GENERALIZED RAMSEY THEORY FOR GRAPHS XII: BIPARTITE RAMSEY SETS

by FRANK HARARY, HEIKO HARBORTH and INGRID MENGERSEN

Dedicated to Gerhard Ringel on his 60th birthday

(Received 21 June, 1979)

0. Introduction. Following the notation in Faudree and Schelp [3], we write $G \rightarrow (F, H)$ to mean that every 2-coloring of E(G), the edge set of G, contains a green (the first color) F or a red (the second color) H. Then the Ramsey number r(F, H) of two graphs F and H with no isolated vertices has been defined as the minimum p such that $K_p \rightarrow (F, H)$.

For bipartite graphs B_1 and B_2 without isolated vertices we define the *bipartite* Ramsey set $\beta(B_1, B_2)$ as the set of pairs $(m, n), m \le n$, such that $K_{m,n} \to (B_1, B_2)$ and neither $K_{m-1,n}$ nor $K_{m,n-1}$ have this property. Thus the set $\beta(B_1, B_2)$ can be interpreted as a variation of the Ramsey number $r(B_1, B_2)$. Instead of 2-colorings of the complete graph we now consider 2-colorings of the complete bipartite graph.

The two bipartite Ramsey numbers $b(B_1, B_2)$ (the minimum p with $K_{p,p} \rightarrow (B_1, B_2)$), and $b'(B_1, B_2)$ (the minimum p = m + n such that $K_{m,n} \rightarrow (B_1, B_2)$) were defined already in [5]. They are easily expressed in terms of the bipartite Ramsey set $\beta(B_1, B_2)$ which we now write in the convenient form:

$$\beta(B_1, B_2) = \{ (m_h, n_h); m_h < m_{h+1}, m_h \le n_h \} \text{ for } 1 \le h \le k.$$
(1)

Then $b(B_1, B_2) = n_k$, the smallest n_h , and $b'(B_1, B_2) = \min(m_h + n_h)$. Similar bipartite Ramsey problems are considered in Beineke and Schwenk [1], Faudree and Schelp [3], and Irving [7] while general results on Ramsey theory are given in the book by Bollobás [2].

It is trivial that $\beta(B_1, B_2) = \beta(B_2, B_1)$. From our Algorithmic Lemma it is easily deduced that $\beta(B_1, B_2)$ is a non-empty, finite set for all possible pairs of bipartite graphs B_1, B_2 . Faudree and Schelp [3] have already determined $\beta(B_1, B_2)$ for paths:

$$\beta(P_s, P_t) = \{ ([\frac{1}{2}s] + [\frac{1}{2}t] - 1, [\frac{1}{2}(s+t)] - \epsilon) \},$$
(2)

where $\epsilon = 0$ for s odd, $s \ge t - 1$, for s even, t odd, $s \le t + 1$, and for s = t odd, and $\epsilon = 1$ otherwise.

Our purposes include the determination of the bipartite Ramsey sets $\beta(B_1, B_2)$ for all pairs of bipartite graphs of order at most five, for all pairs of stars, and for the path-star pairs $(P_s, K_{1,t})$ with $s \leq 5$. Notation and terminology not specifically mentioned will follow that in [4].

1. Algorithmic Lemma. If the bipartite graph B has p = p(B) vertices, let Z(B) be the set of natural numbers z such that B is a subgraph of $K_{z,p-z}$ and $z \leq \frac{1}{2}p$. We use the notation

$$Z(B) = \{z_1, z_2, \dots, z_L\} \text{ with } z_1 < z_2 < \dots < z_L.$$
(3)

Then for connected B we have L = 1. By $\beta' = \beta'(B_1, B_2)$ we denote the set of all pairs $(a, b), a \le b$, such that $K_{a,b} \to (B_1, B_2)$. Thus of course $\beta(B_1, B_2)$ is a subset of β' . The independent sets of a and b vertices of $K_{a,b}$ are denoted by V_1 and V_2 . If these vertices are labelled by $i, 1 \le i \le a$, and $j, 1 \le j \le b$, then we describe edges of $K_{a,b}$ only by (i, j) with $i \in V_1$ and $j \in V_2$.

