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Abstract. Let f be a complex polynomial mapping. We relate the behaviour off ‘at infinity’ to
the characteristic cycle associated to the projective closures of fibres off . We obtain a condition on
the characteristic cycle which is equivalent to a condition on the asymptotic behaviour of some of
the minors of the Jacobian matrix off . This condition generalizes the condition in the hypersurface
case known as Malgrange’s condition. The relation between this condition and the behavior of the
characteristic cycle is a partial generalization of Parusinski’s result in the hypersurface case. We show
that the new condition implies theC∞-triviality of f .
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Let f :Cn → Cp be a polynomial mapping withn > p. A value t0 ∈ Cp of
f is called typical if f is aC∞ trivial fibration over a neighborhood oft0 and
atypical otherwise. The set of atypical values, consists of the critical values off

and, maybe, some other values coming from the ‘singularities off at infinity’.
In the case wherep = 1, the atypical values have been studied by many authors
([Hà–Lê], [Hà], [Pa1], [Pa2], [S–T], or [Z].) In this paper we consider the extent to
which some recent results by Parusinski can be extended to the case wherep > 1.

As in the hypersurface case, we consider the familyf :X → Cp of projective
closures of fibres off , X being the closure of the graph off in Pn × Cp. In
the case wherep = 1, Parusinski was able to relate the vanishing cycles off ,
the characteristic cycle ofX, and a condition of Malgrange to give a sufficient
condition ensuring that a valuet0 is not atypical.

In this paper, using the theory of the integral closure of modules, we are able
to relate the condition on the characteristic cycle ofX that appears in Parusinski’s
paper with the asymptotic behavior of some of the minors of the Jacobian matrix
of f . This condition generalizes the condition in the hypersurface case known as
Malgrange’s condition. We use this condition to give a sufficient condition for a
valuet0 in Cp not to be atypical.
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For the special case when the points ofX at infinity form a complete intersection
with isolated singularities, we give a numerical condition for a valuet0 in Cp not
to be atypical.

Currently, the notion of vanishing cycles is defined only for functions, so the
extension of this part of Parusinski’s paper remains to be done.

Let f (x1, . . . , xn) be a complex polynomial mapping with componentsfi , 16
i 6 p of degreedi and letf̃i(x0, x1, . . . , xn) be the homogenization offi. Consider
the family of the projective closures of the fibres off given byf :X→ Cp, where
X is the closure of the graph off in Pn × Cp, andf is induced by the projection
on the second factor. LetH∞ = {x0 = 0} ⊂ Pn be the hyperplane at infinity and let
X∞ = X∩(H∞×Cp). Denote byIT (f ) the ideal generated by the terms of highest
degree of the elements of the ideal generated by the{fi}. We denote the terms of
highest degree offi by fdi . The cone at infinity,C∞, of a fiberf −1(t) is obtained
by forming the closure of the fiber inPn and intersecting with the hyperplane at
infinity. If all of the fibers off have dimensionn−p, then the cone at infinity does
not depend ont , is equal to the vanishing ofIT (f ) and henceX∞ = C∞ × Cp.

Let CX denote the constant sheaf onX extended by zero ontoPn × Cp. Let
Car(X) ⊂ T ∗(Pn×Cp) denote the characteristic cycle ofCX (cf. [Br] or [Sa]). We
denote the projection fromPn × Cp to Cp by π . The relative cotangent bundle of
π in T ∗(Pn × Cp) is denotedT ∗π(Pn × Cp).

DEFINITION 1. We say thatf is noncharacteristic atp ∈ X if the fiber of
Car(X) ∩ T ∗π(Pn × Cp) overp is empty.

Similarly we say thatf is noncharacteristic overt0 (or over t0 at∞) if f is

noncharacteristic at everyp ∈ f −1
(t0) (resp. at everyp ∈ f −1

(t0) ∩ X∞). If f is
not non-characteristic atp, then we callp a characterisitc point.

