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Abstract. Let f be a complex polynomial mapping. We relate the behaviouf &t infinity’ to

the characteristic cycle associated to the projective closures of fibresWdé obtain a condition on

the characteristic cycle which is equivalent to a condition on the asymptotic behaviour of some of
the minors of the Jacobian matrix ¢t This condition generalizes the condition in the hypersurface
case known as Malgrange’s condition. The relation between this condition and the behavior of the
characteristic cycle is a partial generalization of Parusinski’s result in the hypersurface case. We show
that the new condition implies the*-triviality of f.
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Let f:C" — C?” be a polynomial mapping with > p. A valuety € C? of

f is calledtypical if f is aC® trivial fibration over a neighborhood a§ and
atypical otherwise. The set of atypical values, consists of the critical valugs of
and, maybe, some other values coming from the ‘singularitieg af infinity’.

In the case wherg = 1, the atypical values have been studied by many authors
([Ha—L&], [Ha], [Pal], [Pa2], [S—T], or [Z].) In this paper we consider the extent to
which some recent results by Parusinski can be extended to the casepnhere

As in the hypersurface case, we consider the faniilx — C?” of projective
closures of fibres off, X being the closure of the graph gfin P* x C”. In
the case whergp = 1, Parusinski was able to relate the vanishing cycleg of
the characteristic cycle ok, and a condition of Malgrange to give a sufficient
condition ensuring that a valugis not atypical.

In this paper, using the theory of the integral closure of modules, we are able
to relate the condition on the characteristic cycleXathat appears in Parusinski's
paper with the asymptotic behavior of some of the minors of the Jacobian matrix
of f. This condition generalizes the condition in the hypersurface case known as
Malgrange’s condition. We use this condition to give a sufficient condition for a
valuerg in C? not to be atypical.
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For the special case when the pointsXadt infinity form a complete intersection
with isolated singularities, we give a numerical condition for a vajue C” not
to be atypical.

Currently, the notion of vanishing cycles is defined only for functions, so the
extension of this part of Parusinski's paper remains to be done.

Let f(x1,...,x,) be a complex polynomial mapping with componeyitsl <
i < p of degreed; and letf; (xg, x1, . .., x,) be the homogenization ¢f. Consider
the family of the projective closures of the fibresfofjiven by f: X — C?, where
X is the closure of the graph ¢f in P* x C”, and f is induced by the projection
on the second factor. Léf,, = {xo = 0} C P" be the hyperplane at infinity and let
X = XN(Hy x CP). Denote byl (f) the ideal generated by the terms of highest
degree of the elements of the ideal generated by fhe We denote the terms of
highest degree of; by £,;,. The cone at infinityC,,, of a fiber £ ~(¢) is obtained
by forming the closure of the fiber iR" and intersecting with the hyperplane at
infinity. If all of the fibers of f have dimension — p, then the cone at infinity does
not depend om, is equal to the vanishing df-( /) and henceX,, = C, x C?.

Let Cx denote the constant sheaf ahextended by zero ontB” x C?. Let
CanX) c T*(P" x CP) denote the characteristic cycle®©f (cf. [Br] or [Sa]). We
denote the projection frorR” x C? to C? by x. The relative cotangent bundle of
7 in T*(P" x C?) is denotedl'*; (P" x CP).

DEFINITION 1. We say thatf is noncharacteristic ap € X if the fiber of
CanX)NT*,(P" x CP) over p is empty.

Similarly we say thatf is noncharacteristic oveg (or overr, at o) if f is
noncharacteristic at evegy € f " (to) (resp. atevery € f (t) N Xo0). If F is
not non-characteristic at, then we callp a characterisitc point.

To state our generalization of Malgrange’s condition, we need some notation.
Let M;(f) with I = (i1 < i < --- < i,) denote the maximal minor of the
Jacobian matrix off formed from the columns indexed Wiy Let M (£, j) denote
the minor of the Jacobian matrix of siZg — 1) x (p — 1) using the columns
indexed byJ, and all the rows of the Jacobian matrix, except for ftie row. If
p = 1, then by convention we s&f;(f, j) = 1. Then the generalized Malgrange
condition holds forg € C? if, for |x| large enough and fof (x) close tor,

CilIM (HIHY?
By 1M (f, PIHY2~

We now begin to develop the connection between condition GM and the notion
of characteristic points. Fixg € X,. We assume thgtg = ((0:0: ...:0:1), 0,
...,0) e P" xC?,sothaty; = x;/x, fori =0,...,n —1,ands, ..., t,, forma
local system of coordinates at We say thatf is fair at pq if in this new coordinate
systemX is defined by

(GM)

350 [1x]]

~ di
Fi(yO, Visooes Yn—1,015 -+, tp) = fi(yO, Y1, oo Y1, l) - tiy() =0.
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This amounts to assuming that the graphyag dense in the zero set éf nearpg
which is equivalent to assuming that the terfjsdefine a complete intersection of
codimensiorp in a neighborhood opg in (H,, x CP). Let g denote the restriction

to X of yo; if Qs a neighborhood o, thenT*,($2) denotes the relative conormal

of g in . The next result links the notion of a characteristic point and the behavior
of g.

