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Spaces of Quasi-Measures
D. J. Grubb and Tim LaBerge

Abstract. We give a direct proof that the space of Baire quasi-measures on a completely regular space (or the
space of Borel quasi-measures on a normal space) is compact Hausdorff. We show that it is possible for the
space of Borel quasi-measures on a non-normal space to be non-compact. This result also provides an example
of a Baire quasi-measure that has no extension to a Borel quasi-measure. Finally, we give a concise proof of
the Wheeler-Shakmatov theorem, which states that if X is normal and dim(X) ≤ 1, then every quasi-measure
on X extends to a measure.

1 Introduction

Let O be a collection of subsets of a set X and set C = {X\O : O ∈ O}. If O (and hence C) is
closed under finite intersections and unions and X,∅ ∈ O, we say O∪C is a quasi-algebra.
If this occurs, then an O-quasi-measure is a set function µ : O ∪ C→ [0, 1] that satisfies

1. µ(∅) = 0.
2. If O, P ∈ O and O ⊆ P, then µ(O) ≤ µ(P).
3. If O, P ∈ O and O ∩ P = ∅, then µ(O ∪ P) = µ(O) + µ(P).
4. If O, P ∈ O and O ∪ P = X, then µ(O) + µ(P) = 1 + µ(O ∩ P).
5. If O ∈ O and ε > 0 is given, then there is an C ∈ C such that C ⊆ O and µ(O \C) < ε.
6. If O ∈ O, then µ(X \ O) = 1− µ(O).

We will denote the collection of all O-quasi-measures on X by QM(O). In our intended
applications, X will be a completely regular topological space and O will be either the col-
lection V of cozero subsets of X or the collection U of open subsets of X. In these situations,
it is not difficult to see that QM(V) and QM(U) are the collections of Baire and Borel quasi-
measures on X, respectively, as defined in [B1], [B2], or [W].

If O generates a quasi-algebra on X, we can topologize QM(O) as follows. For each
O ∈ O and α ∈ [0, 1], set O∗α = {µ : µ ∈ QM(O) and µ(O) > α}. We use the family
{O∗α : O ∈ O and α ∈ [0, 1]} as a subbasis for the desired topology. For reasons explained
below, we call this the w∗-topology on QM(O). Clearly, a net {µα} converges to µ in the
w∗-topology if and only if lim infµα(O) ≥ µ(O) for all O ∈ O.

This notion of quasi-measure is due to Aarnes (see [A1]). Boardman introduced the
ideas of Baire and Borel quasi-measures in his dissertation [B1] and paper [B2]. It is crucial
to note that even if X is normal or compact, a quasi-measure need not be the restriction of
a finitely additive measure. The first example of a quasi-measure that is not the restriction
of a finitely additive measure was given by Aarnes in [A1]. Moreover, as can be seen from
results in [W] and Fremlin [F], an O-quasi-measure can be extended to a measure on an
algebra containing O exactly when it is subadditive on O.
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The theory of non-linear integration with respect to a Borel quasi-measure on a com-
pact Hausdorff space X is developed by Aarnes in [A1]. (Our choice of terminology is
justified by the fact that the w∗-topology induced by these integrals agrees with what we are
calling the w∗-topology on QM(U).) In the same paper, Aarnes also establishes a represen-
tation theory that shows that in this case, QM(U) with the w∗-topology corresponds to the
collection of quasi-linear functionals on C(X) with the topology of pointwise convergence.
(A functional ρ : C(X) → [0, 1] is quasi-linear if ρ(1) = 1 and ρ is linear on every singly
generated norm closed subalgebra of C(X).) By an Alaoglu argument, the collection of
quasi-linear functionals is compact Hausdorff, so QM(U) with the w∗-topology is compact
Hausdorff if X is. (Boardman established similar representation and integration results for
Baire quasi-measures on completely regular spaces in [B1] and [B2].)