From the definitions we deduce

$$(a, b) \in \beta' \Rightarrow (a+i, b+j) \in \beta' \text{ for } i, j \ge 0,$$
 (4)

$$(a, b) \notin \beta' \Rightarrow (a - i, b - j) \notin \beta' \quad \text{for} \quad i, j \ge 0,$$
(5)

$$(a, b) \in \beta \Leftrightarrow (a, b) \in \beta', (a-1, b) \notin \beta', \text{ and } (a, b-1) \notin \beta'.$$
 (6)

For $1 \le i \le k-1$ we have by definition $(m_{i+1}-1, n_{i+1}) \notin \beta'$. This together with (1) $(m_{i+1}-1 \ge m_i)$ and (5) yields $(m_i, n_{i+1}) \notin \beta'$. Using (5) again and assuming $n_{i+1} \ge n_i$, we conclude that $(m_i, n_i) \notin \beta'$, and this contradiction to the definition proves that

$$n_1 > n_2 > \ldots > n_k. \tag{7}$$

It is easy to see that

$$\beta(K_2, B) = \{(z, p(B) - z); z \in Z(B)\}.$$
(8)

We now derive the bipartite Ramsey set of two copies of K_2 with any bipartite graph B.

THEOREM 1. If B is a bipartite graph with p vertices, and $Z^*(B) = \{z; z \in Z(B), z \neq \frac{1}{2}(p-1), z-1 \notin Z(B), z+1 \notin Z(B)\}$, then

$$\beta(2K_2, B) = \{(z_{i+1}, p - z_i); 1 \le i \le L - 1\} \cup \{(p - z_L, p - z_L); z_L \le \frac{1}{2}(p - 1)\} \cup \{(z + 1, p - z + 1); z \in Z^*(B)\}.$$
 (9)

Proof. We write $\beta(2K_2, B) = \beta$ and $\beta'(2K_2, B) = \beta'$ during this proof, and first show that

$$(\mathbf{x}, \mathbf{y}) \in \boldsymbol{\beta}' \Leftrightarrow \boldsymbol{B} \subset K_{\mathbf{x}-1, \mathbf{y}} \quad \text{and} \quad \boldsymbol{B} \subset K_{\mathbf{x}, \mathbf{y}-1}.$$
 (10)

(⇒) In the special 2-colorings of $K_{x,y}$, where all edges of a $K_{x,1}$ (respectively, of a $K_{1,y}$) are colored green, and all others red, there is no green $2K_2$, and thus a red B exists with $B \subset K_{x-1,y}$ (respectively, $B \subset K_{x,y-1}$).

 (\Leftarrow) In every 2-coloring of $K_{x,y}$ either a green $2K_2$ exists, or the green edges form a star. In the last case $K_{x-1,y}$ or $K_{x,y-1}$ exist with red edges only, so that a red B is guaranteed.

Now $(x, y) \in \beta$ with $x \leq y$ implies $B \subset K_{x-1,y}$ by (6) and (10). Then a number $z \in Z(B)$

exists with $z \le x - 1$, $p - z \le y$, that is, x = z + 1 + f, y = p - z + g, f, $g \ge 0$. From (10) we find $(z + 1, p - z + 1) \in \beta'$, and this together with (6) shows $g \ge 2$, so as g = 1, $f \ge 1$ must be impossible. Thus the two following conditions are necessary for $(x, y) \in \beta$:

$$x = z + 1, \quad y = p - z + 1,$$
 (11)

$$x = z + 1 + f,$$
 $y = p - z,$ $0 \le f \le p - 2z - 1.$ (12)

For (11) we observe that $(z+1, p-z+1) \in \beta'$ as above, and use (6) and (10) to get

$$(z+1, p-z+1) \in \beta \Leftrightarrow (z, p-z+1) \notin \beta',$$

and the equivalences

$$(z+1, p-z) \notin \beta' \Leftrightarrow B \notin K_{z-1,p-z+1}$$

and

$$B \notin K_{z+1,p-z+1} \Leftrightarrow z - 1 \notin Z(B), z + 1 \notin Z(B), z \neq \frac{1}{2}(p-1) \Leftrightarrow z \in Z^*(B)$$

The latter follows since $z = \frac{1}{2}(p-1)$ would give $B \subseteq K_{z+1,p-z+1}$.