To state our generalization of Malgrange’s condition, we need some notation.
Let MI(f ) with I = (i1 < i2 < · · · < ip) denote the maximal minor of the
Jacobian matrix off formed from the columns indexed byI . LetMJ(f, j) denote
the minor of the Jacobian matrix of size(p − 1) × (p − 1) using the columns
indexed byJ , and all the rows of the Jacobian matrix, except for thej th row. If
p = 1, then by convention we setMJ(f, j) = 1. Then the generalized Malgrange
condition holds fort0 ∈ Cp if, for |x| large enough and forf (x) close tot0,

∃δ>0 ||x|| (6I ||MI(f )||2)1/2
(6J,j ||MJ(f, j)||2)1/2 > δ. (GM)

We now begin to develop the connection between condition GM and the notion
of characteristic points. Fixp0 ∈ X∞. We assume thatp0 = ((0: 0: . . . :0: 1),0,
. . . ,0) ∈ Pn × Cp, so thatyi = xi/xn for i = 0, . . . , n − 1, andt1, . . . , tp, form a
local system of coordinates atp. We say thatf is fair atp0 if in this new coordinate
systemX is defined by

Fi(y0, y1, . . . , yn−1, t1, . . . , tp) = f̃i(y0, y1, . . . , yn−1,1)− tiydi0 = 0.
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This amounts to assuming that the graph off is dense in the zero set ofF nearp0

which is equivalent to assuming that the termsfdi define a complete intersection of
codimensionp in a neighborhood ofp0 in (H∞×Cp). Letg denote the restriction
toX of y0; if � is a neighborhood ofp0, thenT ∗g(�) denotes the relative conormal
of g in�. The next result links the notion of a characteristic point and the behavior
of g.

PROPOSITION 2. SupposeX, f , �, p0 as above. Thenp0 is a characteristic
point iff the fiber ofT ∗g(�) ∩ T ∗π(Pn × Cp) overp0 is nonempty.

Proof.The proof is essentially the same as Corollary 1.5 of [Pa2], which in turn
depends on one of the main results of [BMM]. 2
The next step is to use the theory of the integral closure of modules to interpret the
condition that the fiber ofT ∗g(�)∩T ∗π (Pn×Cp) overp0 is empty. We begin with
a definition.

DEFINITION 3. SupposeX, x is a complex analytic germ,M a submodule of
Op

X,x. Then h ∈ Op

X,x is in the integral closure ofM, denotedM , iff for all
φ:C,0→ X, x, h ◦ φ ∈ (φ∗M)OC.

A submoduleN ofM is a reduction ofM if N = M. If G is a complex analytic
mapping,G:X→ Cp, then the submodule ofOX

p generated by the partial deriv-
atives ofG is called the Jacobian module ofG and is denotedJM(G). If H is a
linear space, letJM(G)H denote the submodule ofJM(G) generated by∂G/∂v
for all v ∈ H . As the next proposition shows, the theory of integral closure allows
us to control limiting tangent hyperplanes to analytic sets, and to fibers of analytic
maps.

PROPOSITION 4.SupposeXd is an equidimensional complex analytic germ in
Cn, 0, defined by a map germF . Supposeg: Cn → Cp, and letG be the map
germ with components(g, F ). SupposeV is a linear subspace ofCn. Then no
hyperplaneH containingV is a limiting tangent hyperplane to the fibers ofg|X at
0 iff JM(G)V is a reduction ofJM(G).

Proof.The proof is essentially the same as Theorem 2.2 of [G1] 2
We can describe the condition on the conormal ofg in Proposition 2 in integral
closure terms. We denote byY the linear space spanned by the{∂/∂yi}, where
06 i 6 n− 1, Y+ the linear space spanned by the{∂/∂yi}, where 16 i 6 n− 1.

PROPOSITION 5. SupposeX, f , �, p0 as Proposition2. Thenp0 is not a
characteristic point iff

∂F/∂ti ∈ JM(F)Y+16 i 6 p at the pointp0. (6)
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Proof. We apply Proposition 4, withg and F playing the same parts as in
Proposition 4. Becausef is fair, we know thatX is equidimensional, and thatX
is defined byF . Propositions 2 and 4 then imply thatp0 is not a characteristic
point iff ∂G/∂ti ∈ JM(G)Y for all i at p0. However, an examination of the
Jacobian matrix ofG and of∂G/∂ti , reveals that this is equivalent to∂F/∂ti ∈
JM(F)Y+ . 2
At this point it is helpful to note some of the relations between the partials off

andF .