In [W], Wheeler showed that if X is completely regular, then the collection of Baire
quasi-measures QM(V) on X corresponds to the collection of Borel quasi-measures QM(U)
on βX, the Stone-Čech compactification of X. Thus, if X is completely regular, QM(V) is
also compact Hausdorff. He also showed that if X is normal, every Baire quasi-measure
extends uniquely to a Borel quasi-measure, so that in this case, the collection QM(U) of
Borel quasi-measures is also compact Hausdorff.

We say that an O-quasi-measure is simple if it takes only the values 0 and 1. We denote
the collection of simple O-quasi-measures by QMs(O). In [A2], Aarnes uses a projective
limit argument to show that if X is compact, then QMs(U) is compact. By Wheeler’s argu-
ments, the same is true of QMs(V) if X is completely regular and of QMs(U) if X is normal.

Our first goal in this paper is to provide a unified, direct, topological proof of these
results. Our approach is based on that of Topsoe [T]. Our second goal is to construct an
example showing that if X is not normal, then the collection of Borel quasi-measures on X
with the w∗-topology may be non-compact. This example is based on a construction of a
Baire quasi-measure on X that has no extension to a Borel quasi-measure. These examples
show that Wheeler’s normality assumptions in [W] are essential. Finally, we give a concise
proof of a general version of the Wheeler-Shakmatov result (see [W] and [S]) which states
that if X is normal and dim(X) ≤ 1, then every (Baire or Borel) quasi-measure on X is
subadditive, and hence extends to a measure.

2 Compactness in Spaces of Quasi-Measures

In this section, we provide a direct proof of the compactness results described above. In
order to unify the proofs of these results, we will require our quasi-algebras to satisfy an
additional property. By definition, if X is normal, then U has the property that if H and
K are complements of elements of U and H and K are disjoint, then there are pairwise
disjoint elements of U that separate H and K. The corresponding fact is also true for V

in the completely regular case. Thus, if O generates an quasi-algebra O ∪ C, we say that
this quasi-algebra is normal if pairwise disjoint elements of C can be separated by pairwise
disjoint elements of O.

The following lemma is adapted from [T].

Lemma 2.1 Suppose X is a set and that O is a collection of subsets of X that generates a
normal quasi-algebra O ∪ C. Suppose further that ν : O ∪ C → [0, 1] satisfies the first four
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O-quasi-measure axioms. Then there is an O-quasi-measure µ such that µ(O) ≤ ν(O) for all
O ∈ O. Moreover, if ν takes only the values 0 and 1, then µ is simple.

Proof Given ν as above, our plan is to “regularize” ν in two steps. First, define for each
C ∈ C, τ (C) = inf{ν(O) : O ∈ O and C ⊆ O}. Then the following are true when
C,D ∈ C:

(a) τ (∅) = 0
(b) If C ⊆ D, then τ (C) ≤ τ (D).
(c) If C ∩ D = ∅, then τ (C ∪ D) = τ (C) + τ (D).
(d) If C ∪ D = X, then τ (C) + τ (D) = 1 + τ (C ∩ D).

(a) and (b) are trivial, and (c) follows because O ∪ C is normal. To see (d), suppose that
we have C,D ∈ C with C ∪ D = X and a W ∈ O such that C ∩ D ⊆ W . Then O =
C ∪ (W \ D) ∈ O, P = D ∪ (W \C) ∈ O, C ∩ D ⊆ O ∩ P, and O ∩ P =W , so

inf
W∈O

C∩D⊆W

ν(W ) = inf
C⊆O∈O
D⊆P∈O

ν(O ∩ P).

Thus,

τ (C ∩ D) = inf
C⊆O∈O
D⊆P∈O

ν(O ∩ P) = inf
C⊆O∈O
D⊆P∈O

ν(O) + ν(P)− 1 = τ (C) + τ (D)− 1.

Now, for O ∈ O, define µ(O) = sup{τ (C) : C ∈ C and C ⊆ O}. For C ∈ C, define
µ(C) = 1 − µ(O); we claim that µ is an O-quasi-measure. Clearly, µ satisfies axioms (1),
(2), and (3).