If in (12) $z \neq Z_L$, we use $B \subseteq K_{z_{i+1}-1,p-z_i}$, $B \subseteq K_{z_{i+1},p-z_i-1}$, and (10) to get $(z_{i+1}, p-z_i) \in \beta'$. From $B \notin K_{z_{i+1}-1,p-z_i-1}$ and (10), it follows that $(z_{i+1}-1, p-z_i) \notin \beta'$ and $(z_{i+1}, p-z_i) \notin \beta'$. We then note that (6) enables us to conclude $(z_{i+1}, p-z_i) \in \beta$, and $(x, y) \notin \beta$ for $f \neq z_{i+1}-z_i-1$ in (12). It remains to consider $z = z_L$ in (12). Here we use $B \subseteq K_{p-z_L-1,p-z_L}$ (as $z \leq \frac{1}{2}(p-1)$ in (12)), and $B \notin K_{p-z_L-1,p-z_L-1}$ to deduce, as before, from (10) and (6) that $(x, y) \in \beta$ holds only for $x = y = p - z_L$, $z_L \leq \frac{1}{2}(p-1)$.

In the following we denote by $b_i(B) = b_i$ the maximum of all line independence numbers of the complements of B with regard to $K_{z_i,p-z_i}$. We now find the bipartite Ramsey set of the 3-point path with any bipartite graph.

THEOREM 2. If B is a bipartite graph with p vertices, and $\overline{Z}(B) = \{z_i \in Z(B); b_i(B) < b_i(B) \text{ for } 1 \le j \le i-1\}$, then

$$\beta(P_3, B) = \{(z_i, p - b_i(B)); z_i \in Z(B)\}.$$
(13)

Proof. Again it is convenient to write β and β' for $\beta(P_3, B)$ and $\beta'(P_3, B)$. We first determine the set β' by showing that

$$(x, y) \in \beta' \Leftrightarrow z_i \in Z(B)$$
 exists with $x \ge z_i, y \ge p - b_i(B)$. (14)

(⇒) If the edges (1, 1), (2, 2), ..., (x, x) of $K_{x,y}$ are colored green and all others red, then no green P_3 and thus a red B exists in $K_{x,y}$. The subgraph $K_{z_i,p-z_i}$ of $K_{x,y}$ with the vertices of this red B contains at most b_i of the x independent green edges. Then z_i vertices either belong to V_1 (or to V_2) and at least $p - z_i - b_i$ (or $z_i - b_i$) of the vertices in V_2 are among the vertices x + 1, x + 2, ..., y, that is, $y - x \ge p - z_i - b_i$ (or $y - x \ge z_i - b_i$). These inequalities yield $y \ge p - b_i$ if $x \ge z_i$ (or $x \ge p - z_i \ge z_i$).

(\Leftarrow) Because of (4) it suffices to show $(z_i, p-b_i) \in \beta'$ for $z_i \in Z(B)$. In any 2-coloring of $K_{z_i,p-b_i}$ we either find a green P_3 , or at least $p-b_i-z_i$ vertices in V_2 are incident only with red edges. A subgraph $K_{z_i,p-z_i}$ of $K_{z_i,p-b_i}$, in which these $p-b_i-z_i$ vertices are among

the $p-z_i$ vertices, contains at most b_i green edges, which are independent. Thus the complement of these green edges with regard to $K_{z_i,p-z_i}$ contains a red B, and (14) is proved.