PROPOSITION 2. SupposeX, f, @, po as above. Themg is a characteristic
point iff the fiber of7'*,(22) N T*, (P" x C?) over pg is nonempty.

Proof. The proof is essentially the same as Corollary 1.5 of [Pa2], which in turn
depends on one of the main results of [BMM]. O

The next step is to use the theory of the integral closure of modules to interpret the
condition that the fiber of *,(2) N T*, (P" x C?) over po is empty. We begin with
a definition.

DEFINITION 3. SupposeX, x is a complex analytic germyf a submodule of
0% .. Thenh € O, is in the integral closure of/, denotedM, iff for all
$»:C,0— X, x,ho¢ € (¢*M)Oc.

A submoduleN of M is a reduction o if N = M. If G is a complex analytic
mapping,G: X — C7”, then the submodule @y ” generated by the partial deriv-
atives of G is called the Jacobian module 6fand is denoted M (G). If H is a
linear space, le¥ M(G)y denote the submodule dfM (G) generated byG/dv
for all v € H. As the next proposition shows, the theory of integral closure allows
us to control limiting tangent hyperplanes to analytic sets, and to fibers of analytic
maps.

PROPOSITION 4.Supposex? is an equidimensional complex analytic germ in
C", 0, defined by a map geri. Supposez: C" — C”, and letG be the map
germ with componentég, F). SupposeV is a linear subspace of”. Then no
hyperplaneH containingV is a limiting tangent hyperplane to the fibersgX at
O0iff JM(G)y is a reduction of/ M (G).

Proof. The proof is essentially the same as Theorem 2.2 of [G1] O

We can describe the condition on the conormakah Proposition 2 in integral
closure terms. We denote ¥ the linear space spanned by tteydy;}, where
0<i <n-—1,Y, the linear space spanned by f¢dy;}, where 1< i < n — 1.

PROPOSITION 5. SupposeX, f, 2, po as Proposition2. Then pg is not a
characteristic point iff

0F/dt; € JIM(F)y,1 <i < p atthe pointpg. (6)
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Proof. We apply Proposition 4, witly and F playing the same parts as in
Proposition 4. Becausg is fair, we know thatX is equidimensional, and that
is defined byF. Propositions 2 and 4 then imply thag is not a characteristic
point iff 8G/d; € JM(G)y for all i at po. However, an examination of the
Jacobian matrix ofz and ofdG/dt;, reveals that this is equivalent &F/d¢; €
JM(F)y, . O

At this point it is helpful to note some of the relations between the partialg of

andF.
OF; af;
J WW4=‘E,1<i<n—Ll<j<P’ (7)
Ay dx;
oF; , .
—L =y¥is;, 1<j<p, ®)
dt;
OF; df; of;
! yOdj_]':Xli‘i‘"“{‘xn fj' (9)
dyo 0x1 0x,

In (8), 8 ; is the Kronecker delta. Now we need to reformulate (6) in a way that
takes into accound F; /dyo. To do this and to make the transition frakhto C”,
we need to introduce a few more ideas from the theory of integral closure.

DEFINITION 10. Suppose/ is submodule o9 . h € O . Thenh is strictly
dependenon M if for all ¢:C,0 — X, x we haveh o ¢ € m1¢p*M, wherem; is
the maximal ideal in9c. We denote the set of elements strictly dependenton
by M.

The connection between the integral closure of ideals and modules is given by
the next Proposition. We denote thye— k)th fitting ideal of©} /M by Ji(M); if
h is an element o@)’;,x, we denote by, M) the module generated By andh.

PROPOSITION 11.SupposeM is a submodule o .. h € Of , and the rank of

(h, M) is k on each component &f, x. Thenh € M iff Jy(h, M) C Ji(M).
Proof. Cf. [1.7] and [1.8] of [GZ2]. O

We are now ready to reformulate condition (6).