∂Fj

∂yi

/
y0
dj−1 = ∂fj

∂xi
, 16 i 6 n− 1,16 j 6 p, (7)

∂Fj

∂ti
= y0

dj δi,j , 16 j 6 p, (8)

∂Fj

∂y0

/
y0
dj−1 = x1

∂fj

∂x1
+ · · · + xn ∂fj

∂xn
. (9)

In (8), δi,j is the Kronecker delta. Now we need to reformulate (6) in a way that
takes into account∂Fj/∂y0. To do this and to make the transition fromX to Cn,
we need to introduce a few more ideas from the theory of integral closure.

DEFINITION 10. SupposeM is submodule ofOp

X,x, h ∈ Op

X,x. Thenh is strictly
dependentonM if for all φ:C,0→ X, x we haveh ◦ φ ∈ m1φ

∗M, wherem1 is
the maximal ideal inOC. We denote the set of elements strictly dependent onM

byM
+

.
The connection between the integral closure of ideals and modules is given by

the next Proposition. We denote the(p− k)th fitting ideal ofOp

X,x/M by Jk(M); if
h is an element ofOp

X,x, we denote by(h,M) the module generated byM andh.

PROPOSITION 11.SupposeM is a submodule ofOp

X,x, h ∈ Op

X,x and the rank of

(h,M) is k on each component ofX, x. Thenh ∈ M̄ iff Jk(h,M) ⊂ Jk(M).
Proof.Cf. [1.7] and [1.8] of [G2]. 2

We are now ready to reformulate condition (6).

PROPOSITION 12.SupposeX, f ,� as in Proposition2, then condition(6) holds
iff

∂F/∂ti ∈ {y0∂F/∂y0, ∂F/∂y1, . . . , ∂F/∂yn−1} ∀i (13)

for y in X and close top0. Moreover,(6) implies

y0∂F/∂y0 ∈ {∂F/∂y1, . . . , ∂F/∂yn−1}+ (14)
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for y in X∞ close top0.
Proof.Clearly, (6) implies (13). Assume (13) holds. Supposex: C,0→ X,p.

SinceF(x(s)) ≡ 0

0= d

ds
F (y(s), t (s)) =

p∑
i=1

dti
ds

∂F

∂ti
+ dy0

ds

∂F

∂y0
+

n−1∑
i=1

dyi
ds

∂F

∂yi
,

which gives

dy0

ds

∂F

∂y0
∈ x∗

(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
.

Suppose that the order of dy0/ds in s is k. Then the order ofy0(s) must bek + 1.
We have then that

dy0

ds

∂F

∂y0
∈ x∗

(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
holds iff

sk
∂F

∂y0
∈ x∗

(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
iff

y0
∂F

∂y0
∈ m1x

∗
(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
. (15)

Now we can apply Nakayama’s lemma and (12) to deduce (6); for combining (12)
and (15) we get

x∗(JM(F)Y+)+m1x
∗
(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)

= x∗
(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
.

Applying Nakayama’s lemma gives

x∗(JM(F)Y+) = x∗
(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
.

Sincex is arbitrary, we get

JM(F)Y+ =
(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
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which gives the first part of the Proposition.
From (15) it follows that

y0
∂F

∂y0
∈
(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)+
.

The desired result now follows sinceJM(F)Y+ is a reduction of(
∂F

∂t1
, . . . ,

∂F

∂tp
,
∂F

∂y1
. . . ,

∂F

∂yn−1

)
. 2

The following corollary will play an important role in showing that condition (GM)
implies theC∞ triviality of the fibers off .

COROLLARY 16. If p0 is not a characteristic point, then the maximal minors of
the matrix with columns∂F/∂yi, 1 6 i 6 n − 1 do not simultaneously vanish on
�−X∞.