Suppose that O, P ∈ O and that O ∪ P = X. Because O ∪ C is normal, we can find
C,D ∈ C with C ⊆ O, D ⊆ P, and C ∪ D = X. Then whenever C ′,D ′ ∈ C and
C ⊆ C ′ ⊆ O and D ⊆ D ′ ⊆ P, we have τ (C ′) + τ (D ′) = 1 + τ (C ′ ∩ D ′) ≤ 1 + µ(O ∩ P),
so µ(O) + µ(P) ≤ 1 + µ(O ∩ P). Conversely, if C ⊆ O ∩ P, we can find D,D ′ ∈ C with
D ⊆ O, D ′ ⊆ P, D ∪ D ′ = X, and C ⊆ D ∪ D ′. This gives 1 + µ(O ∩ P) ≤ µ(O) + µ(P),
and (4) follows.

To show (5), suppose O ∈ O and that ε > 0 is given. Pick C ∈ C with C ⊆ O and
τ (C) > µ(O) − ε/2. Then whenever D ∈ C and D ⊆ O \ C , we have C ∩ D = ∅ and
C∪D ⊆ O, so that τ (C)+τ (D) = τ (C∪D) ≤ µ(O). This gives τ (D) ≤ µ(O)−τ (C) < ε/2,
so µ(O \C) < ε.

Thus, µ is an O-quasi-measure. By definition, whenever O ∈ O, we have µ(O) ≤ ν(O)
and µ is clearly simple if ν is two-valued, so the proof is complete.

Theorem 2.2 Suppose O generates a normal quasi-algebra. Then QM(O) is compact Haus-
dorff in the w∗-topology.

Proof We first show that QM(O) is Hausdorff. Suppose that µ, ν ∈ QM(O) and that
µ 6= ν. Then there is a O ∈ O and an α ∈ [0, 1] such that (without loss of generality)
µ(O) < α < ν(O). Find C ∈ C with C ⊆ O and ν(C) > α. By normality, there are
P ∈ O and D ∈ C such that C ⊆ P ⊆ D ⊆ O. Then ν(P) > α, µ(P) ≤ µ(O) < α, and
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ν(X \ D) < 1 − α < µ(X \ D). Thus, ν ∈ P∗α and µ ∈ (X \ D)∗1−α. If τ ∈ (X \ D)∗1−α,
then τ (D) < α, so τ (P) < α, thus τ /∈ P∗α. Therefore, P∗α ∩ (X \ D)∗1−α = ∅, and QM(O)
is Hausdorff.

To see that QM(O) is compact, let {µα} be a net. Pick an ultranet {µαβ} and define
ν(O) = limβ µαβ (O) for all O ∈ O. Then ν satisfies the hypotheses of Lemma 2.1, so there
is a µ ∈ QM(O) such that µ(O) ≤ ν(O). But then lim infµαβ (O) ≥ µ(O) for all O ∈ O, so
the ultranet {µαβ} converges to µ and the proof is complete.

We record the most important instances of the theorem in the following corollary.

Corollary 2.3 If X is completely regular, then QM(V) and QMs(V) are compact Hausdorff
in the w∗-topology. If X is normal, then QM(U) and QMs(U) are compact Hausdorff in the
w∗-topology.

3 Non-Compactness in Spaces of Quasi-Measures

In this section, we show that our use of normal quasi-algebras in the previous section is
essential, by constructing a non-normal space for which the space of Borel quasi-measures
is not compact. We will also construct an example of a Baire quasi-measure on this space
that has no extension to a Borel quasi-measure, so that Wheeler’s assumption of normality
in [W] is also essential.

These results contrast sharply with the situation for ordinary measures. The Bachman-
Sultan Theorem (see [BS]) states that if µ is a finitely additive, zero set regular Baire mea-
sure, then µ has an extension to a finitely additive, closed set regular Borel measure. Also,
since the collection of simple finitely additive Borel measures on a completely regular space
X with the w∗-topology corresponds to the Wallman compactification of X, the collection
of simple finitely additive Borel measures on X is always compact, although it is Hausdorff
only if X is normal.