PROPOSITION 12.Suppos€X, f, € as in Propositior2, then condition(6) holds
iff

IF/0t; € {yodF/dyo, dF/dy1, ..., 0F/dy,_1} Vi (13)

for y in X and close tgpg. Moreover,(6) implies

YodF/dyo € (0F [0y1, ..., 0F[0yn_1} (14)
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for y in X, close topo.
Proof. Clearly, (6) implies (13). Assume (13) holds. SuppeseC, 0 — X, p.
SinceF (x(s)) =0

d 4 dt,-aF dyo dF ldy, OF
0= —F((s). ()= =0 Z .

ds — ds a1, ds 8y0 ds dy;’
which gives
dyo 0F c x* aF oF OF oF
—_— x| .., = ..., .
ds 0Yo o 8l‘p oy1 0Yn_1

Suppose that the order ofg/ds in s is k. Then the order ofo(s) must bek + 1.
We have then that

dyo oF c oF oF OF oF
X — e, —, — e,
ds 8yo on at, 0y1 OVu_1
holds iff
OF . (8F oF OF oF )
shf—ex* | —, ..., —, — ..., —
dyo oty a1, Oy1 dYn-1
iff
oF oF oF OF oF
yo— € myx* <—,.. ,—) (15)
Yo 0f1 8tp 8 Y1 0Yn—_1

Now we can apply Nakayama'’s lemma and (12) to deduce (6); for combining (12)
and (15) we get

CTM(F)y) + oF oF O0F oF
X m.x P S S R Y
T o 0, 0y Oy
L (OF dF OF OF
7 o 0, T dyen )

Applying Nakayama’s lemma gives

oF oF OF oF
x*(JM(F)y,) =x ( )

oA, dyr T Ay

Sincex is arbitrary, we get

_— oF oF oF oF
JM(F)y, =

A, dyr T Ay
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which gives the first part of the Proposition.
From (15) it follows that

3F [OoF 9F OF aF \
yo— €[ —....,—, —..., ,
dyo oty dt, dy1 0yn—1

The desired result now follows sindeM (F)y, is a reduction of

<8F oF 0F oF )
o _ o

8—1‘]-,...,@,8)}1...,—8))”71

The following corollary will play an important role in showing that condition (GM)
implies theC® triviality of the fibers of f.

COROLLARY 16. If pg is not a characteristic point, then the maximal minors of
the matrix with columng F/dy;, 1 < i < n — 1 do not simultaneously vanish on
Q- Xoo.

Proof. We have just shown that the hypothesis implies that(F)y, is a re-
duction of the module generated by, (0 F/9yo), JM(F)y, ), and the partials of
F with respect to the;. This implies that the corresponding quotient sheaves have
the same support. Off aX, the support of the second quotient sheaf is just the
singular set ofX which is empty off ofX .. This implies that the ideal of maximal
minors in the corollary cannot vanish off &f,.. a

We are now ready to show the equivalence of condition GM gnldeing a non-
characteristic point.

THEOREM 17. Supposef and X as in Propositior2. Thenf is noncharacteristic
overry at infinity if and only if condition GM holds fap.

Proof. For the first part of the proof, we work in a neighborhood of a ppint
of X, in the fiber of f. We use the same set-up as in the previous proofs. Then we
know that f is noncharacteristic gt if and only if

dF/t; € (900 F/dy0, dF/dy1, ..., dF J0y,_1] Vi

for all y in X such thatf (y) is sufficiently close tag, andx is sufficiently large.
By Proposition 11, we know that this is equivalentytﬁM(J, i,F)e (M, F)),
whereM (1, F) is a maximal minor with multi indexX, of the matrix whose columns
are{ypd F/dyo, dF/dy1,...,0F/dy,_1},andM (J, i, F) is a maximal minor of the
same matrix, with théth row deleted.

If necessary, shrink the neighborhood, so that|| > ||x;||Vi off X,. A
property of the integral closure of ideals ([L-T]) implies that there existsuch
that

C sup|[(M(I, F)(z)|| = supllyol|“||M (], i, F)(2)||.
1 J,i
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Because the set of points wheyg # 0 is dense inX, we can divide both sides
of the above inequalities byyo||* wherek = Y (d; — 1), and get an equivalent
inequality. Dividing theith row of each minor byyy)%~! and using the formulae
7 and 9 we get

¢ SEJIOII(M’(I, HEI = Sju.le/anHM/(J’ i, I

Here, ifi, #nwe haveM’'(I, f) = M(I, ) otherwise, replace the column vector
with the df/dx, terms by) (x; /x,)df/dx;. A similar substitution should be made
to define theM'(J, i, f)(z) terms. Multiplying both sets of terms byx,|| and
using the fact thalix,, || > ||x;||Vi, it is easy to see that this inequality is equivalent
to GM.