Proof. We have just shown that the hypothesis implies thatJM(F)Y+ is a re-
duction of the module generated by(y0(∂F/∂y0), JM(F)Y+), and the partials of
F with respect to theti . This implies that the corresponding quotient sheaves have
the same support. Off ofX∞ the support of the second quotient sheaf is just the
singular set ofX which is empty off ofX∞. This implies that the ideal of maximal
minors in the corollary cannot vanish off ofX∞. 2
We are now ready to show the equivalence of condition GM andp0 being a non-
characteristic point.

THEOREM 17.Supposef andX as in Proposition2. Thenf is noncharacteristic
over t0 at infinity if and only if condition GM holds fort0.

Proof. For the first part of the proof, we work in a neighborhood of a pointp0

of X∞ in the fiber off . We use the same set-up as in the previous proofs. Then we
know thatf is noncharacteristic atp0 if and only if

∂F/∂ti ∈ {y0∂F/∂y0, ∂F/∂y1, . . . , ∂F/∂yn−1} ∀i
for all y in X such thatf (y) is sufficiently close tot0, andx is sufficiently large.
By Proposition 11, we know that this is equivalent toy0

d
i M(J, i, F ) ∈ (M(I, F )),

whereM(I, F ) is a maximal minor with multi indexI , of the matrix whose columns
are{y0∂F/∂y0, ∂F/∂y1, . . . , ∂F/∂yn−1}, andM(J, i, F ) is a maximal minor of the
same matrix, with theith row deleted.

If necessary, shrink the neighborhood, so that||xn|| > ||xi ||∀i off X∞. A
property of the integral closure of ideals ([L-T]) implies that there existsC such
that

C sup
I

||(M(I, F )(z)|| > sup
J,i

||y0||di ||M(J, i, F )(z)||.
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Because the set of points wherey0 6= 0 is dense inX, we can divide both sides
of the above inequalities by||y0||k wherek = ∑

(di − 1), and get an equivalent
inequality. Dividing theith row of each minor by(y0)

di−1 and using the formulae
7 and 9 we get

C sup
I

||(M ′(I, f )(z)|| > sup
J,i

||1/xn||||M ′(J, i, f )(z)||.

Here, ifin 6= n we haveM ′(I, f ) = M(I, f ) otherwise, replace the column vector
with the∂f/∂xn terms by

∑
(xi/xn)∂f/∂xi. A similar substitution should be made

to define theM ′(J, i, f )(z) terms. Multiplying both sets of terms by||xn|| and
using the fact that||xn|| > ||xi ||∀i, it is easy to see that this inequality is equivalent
to GM.

Because the fibers off are compact, and the GM condition independent of the
point at infinity, it follows that there exists a neighborhood of the fiber off overt0
with x sufficiently large, such that GM holds on the neighborhood. 2
THEOREM 18. Suppose X, f as in Proposition2.

(i) If f is noncharacteristic overt0 thenf is C∞ trivial over a neighborhood of
t0, that ist0 is typical.

(ii) Similarly if f is noncharacteristic overt0 at infinity thenf is C∞-trivial over
a neighborhood oft0 and near infinity(i.e. in the complement of a sufficiently
big ball in Cn).

Proof.We will constructp smooth vectorfieldsVi such that

(i) Vi(fj) = δi,j .
(ii) 〈x, Vi〉 = 0.
(iii) Vi is well defined for allx sufficiently large, forf (x) sufficiently close tot0.

Integrating these vector fields will produce pC∞ flows, which will enable us
to flow from the fiber overt0 to any nearby fiber; each flow will adjust one of the
component functions off . Each vectorfield will be a normalized sum of basic vec-
torfields. We construct these as follows. Augment the Jacobian matrix off with the
row vectorx; replace theith row of the augmented matrix by(∂/∂x1, . . . , ∂/∂xn).
If I is a multindex of lengthp+1, then the submatrix with columns indexed byI is
a square matrix of sizep+ 1. Expanding along thei-th row produces a vectorfield
which we denote byVi,I . It is clear thatVi,I (fj ) = 0 for i 6= j and〈x, Vi,I 〉 = 0, for
both expressions are just the determinant of a matrix with a row repeated. Denote
the minor of the original augmented matrix bym(I, f, x); then we defineVi to be

Vi =
∑

I m(I, f, x)Vi,I∑
I ||m(I, f, x)||2

.