Our constructions will utilize the one-point compactification of the long line. Let ω1 be
the first uncountable ordinal. The long line is the connected space L obtained by inserting
a copy of (0, 1) between each ordinal α ∈ ω1 and its successor. To obtain the one-point
compactification L ⊕ 1, we adjoin the ordinal ω1 to L. Because it has a natural order, we
can use interval notation to describe subsets of L⊕ 1.

Set X =
(
(L ⊕ 1) × [0, 1]

)
\ {(ω1, 1)}, T = L × {1}, and R = {ω1} × [0, 1]. Then

X is not normal because R and T cannot be separated by disjoint open sets. Also βX =
(L⊕ 1)× [0, 1].

Example 3.1 There is a Baire quasi-measure µ on X that does not extend to a Borel quasi-
measure.

Proof We will use Aarnes’ method of solid set functions (see [A3]) to define a Borel quasi-
measure ν̄ on βX. Set p = (0, 0) and F = R ∪ T ∪ {(ω1, 1)}. Recall that a closed or open
subset of a space is solid if both it and its complement are connected. Define a solid set
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function ν on the solid subsets of βX by

ν(A) =




0 if A ∩ F = ∅,

1 if F ⊆ A,

1 if p ∈ A and A ∩ F 6= ∅.

Then, by Theorem 5.1 of [A3], ν extends to a Borel quasi-measure ν̄ on βX. By the corre-
spondence between Baire quasi-measures on X and Borel quasi-measures on βX, see [W],
ν̄ induces a Baire quasi-measure µ on X. We claim that µ does not extend to a Borel quasi-
measure on βX.

By way of contradiction, suppose that τ is Borel extension of µ. Set U = X \ (R ∪ T);
we claim that τ (U ) = ∅. To see this, suppose that K ⊆ U and that K is closed. Then
K is compact, so there is a zero set Z such that K ⊆ Z ⊆ U . Clearly, µ(Z) = 0. Since
τ is monotone and extends µ, τ (K) = 0. By inner regularity, τ (U ) = 0 also. We also
claim that τ (T) = 0 = τ (R). This follows from additivity on finite pairwise disjoint
unions of closed sets and the fact that µ

(
(L⊕ 1)× {0}

)
= 1 = µ({0} × [0, 1]). But then

τ (X) = τ (R) + τ (U ) + τ (T) = 0, a contradiction. So µ does not have a Borel extension.

Example 3.2 There is a space X such that QM(U) is non-compact in the w∗-topology.

Proof Let X be as in the previous example. For each α ∈ ω1, define a Borel quasi-measure
ν̄α on βX as follows. Set p = (0, 0) and Fα = ({α} × [0, 1]) ∪ ([0, α] × {1}). Define ν̄α
on βX by extending the solid set function

ν̄α(A) =




0 if A ∩ Fα = ∅,

1 if Fα ⊆ A,

1 if p ∈ A and A ∩ Fα 6= ∅.

to all closed subsets of βX. Let µα be the Baire quasi-measure on X induced by ν̄α. Since
the support of µα is compact, we can extend µα to a Borel quasi-measure να on X.

Clearly, {να : α ∈ ω1} with the obvious ordering is a net, we claim that it has no
convergent subnet. Suppose, by way of contradiction, that ν is the limit of a subnet {ναβ}.
We first show that U = X\(R∪T) satisfies ν(U ) = 0. If K is any zero set in U , then there is
an γ ∈ ω1 such that K ⊆ [0, γ]× [0, 1]. Arguing as before, if αβ > γ, we have ναβ (K) = 0.
By the definition of convergence in the w∗-topology, ν(K) = 0. By regularity, ν(U ) = 0.
Since each να(R) = 0 = να(T), another application of the definition of w∗-convergence
gives ν(R) = 0 = ν(T). But then ν(X) = ν(R) + ν(U ) + ν(T) = 0, a contradiction. Thus,
X is not compact in the w∗-topology.

4 Quasi-Measures and Dimension Theory

In [W] and [S], Wheeler and Shakmatov establish a remarkable connection between the
existence of quasi-measures and classical dimension theory: suppose X is normal and let
dim(X) denote the Čech-Lebesgue covering dimension of X. Then dim(X) ≤ 1 implies that
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every (Baire or Borel) quasi-measure on X is subadditive, and hence extends to a measure.
In this section, we present a concise proof of a slightly more general version of this result.
We will need the following generalization of Čech-Lebesgue covering dimension.