Because the fibers of are compact, and the GM condition independent of the
point at infinity, it follows that there exists a neighborhood of the fibef @iverr,
with x sufficiently large, such that GM holds on the neighborhood. O

THEOREM 18. Suppose X, f as in Propositiéh

(i) If £ is noncharacteristic overy then f is C* trivial over a neighborhood of
to, that istg is typical.

(i) Similarly if £ is noncharacteristic over, at infinity thenf is C*-trivial over
a neighborhood ofy and near infinity(i.e. in the complement of a sufficiently
big ball in C").

Proof. We will constructp smooth vectorfield¥; such that

() Vi(fj) =i
(i) (x,V;)=0.
(i) V; is well defined for allx sufficiently large, forf (x) sufficiently close tay.

Integrating these vector fields will produceds° flows, which will enable us
to flow from the fiber overy to any nearby fiber; each flow will adjust one of the
component functions of . Each vectorfield will be a normalized sum of basic vec-
torfields. We construct these as follows. Augment the Jacobian matfixwith the
row vectorx; replace theth row of the augmented matrix i9/0x4, ..., 9/9x,).
If Iis a multindex of lengthy + 1, then the submatrix with columns indexed big
a square matrix of sizg + 1. Expanding along th&th row produces a vectorfield
which we denote by ;. Itis clear thatV; ;(f;) = Ofori # j and(x, V; ;) = 0, for
both expressions are just the determinant of a matrix with a row repeated. Denote
the minor of the original augmented matrix b1, f, x); then we defind’; to be

— Zlm(17 f7x)‘/i,l
Yo lmd, f, 0112

Properties (i) and (ii) are clear; it remains to show that (iii) holds. Once we show
(i), then it will be obvious from (i) thatV; will never be zero.

Vi
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To prove this we will work in a neighborhood pf= ((0:0: ---:0:1),0, ..., fg).
From the form ofV;, it is clear thatV; fails to be defined iff all of then(1, f, x)
vanish. So it suffices to consider those minors for which = n. Expanding a
minor of this type along the top row, we get

m(, f,x) = (=D"%m’, )+ Y (=) %m(J, f), (19)

where!’ is the multisubindex of of lengthpg, i, # n andJ is a multisubindex of
I of length po with i, = n. If we change into the coordinate system, and multiply
through byyo*yo wherek = > (d; — 1), we get

Yo' yom(I, f,x) = (=1)’m(I', F)+ Y (=) "5im(J', F).

Here the last column of the matrix which givesJ’, F) is

oF < oF n + oF )
Yoo - —\Vig - T T Yn-1 .
8)10 3)’1 3)’,1—1

Expanding this minor out, gives a sum of minors (with sign). If we collect terms,
onetermig—1)?(1+ Z(—l)fflyiijj)m(l/, F). Some of the other terms are sums
of minors of formy;y;m (K, F), wherem(K, F) is a maximal minor of the matrix

of partials of F with respect to the;, i > 0. The rest of the terms are of the form
y:m(L, F), where then(L, F) are maximal minors of the matrix with columns
{yodF/dvyg, 0F/0y1,...,0F/0y,_1}. Becauseyyd F/dyy is strictly dependent on
the module generated by the partials with respect to the gthérese minors are
much smaller than the minows(I’, F). By Corollary 16, we know that some minor
of typem(I’, F) is nonzero. So, consider the norm of the right hand side of (19)
for anI’ which is maximal in norm. This expression will be bounded belowyfor
small enough, by a constant multiple |of:(I’, F)||, where the constant depends
only on they;, not on the minor. It follows, tha (1, f, x) is nonzero at this point,
henceV; is well-defined. O

We now wish to restrict to the case where the cone at infinity is a local complete
intersection with isolated singularities. We assumé€f) defines the cone with
reduced structure. We also want to work at poinig, ¢) at infinity such that in a
neighborhood of po, ) the fiber over is smooth at points not iX . If ¢ € C?, let

X; be the fiber over, J M (F;) obtained by restrictingg M (F) to X,. We want to
work with the multiplicity of the module/ M (F;)y+, but for the multiplicity to be
defined, we need thatM (F;)y+ has finite colength. It turns our that our geometric
hypotheses are exactly what's needed to ensure this.

