin F} |z^*(\gamma)| \bigg) \bigg\}. \end{split}$$

We obtain the desired conclusion by taking (n, F) sufficiently large that

$$\sum_{m=n+1}^{+\infty} |y^*(m)| < \varepsilon \quad \text{and} \quad \sum_{\gamma \notin F} |z^*(\gamma)| < \varepsilon.$$

E. Nieto

Finally, we prove that $(P_{n,F})$ satisfies condition (2) of Proposition 2.3 for r = 1 and s. In fact, by (*), for each $(n, F) \in A$ and $(y^*, z^*) \in V^*$, we have that

$$\begin{split} \|P_{n,F}^{*}(y^{*},z^{*})\|_{s} + s\|(y^{*},z^{*}) - P_{n,F}^{*}(y^{*},z^{*})\|_{s} \\ &\leqslant \sum_{m=1}^{n} |y^{*}(m)| \\ &+ \max\left\{ b_{s} \left(\sum_{m=1}^{n} |y^{*}(m)| + \sum_{m=n+1}^{+\infty} |y^{*}(m)| + \sum_{\gamma \in F} |z^{*}(\gamma)| \right), \\ &a_{s} \left(\sum_{m=n+1}^{+\infty} |y^{*}(m)| + \sum_{\gamma \in F} |z^{*}(\gamma)| \right), \\ &+ s \max\left\{ b_{s} \left(2 \sum_{m=n+1}^{+\infty} |y^{*}(m)| + \sum_{\gamma \notin F} |z^{*}(\gamma)| \right), a_{s} \left(\sum_{m=n+1}^{+\infty} |y^{*}(m)| + \sum_{\gamma \notin F} |z^{*}(\gamma)| \right) \right\} \\ &\leqslant \sum_{m=1}^{n} |y^{*}(m)| + (a_{s} + s(1 + \max\{2b_{s}, a_{s}\})) \sum_{m=n+1}^{+\infty} |y^{*}(m)| \\ &+ \max\left\{ b_{s} \left(\sum_{m=1}^{n} |y^{*}(m)| + \sum_{\gamma \in F} |z^{*}(\gamma)| \right), a_{s} \sum_{\gamma \in F} |z^{*}(\gamma)| \right\} \\ &\leqslant \|y^{*}\|_{\ell_{1}} + \max\{b_{s}(\|y^{*}\|_{\ell_{1}} + \|z^{*}\|_{\ell_{1}(\Gamma)}), a_{s}\|z^{*}\|_{\ell_{1}(\Gamma)}\} \\ &= \|(y^{*}, z^{*})\|_{s}. \end{split}$$

Remarks 2.6.

- (1) Since every non-reflexive M-ideal is WCG [4, Theorem 3] (cf. [6, Theorem 4.6, p. 142]), by Proposition 2.4, V_s cannot be renormed to be an M-ideal.
- (2) Note that $\|\cdot\|_s$ on V is not Fréchet differentiable. In fact, this follows from the equality

$$(1+b_s)\|x\|_s = \|x\|_{\infty} \quad \forall x \in c_0.$$

- (3) Finally, by the M(1, s)-inequality, some properties of V_s are immediate. In fact, by [1, Proposition 2.5] and [5, Proposition 2.5], we have
 - (i) V_s^* contains no proper norming subspaces and V_s is an Asplund space;
 - (ii) V_s has the unique extension property;
 - (iii) if X is a closed subspace of V_s such that there exists a Banach space Y with Banach–Mazur distance $d(X, Y^*) < 1 + s/2$, then X is reflexive.

684

By [1, Corollary 2.8], we obtain

- (i) V_s does not contain an isomorphic copy of ℓ_1 ;
- (ii) if X is a Banach space such that $V_s \subsetneq X \subset V_s^{**}$, then there are no norm-one projections from X onto V_s ;
- (iii) every subspace or quotient of V_s which is isometric to a dual space is reflexive.
- By [1, Theorem 3.1], we have
- (i) V_s has property U of Phelps;
- (ii) V_s has property (u) of Pełczyński with constant $k_u(V_s) \leq 1/s$.
- By [1, Corollary 3.4], the following results hold.
- (i) Every subspace of V_s has property (V) of Pełczyński. In particular, V_s is not weakly sequentially complete and V_s fails the Radon–Nikodým property.
- (ii) V_s^* is weakly sequentially complete. (In fact, since V_s^* is isomorphic to $\ell_1 \oplus \ell_1(\Gamma)$, V_s^* has the Schur property.)
- (iii) V_s is not complemented in V_s^{**} .
- (iv) V_s^{**}/V_s is not separable.
- (v) Every operator from V_s to a space not containing c_0 (in particular, every operator from V_s to V_s^*) is weakly compact.

By [1, Theorem 3.6], we have that every slice of B_{V_s} has diameter greater than or equal to 2s. In particular, B_{V_s} is not dentable.

By [2, Proposition 2.1], we have

$$V_s^* = \overline{\lim}(w^*\operatorname{-sexp} B_{V_s^*}).$$

Acknowledgements. The author is greatly indebted to M. González for suggesting the example. This work was supported by Junta de Andalucia grant FQM290.

References

- 1. J. C. CABELLO AND E. NIETO, On Properties of *M*-ideals, *Rocky Mt. J. Math.* **28** (1998), 61–93.
- 2. J. C. CABELLO, E. NIETO AND E. OJA, On ideals of compact operators satisfying the M(r, s)-inequality, J. Math. Analysis Applic. **220** (1998), 334–348.
- 3. J. DIESTEL, *Geometry of Banach spaces—selected topics*, Lecture Notes in Mathematics, vol. 485 (Springer, 1975).
- 4. M. FABIAN AND G. GODEFROY, The dual of every Asplund space admits a projectional resolution of the identity, *Studia Math.* **91** (1988), 141–151.
- 5. G. GODEFROY AND D. SAPHAR, Duality in spaces of operators and smooth norms in Banach spaces, *Illinois J. Math.* **32** (1988), 672–695.
- P. HARMAND, D. WERNER AND W. WERNER, *M*-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547 (Springer, 1993).

$E. \ Nieto$

- W. B. JOHNSON AND J. LINDENSTRAUSS, Some remarks on weakly compactly generated Banach space, Isr. J. Math. 17 (1974), 219–230 (Corrigendum: Isr. J. Math. 32 (1979), 382–383).
- 8. E. OJA, On the uniqueness of the norm-preserving extension of a linear functional in the Hahn–Banach theorem, *Izv. Akad. Nauk Est. SSSR* **33** (1984), 424–438 (in Russian).

686