Definition 4.1 Suppose O generates a quasi-algebra on X. We say that the O-covering di-
mension of X is at most 1 (and write O-dim(X) ≤ 1) if whenever O1,O2,O3 ∈ O and
O1 ∪ O2 ∪ O3 = X, then there are O ′1,O

′
2,O

′
3 ∈ O with O ′1 ⊆ O1, O ′2 ⊆ O2, and O ′3 ⊆ O3;

O ′1 ∪ O ′2 ∪ O ′3 = X; and O ′1 ∩ O ′2 ∩ O ′3 = ∅.

Clearly, this definition could be extended to define O-covering dimension for any non-
negative integer, although we will not require such generality here. We call the collection of
O ′i ’s in the definition of O-covering dimension a refinement of the Oi ’s.

Lemma 4.2 Suppose µ is an O-quasi-measure on X. Let O1,O2,O3 ∈ O with O1 ∪ O2 ∪
O3 = X and O1 ∩ O2 ∩ O3 = ∅. Then µ(O1) + µ(O2) + µ(O3) ≥ 1.

Proof Let O1,O2,O3 ∈ O be as above. We then have each Oi (i = 1, 2, 3) is the pairwise
disjoint union of the sets X \ (O j ∪ Ok), Oi ∩ O j , and Oi ∩ Ok, where 1 ≤ j < k ≤ 3 and
j 6= i 6= k. This gives the following three inequalities:

µ(O1) ≥ µ
(
X \ (O2 ∪ O3)

)
+ µ(O1 ∩ O2),

µ(O2) ≥ µ
(
X \ (O3 ∪ O1)

)
+ µ(O2 ∩ O3), and

µ(O3) ≥ µ
(
X \ (O1 ∪ O2)

)
+ µ(O3 ∩ O1).

The six sets on the right hand side of these inequalities are pairwise disjoint and have union
X, so the sum of their measures is one. This gives µ(O1) + µ(O2) + µ(O3) ≥ 1, as desired.

Theorem 4.3 Suppose O generates a quasi-algebra on X and that O-dim(X) ≤ 1. Then
every O-quasi-measure on X is subadditive on O.

Proof We prove the contrapositive. Suppose that µ is an O-quasi-measure on X and thatµ
is not subadditive on O. Then there are O1,O2 ∈ O such that µ(O1∪O2) > µ(O1)+µ(O2).
Find an O3 ∈ O such that X \ (O1 ∪O2) ⊆ O3 and µ(O1) + µ(O2) + µ(O3) < 1. Then any
refinement {O ′1,O

′
2,O

′
3} of the Oi ’s satisfies µ(O ′1) + µ(O ′2) + µ(O ′3) < 1, so by the lemma,

O ′1 ∩ O ′2 ∩ O ′3 6= ∅. Thus, it is not the case that O-dim(X) ≤ 1.

Corollary 4.4 If O-dim(X) ≤ 1, then every O-quasi-measure on X extends to a finitely
additive measure on an algebra containing O.

Proof Let µ be a O-quasi-measure on X. Since µ is subadditive on O, we have that µ(K) +
µ(L)−1 ≤ µ(K∩L) for K, L ∈ C by considering complements. Now, the proof of Lemma 3
of [F] shows that µ(K) ≤ µ(L) +µ∗(K \L) for K, L ∈ C, where µ∗(A) = sup{µ(K ′) : K ′ ⊆
A}.
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We may now define
∑
= {A ⊆ X : µ(K) ≤ µ∗(A ∩ K) + µ∗(K \ A) for all K ∈

C}. By standard techniques,
∑

is an algebra and µ∗ is a finitely additive measure on
∑

extending µ.

Corollary 4.5 If X is normal and dim(X) ≤ 1, then every Borel quasi-measure on X extends
to a finitely additive measure on the Borel algebra.
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