A NOTE ON SPACES WITH A STRONG RANK 1-DIAGONAL

WEI-FENG XUAN[™] and WEI-XUE SHI

(Received 22 August 2013; accepted 23 September 2013; first published online 20 November 2013)

Abstract

We mainly prove that, assuming b = c, every regular star-compact space with a strong rank 1-diagonal is metrisable.

2010 *Mathematics subject classification*: primary 54D20; secondary 54E35. *Keywords and phrases*: star-compact, strong rank 1-diagonal.

1. Introduction

It is well known that the G_{δ} -diagonal property plays an important role in metrisation theorems. In 1945, Sneider [7] proved that every compact space with a G_{δ} -diagonal is metrisable. In 1976, Chaber [2] proved that every countably compact space with a G_{δ} -diagonal is compact and thus metrisable, which improved Sneider's result. The strong rank 1-diagonal property is stronger than the G_{δ} -diagonal property. The classical Mrowka space [6] demonstrates that a Tychonoff pseudocompact space with a strong rank 1-diagonal need not be metrisable. Notice that star-compactness is weaker than countable compactness and stronger than pseudocompactness. A natural question then arises.

QUESTION 1.1. Is every Tychonoff (regular) star-compact space metrisable if it has a strong rank 1-diagonal?

In this paper we mainly prove that, assuming b = c, every regular star-compact space with a strong rank 1-diagonal is metrisable. This gives a consistent positive answer to Question 1.1.

2. Notation and terminology

All spaces are assumed to be Hausdorff unless otherwise stated.

A subset A of a space X is said to be bounded in X if every infinite family ξ of open sets of X such that $V \cap A \neq \emptyset$, for every $V \in \xi$, has an accumulation point in X. If X is

The authors are supported by NSFC project 11271178.

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

bounded in itself, then we say that X is pseudocompact. It should be pointed out that the definition of pseudocompactness given here is equivalent to DFCC in [5]. It is easy to see that for Tychonoff spaces it is also equivalent to the usual one: every continuous real-valued function on X is bounded.

A space *X* is star-compact if whenever \mathcal{U} is an open cover of *X*, there is a compact subset $A \subseteq X$ such that $St(A, \mathcal{U}) = X$, where $St(A, \mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$.

A space *X* has a strong rank 1-diagonal [1] if there exists a sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of *X* such that for each $x \in X$, $\{x\} = \bigcap \{\overline{\operatorname{St}(x, \mathcal{U}_n)} : n \in \omega\}$.

The Lindelöf number l(X) of a topological space X is the smallest number κ such that every open cover of X has a subcover the cardinality of which is at most κ . The 'extent' e(X) of X is the supremum of the cardinalities of closed discrete subsets of X.

A space is called pseudonormal if every countable closed subset has arbitrarily small closed neighbourhoods.

All notation and terminology not explained here is given in [3].

3. Results

LEMMA 3.1. Suppose that X is a regular pseudocompct space with a strong rank 1-diagonal. Then X is a Moore space.

PROOF. Since a pseudocompact space is bounded in itself, the conclusion is an easy corollary of [1, Theorem 3.7].

LEMMA 3.2. For a Moore space X, l(X) = e(X) = nw(X) = w(X).

PROOF. Suppose that $l(X) = \kappa$. We prove that $e(X) \leq l(X)$. If not, let S be a closed discrete subspace of X with $|S| > \kappa$. For every $x \in S$ there exists an open set $U_x \subseteq X$ such that $S \cap U_x = \{x\}$. It is not difficult to see that the open cover $\{U_x\}_{x \in S} \cup \{X \setminus S\}$ of the space X has no subcover of cardinality at most κ . This is a contradiction. Next, we prove that $nw(X) \le e(X)$. Since X is a Moore space, it is a σ -space [4, Theorem 4.5], that is, it has a σ -discrete network. Let $\mathcal{N} = \bigcup \{\mathcal{N}_n : n \in \omega\}$ be a σ -discrete network for X, where each \mathcal{N}_n is discrete. Fix $n \in \omega$ and pick a point x_N from N for each $N \in \mathcal{N}_n$. Let $S_n = \{x_N : N \in \mathcal{N}_n\}$. Then S_n is closed discrete in X. Since $|S_n| \le e(X)$, $|\mathcal{N}_n| \le e(X)$. It follows immediately that $|\mathcal{N}| \leq e(X)$. Now we prove that $l(X) \leq nw(X)$. Let \mathcal{U} be an open cover of X. For each $x \in X$ pick $N_x \in \mathcal{N}$ such that $x \in N_x \subseteq U$ for some $U \in \mathcal{U}$. Let $\mathcal{N}_0 = \{N_x : x \in X\}$; clearly \mathcal{N}_0 covers X and $|\mathcal{N}_0| \le nw(X)$. For each $N \in \mathcal{N}_0$ we can pick $U_N \in \mathcal{U}$ such that $N \subseteq U_N$ since \mathcal{N}_0 refines \mathcal{U} . Let $\mathcal{U}_0 = \{U_N : N \in \mathcal{N}_0\}$. This is a subcover of \mathcal{U} and $|\mathcal{U}_0| \leq nw(X)$. This shows that $l(X) \leq nw(X)$. Therefore we can conclude that $l(X) = e(X) = nw(X) = \kappa$. Finally, since a Moore space is a *p*-space, we have nw(X) = w(X) [4, Theorem 4.2]. This completes the proof.

COROLLARY 3.3. If X is a Moore space with countable extent, then X is metrisable.