Now (14) always guarantees $(z_i, p-b_i) \in \beta'$. Also from (14) we deduce $(z_i-1, p-b_i) \notin \beta'$ and $(z_i, p-b_i-1) \notin \beta' \Leftrightarrow b_j < b_i$ for $1 \le j < i$. Then (6) completes the proof of Theorem 2. \Box

The following lemma describes algorithmic steps for the general determination of $\beta(B_1, B_2)$. We start with m_1 from (a). For $h \ge 1$, we then may use (b), (c), and (d) cyclically to find for m_h the corresponding n_h by (b), to ask whether we have finished using (c), and, otherwise, to find the next value m_{h+1} by means of (d).

ALGORITHMIC LEMMA. (a) $m_1 = z_1(B_1) + z_1(B_2) - 1;$

(b) $(m_h, y) \in \beta'(B_1, B_2)$, and $x \ge m_h$ exists with $(x, y-1) \notin \beta'(B_1, B_2) \Rightarrow y = n_h$;

(c) $(n_h - 1, n_h - 1) \notin \beta' \Leftrightarrow h = k;$

(d) $(x, n_h - 1) \notin \beta'(B_1, B_2)$, and $y \leq n_h - 1$ exists with $(x+1, y) \in \beta'(B_1, B_2) \Rightarrow x+1 = m_{h+1}$, if h < k.

Proof. (a) If in $K_{x,y}$ all edges which are incident with $z_1(B_1) - 1$ vertices of V_1 (and all edges in case of $x < z_1(B_1) - 1$) are colored green and all others red, then for $x - (z_1(B_1) - 1) \le z_1(B_2) - 1$ neither a green B_1 nor a red B_2 can occur, and hence $m_1 \ge z_1(B_1) + z_1(B_2) - 1$.

For any 2-coloring of $K_{x,y}$ with $x = z_1(B_1) + z_1(B_2) - 1$, and $y = 1 + 2^x \max_{i=1,2} \{p(B_i) - z_1(B_i) - 1\}$ we consider the (x, y)-matrix M with elements $a_{i,j} = 1$ if the edge (i, j) is green, and $a_{i,j} = 0$ otherwise. Then in M at least one of the 2^x different columns occurs at least $\max_{i=1,2} \{p(B_i) - z_1(B_i)\}$ times. This column contains $z_1(B_1)$ entries 1, or $z_1(B_2)$ entries 0. Hence M must contain a $(z_1(B_1), p(B_1) - z_1(B_1))$ -submatrix only with entries 1, or a $(z_1(B_2), p(B_2) - z_1(B_2))$ -submatrix only with entries 0. Thus $K_{x,y}$ contains a green B_1 or a red B_2 , and $m_1 \le z_1(B_1) + z_1(B_2) - 1$ is proved.

(b) If $y > n_h$ then $(m_h, y-1) \in \beta'$, while if $y < n_h$ then $(m_h, y) \notin \beta'$, and either case yields a contradiction.

(c) For h < k we deduce from $(m_{h+1}, n_{h+1}) \in \beta'$ and (4) that $(n_h - 1, n_h - 1) \in \beta'$, as (1) and (7) yield $m_{h+1} \leq n_{h+1} \leq n_h - 1$. The assumption $(n_k - 1, n_k - 1) \in \beta'$ then implies the existence of n_h with $n_h \leq n_k - 1$ which contradicts (7).

(d) For $x+1 > m_{h+1}$, from $(m_{h+1}, n_{h+1}) \in \beta'$ by (4) and (7) we get $(m_{h+1}, n_h - 1) \in \beta'$, and then (4) gives the contradiction $(x, n_h - 1) \in \beta'$. If now $(m_{h+1}, n_h - 1) \in \beta'$ is assumed, then by (4), there exist m_i , n_i with $m_i \leq m_{h+1} - 1$ and $n_i \leq n_h - 1$, that is, by (1) and (7) the contradiction $i \leq h$ and $i \geq h+1$, respectively, follows. Hence $(m_{h+1} - 1, n_h - 1) \notin \beta'$ which yields for $x+1 < m_{h+1}$ by (5) the contradiction $(x+1, y) \notin \beta'$. Thus only $x+1 = m_{h+1}$ is possible. \Box

We are now able to utilize the Algorithmic Lemma to verify easily that the bipartite Ramsey set of a pair of stars is a singleton ordered couple.