Properties (i) and (ii) are clear; it remains to show that (iii) holds. Once we show
(iii), then it will be obvious from (i) thatVi will never be zero.
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To prove this we will work in a neighborhood ofp = ((0: 0: · · · :0: 1),0, . . . , t0).
From the form ofVi, it is clear thatVi fails to be defined iff all of them(I, f, x)
vanish. So it suffices to consider those minors for whichip+1 = n. Expanding a
minor of this type along the top row, we get

m(I, f, x) = (−1)pxnm(I
′, f )+

∑
(−1)i−1xim(J, f ), (19)

whereI ′ is the multisubindex ofI of lengthp0, ip 6= n andJ is a multisubindex of
I of lengthp0 with ip = n. If we change into they coordinate system, and multiply
through byy0

ky0 wherek =∑(di − 1), we get

y0
ky0m(I, f, x) = (−1)pm(I ′, F )+

∑
(−1)i−1yim(J

′, F ).

Here the last column of the matrix which givesm(J ′, F ) is

y0
∂F

∂y0
−
(
y1
∂F

∂y1
+ · · · + yn−1

∂F

∂yn−1

)
.

Expanding this minor out, gives a sum of minors (with sign). If we collect terms,
one term is(−1)p(1+∑(−1)j−1yij yij )m(I

′, F ). Some of the other terms are sums
of minors of formyiyjm(K,F), wherem(K,F) is a maximal minor of the matrix
of partials ofF with respect to theyi, i > 0. The rest of the terms are of the form
yim(L, F ), where them(L,F) are maximal minors of the matrix with columns
{y0∂F/∂y0, ∂F/∂y1, . . . , ∂F/∂yn−1}. Becausey0∂F/∂y0 is strictly dependent on
the module generated by the partials with respect to the otheryi , these minors are
much smaller than the minorsm(I ′, F ). By Corollary 16, we know that some minor
of typem(I ′, F ) is nonzero. So, consider the norm of the right hand side of (19)
for anI ′ which is maximal in norm. This expression will be bounded below, foryi
small enough, by a constant multiple of||m(I ′, F )||, where the constant depends
only on theyi , not on the minor. It follows, thatm(I, f, x) is nonzero at this point,
henceVi is well-defined. 2
We now wish to restrict to the case where the cone at infinity is a local complete
intersection with isolated singularities. We assumeIT (f ) defines the cone with
reduced structure. We also want to work at points(p0, t) at infinity such that in a
neighborhood of(p0, t) the fiber overt is smooth at points not inX∞. If t ∈ Cp, let
Xt be the fiber overt , JM(Ft ) obtained by restrictingJM(F) to Xt . We want to
work with the multiplicity of the moduleJM(Ft )Y+ , but for the multiplicity to be
defined, we need thatJM(Ft )Y+ has finite colength. It turns our that our geometric
hypotheses are exactly what’s needed to ensure this.

PROPOSITION 19.Suppose at(p, t) ∈ X∞ we have thatC∞ is a local complete
intersection atp0 with an isolated singularity. Suppose further that in a neighbor-
hood of(p0, t) the fiber overt is smooth at points not inX∞. ThenJM(Ft )Y+ has
finite colength.
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Proof.The moduleJM(Ft )Y+ is generated by the partial derivatives ofF with
respect toy1, . . . , yn−1; denote the matrix with these partial derivatives as columns
by MY+ . We need to show that this matrix has maximal rank except possibly at
(p0, t). There are two cases to consider, that withy0 = 0 andy0 6= 0. If y0 = 0
thenMY+ specializes to the corresponding matrix gotten by using the terms off

of highest degree. By the condition on the cone at infinity, this matrix has maximal
rank except at(p0, t). Supposey0 6= 0. Then the smoothness condition ensures that
MY has maximal rank at finite points. Suppose that there exists a curve on the fiber
overt such thaty0|Xt is not a submersion along this curve. Then they0 coordinate
of this curve must be constant, hence the curve cannot pass through(p0, t). Since
y0|Xt is a submersion close to(p0, t), it follows that the rank ofMY+ must be
maximal.