COROLLARY 3.4. If X is a regular pseudocompact space of countable extent and with a strong rank 1-diagonal, then X is metrisable.

Recall that $b = \min\{|B| : B \text{ is an unbounded subset of } \omega^{\omega}\}$. It is known that $\omega < b \le c$; see [4].

LEMMA 3.5 [8, Lemma 2.2.9]. Suppose that X is a regular first countable space with l(X) < b. Then X is pseudonormal.

THEOREM 3.6. Suppose that X is a regular pseudocompact space with a strong rank 1-diagonal and e(X) < b. Then X is metrisable.

PROOF. It is sufficient to prove that *X* is countably compact, since a countably compact space with a G_{δ} -diagonal is metrisable [2]. Suppose that this is not so. Then there exists a countable infinite closed and discrete subset *S* of *X*. By Lemma 3.2, l(X) = e(X) < b; by Lemma 3.5, *X* is pseudonormal. So there exists a discrete family of open sets $\{U_x : x \in S\}$ of *X* such that $U_x \cap S = \{x\}$ for all $x \in S$ [4, Proposition 12.1]. Clearly, $\{U_x : x \in S\}$ is not finite. This contradicts the fact that *X* is pseudocompact. \Box

Recall that a space is said to be 1-star-compact if for every open cover \mathcal{U} of X, there is some finite subset \mathcal{V} of \mathcal{U} such that $St(\bigcup \mathcal{V}, \mathcal{U}) = X$.

LEMMA 3.7 [8, Corollary 2.2.7]. If X is a 1-star-compact Moore space, then w(X) has countable cofinality.

THEOREM 3.8. Assume b = c. Let X be a regular 1-star-compact space with a strong rank 1-diagonal. Then X is metrisable.

PROOF. Since a 1-star-compact space is pseudocompact [8, Theorem 2.1.8], *X* is a Moore space by Lemma 3.1. Apply [8, Lemma 2.2.1] to conclude that *X* is separable. Therefore it is not difficult to see that $w(X) \le c$. Since c does not have countable cofinality, by Lemma 3.7, we can conclude that w(X) < c = b. By Lemma 3.2, e(X) = w(X) < b. It remains to apply Theorem 3.6.

It is easy to see that a star-compact space is 1-star-compact. So the following result is an immediate consequence of Theorem 3.8.

THEOREM 3.9. Assume that b = c. Let X be a regular star-compact space with a strong rank 1-diagonal. Then X is metrisable.

In Theorem 3.9, regularity cannot be weakened to the Hausdorff property.

EXAMPLE 3.10. There exists a Hausdorff star-compact non-metrisable space with a strong rank 1-diagonal.

PROOF. The space was constructed in [8, Example 2.2.4] as follows.

Let $Y = \bigcup\{[0, 1] \times \{n\} : n \in \omega\}$ and $X = Y \cup \{a\}$ where $a \notin Y$. Define a basis for a topology on *X* as follows. Basic open sets containing *a* take the form $\{a\} \cup \bigcup\{[0, 1) \times m : m \ge n\}$ where $n \in \omega$. Basic open sets about the other points of *X* are the usual induced metric open sets.

513

It is easy to construct a sequence $\{\mathcal{V}_n : n \in \omega\}$ of open covers of Y which demonstrates that Y has a strong rank 1-diagonal. Let

$$\mathcal{U}_n = \mathcal{V}_n \cup \Big(\{a\} \cup \bigcup \{[0, 1) \times m : m \ge n\} \Big).$$

Then $\{\mathcal{U}_n : n \in \omega\}$ shows that X has a strong rank 1-diagonal. However, it is proved in [9] that X is a Hausdorff star-compact and non-metrisable space.

However, the following question remains open.

QUESTION 3.11. Is a regular star-compact space metrisable if it has a G_{δ} -diagonal?

References

- A. V. Arhangel'skii and R. Z. Buzyakova, 'The rank of the diagonal and submetrizability', *Comment. Math. Univ. Carolin.* 47(4) (2006), 585–597.
- [2] J. Chaber, 'Conditions which imply compactness in countably compact spaces', Bull. Acad. Polon. Sci. Ser. Sci. Math. 24(11) (1976), 993–998.
- [3] R. Engelking, *General Topology*, Sigma Series in Pure Mathematics 6 (Heldermann Verlag, Berlin, 1989).
- [4] K. Kunen and J. Vaughan, Handbook of Set-theoretic Topology (Elsevier, Amsterdam, 1984).
- [5] M. V. Matveev, 'A survey on star-covering properties', *Topology Atlas*, Preprint no. 330 (1998).
- [6] S. Mrowka, 'On completely regular spaces', Fund. Math. 41(1) (1955), 105–106.
- [7] V. Sneider, 'Continuous images of Souslin and Borel sets; Metrization theorems', *Dokl. Akad. Nauk* SSSR 50 (1959), 77–79.
- [8] E. K. van Douwen, G. M. Reed and A. W. Roscoe, 'Star covering properties', *Topology Appl.* 39(1) (1991), 71–103.
- [9] E. Yang and W. Shi, 'An answer to van Mill's question', Bull. Aust. Math. Soc. 78 (2008), 353–355.

WEI-FENG XUAN, Department of Mathematics, Nanjing University, Nanjing, 210093, PR China e-mail: xuanwf8@gmail.com

WEI-XUE SHI, Department of Mathematics, Nanjing University, Nanjing, 210093, PR China e-mail: wxshi@nju.edu.cn