PROPOSITION 19.Suppose atp, 1) € X We have thaC,, is a local complete
intersection atpg with an isolated singularity. Suppose further that in a neighbor-
hood of(pg, t) the fiber over is smooth at points not iX ... ThenJ M (F;)y+ has
finite colength.
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Proof. The moduleJ M (F;)y+ is generated by the partial derivativesfofwith
respect toyy, .. ., y,_1; denote the matrix with these partial derivatives as columns
by My+. We need to show that this matrix has maximal rank except possibly at
(po, t). There are two cases to consider, that wigh= 0 andyy # 0. If yo = 0
then My~ specializes to the corresponding matrix gotten by using the ternfs of
of highest degree. By the condition on the cone at infinity, this matrix has maximal
rank except atpo, t). Suppose # 0. Then the smoothness condition ensures that
My has maximal rank at finite points. Suppose that there exists a curve on the fiber
overt such thatyg| X, is not a submersion along this curve. Then theoordinate
of this curve must be constant, hence the curve cannot pass thipgigh. Since
yolX; is @ submersion close (o, t), it follows that the rank ofMy+ must be
maximal.

We can now give a numerical criterion for a poiipt, ¢) to not be atypical.

THEOREM 20. Suppose(po, t) as above,pg a singular point of the cone at
infinity. Suppose the multiplicity of M (F;)y+ is constant in a neighborhood of
(po, 1) In p x C?, then(pg, t) is not atypical.

Proof. We are going to show that the constancy of the multiplicity implies that
the condition (6) of Proposition 5 holds. First we note tlfas fair by our setup
and condition (6) holds generically in our neighborhood. This follows because the
inclusion is implied by the the,, condition applied to the pai¢Xy, p x CP).
Here X, denotes the set of points & where the functiorg is a submersion.
(Recall thatg is just the restiction ofj to X.) We know that the, condition holds
generically becausgis a function. Now the constancy of the multiplicity, coupled
with the fact that the inclusion holds generically, allows us to apply the principle
of specialization of integral dependence for modules. [G—K]. This implies that the
inclusion holds at all points close t@o, ¢) including (po, 1). O

Note that if pg is a smooth point of the cone at infinity, then there is nothing to
prove; for then the modulé M (F)y+ has colength 0, so the inclusion of Proposi-
tion 5 is trivial.

There is an interesting interpretation of the multiplicityJa¥ (F;)y+ which we
now describe.

PROPOSITION 21. The multiplicity of JM(F;)y+ at (po, t) is the sum of the
Milnor number ofX, and the Milnor number of ...

Proof. The number of generators dfM (F;)y+ is n — 1. Meanwhile, it is a
submodule ot9§}t and the dimension of; isn — p. Now the number of generators
of a minimal reduction of M (F;)y+ isdim(X,;) + p — 1 =n — 1 sOJM(F,)y+
is already a minimal reduction. Hence the multiplicity &M (F;)y+ is just its
colength ([B—-R]), since the fiber is a complete intersection hehgeis Cohen-
Macaulay. By a theorem of Buchsbaum and Rim ([B—R]), this is the colength of
the ideal of maximal minors. Now by a theorem of L& and Greuel ([Gr], [Le]) the
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colength of the ideal of maximal minors is the sum of the Milnor numbé¥,aind
the Milnor number of the slice byo, which is just the cone at infinity. O

COROLLARY 22. Suppos€pq, t) as abovepg a singular point of the cone at
infinity. Suppose the Milnor number &f is constant in a neighborhood @p, 1)
in p x C?, then(py, t) is not atypical.

Proof. Since the cone at infinity is independentpits Milnor number remains
constant, so the multiplicity of M (F;)y~ is constant iff the Milnor number of,
is constant. Now apply Theorem 20. O

We can also show that if the Milnor number differs from that of the generic fiber,
then the point is a characteristic point.

THEOREM 23. Suppose atp,t) € X, we have thatC,, is a local complete
intersection atpg with an isolated singularity. Suppose further that in a neighbor-
hood of(po, t) the fiber over is smooth at finite points. Then if the Milnor number
of X, is greater than the generic valugyg, ) is a characteristic point.

Proof. Supposd pg, t) is not a characteristic point. Then by Proposition 5, we
have thato F/dt;, € JM(F)y,1 < i < p. This implies that the cosupport of
JM(F)y+ lies in X; however we already know that the cosupport/af (F)y+
in X, consists ofS(C,,) x CP. This implies that the cosupport dfM (F)y+ does
not split. We know that/ M (F)y~+ restricted to the fibers ov&?” has the minimal
number of generators for a module of finite colength, hence we can apply Propos-
ition 1.5 of [G-K] to deduce that the multiplicity, and hence the Milnor number is
constant. O

To complete the extension of Parusinski’'s work, it remains to show that the char-
acteristic points are atypical. As mentioned earlier, the problem is that the notion
of vanishing cycles is only well defined for functions.
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