We can now give a numerical criterion for a point(p0, t) to not be atypical.

THEOREM 20. Suppose(p0, t) as above,p0 a singular point of the cone at
infinity. Suppose the multiplicity ofJM(Ft )Y+ is constant in a neighborhood of
(p0, t) in p × Cp, then(p0, t) is not atypical.

Proof.We are going to show that the constancy of the multiplicity implies that
the condition (6) of Proposition 5 holds. First we note thatf is fair by our setup
and condition (6) holds generically in our neighborhood. This follows because the
inclusion is implied by the theag condition applied to the pair(X0, p × Cp).
HereX0 denotes the set of points ofX where the functiong is a submersion.
(Recall thatg is just the restiction ofy0 toX.) We know that theag condition holds
generically becauseg is a function. Now the constancy of the multiplicity, coupled
with the fact that the inclusion holds generically, allows us to apply the principle
of specialization of integral dependence for modules. [G–K]. This implies that the
inclusion holds at all points close to(p0, t) including (p0, t). 2
Note that ifp0 is a smooth point of the cone at infinity, then there is nothing to
prove; for then the moduleJM(F)Y+ has colength 0, so the inclusion of Proposi-
tion 5 is trivial.

There is an interesting interpretation of the multiplicity ofJM(Ft )Y+ which we
now describe.

PROPOSITION 21. The multiplicity ofJM(Ft )Y+ at (p0, t) is the sum of the
Milnor number ofXt and the Milnor number ofC∞.

Proof. The number of generators ofJM(Ft )Y+ is n − 1. Meanwhile, it is a
submodule ofOp

Xt
and the dimension ofXt is n−p. Now the number of generators

of a minimal reduction ofJM(Ft )Y+ is dim(Xt ) + p − 1 = n − 1 soJM(Ft )Y+
is already a minimal reduction. Hence the multiplicity ofJM(Ft )Y+ is just its
colength ([B–R]), since the fiber is a complete intersection henceOXt is Cohen-
Macaulay. By a theorem of Buchsbaum and Rim ([B–R]), this is the colength of
the ideal of maximal minors. Now by a theorem of Lê and Greuel ([Gr], [Le]) the
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colength of the ideal of maximal minors is the sum of the Milnor number ofXt and
the Milnor number of the slice byy0, which is just the cone at infinity. 2
COROLLARY 22. Suppose(p0, t) as above,p0 a singular point of the cone at
infinity. Suppose the Milnor number ofXt is constant in a neighborhood of(p0, t)

in p × Cp, then(p0, t) is not atypical.
Proof.Since the cone at infinity is independent oft , its Milnor number remains

constant, so the multiplicity ofJM(Ft )Y+ is constant iff the Milnor number ofXt
is constant. Now apply Theorem 20. 2
We can also show that if the Milnor number differs from that of the generic fiber,
then the point is a characteristic point.

THEOREM 23. Suppose at(p, t) ∈ X∞ we have thatC∞ is a local complete
intersection atp0 with an isolated singularity. Suppose further that in a neighbor-
hood of(p0, t) the fiber overt is smooth at finite points. Then if the Milnor number
ofXt is greater than the generic value,(p0, t) is a characteristic point.

Proof. Suppose(p0, t) is not a characteristic point. Then by Proposition 5, we
have that∂F/∂ti ∈ JM(F)Y+1 6 i 6 p. This implies that the cosupport of
JM(F)Y+ lies inX∞; however we already know that the cosupport ofJM(F)Y+
in X∞ consists ofS(C∞)×Cp. This implies that the cosupport ofJM(F)Y+ does
not split. We know thatJM(F)Y+ restricted to the fibers overCp has the minimal
number of generators for a module of finite colength, hence we can apply Propos-
ition 1.5 of [G-K] to deduce that the multiplicity, and hence the Milnor number is
constant. 2
To complete the extension of Parusinski’s work, it remains to show that the char-
acteristic points are atypical. As mentioned earlier, the problem is that the notion
of vanishing cycles is only well defined for functions.
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