THEOREM 3.
$$\beta(K_{1,s}, K_{1,t}) = \{(1, s+t-1)\}.$$
 (15)

GENERALIZED RAMSEY THEORY FOR GRAPHS XII

Proof. At first $m_1 = 1$ follows from (a) of the Lemma. In any 2-coloring of $K_{1,s+t-1}$ the one vertex of V_1 is incident either with s green or t red edges, and hence $(1, s+t-1) \in \beta'(K_{1,s}, K_{1,t})$. If in $K_{s+t-2,s+t-2}$ the edges $(i, i+j), 1 \le i \le s+t-2, 0 \le j \le s-2, i+j \pmod{s+t-2}$, are colored green and all others red, then no green $K_{1,s}$ and no red $K_{1,t}$ can exist, that is, $(s+t-2, s+t-2) \notin \beta'(K_{1,s}, K_{1,t})$. For $s+t \ge 3$, this together with (b) and (c) of the Lemma proves Theorem 3, and for s = t = 1 we use (8). \Box

We now apply the Algorithmic Lemma further in order to determine the bipartite Ramsey set of a small path P_s , $s \le 5$, and any star $K_{1,t}$. This result will be useful in the next section on bipartite Ramsey sets for small graphs.

THEOREM 4. Let $t \ge 3$, $f_1 = 2$, and let f_{h+1} be the smallest integer with

$$[(t-1)/(f_{h+1}-1)] < [(t-1)/(f_h-1)], \quad and \quad f_{d(t)} = [\frac{1}{2}(t+3)].$$
(16)

For s = 4 and s = 5 then k(4, t) = d(t); k(5, t) = d(t) if t is even and t > 4; k(5, 4) = 3; k(5, t) = d(t) - 1 if t is odd; and

$$\beta(P_{s}, K_{1,t}) = \{(m_{h}, n_{h}); 1 \le h \le k(s, t), m_{k(s,t)} = t \text{ if } t \text{ is even}, \\ m_{h} = f_{h} \text{ otherwise}, n_{k(s,4)-1} = 6, \qquad n_{h} = t + [(t-1)/(m_{h}-1)] \text{ otherwise}\}.$$
(17)

Proof. We use c = [(t-1)/(a-1)], $2 \le a \le t$. In $K_{a,t+c-1}$ the edges (i, (i-1)c+j) with $1 \le i \le a-1$, $1 \le j \le c$, and i = a, $1 \le j \le t-1-(a-2)c$ are colored green, and all others red. Then every vertex is incident with at most t-1 red edges, and neither a red $K_{1,t}$ nor a green P_4 can occur, that is,

$$(a, t + [(t-1)/(a-1)] - 1) \notin \beta'(P_s, K_{1,t}), \qquad 2 \le a \le t, \qquad 4 \le s.$$
(18)

In any 2-coloring of $K_{a,t+c}$ either we find a red $K_{1,t}$, or every vertex in V_1 is incident with at least c+1 green edges. Because of a(c+1) > c+t at least one vertex in V_2 is incident with two green edges. As $c+1 \ge 2$, and $c+1 \ge 3$ for $a \le [\frac{1}{2}(t+1)]$, there exist a green P_4 , and a green P_5 , respectively, and hence

$$(a, t + [(t-1)/(a-1)]) \in \beta'(P_s, K_{1,t}), \qquad 2 \le a \le \begin{cases} t, & s = 4\\ \left\lfloor \frac{1}{2}(t+1) \right\rfloor s = 5. \end{cases}$$
(19)

In a similar way we get

$$(3, 6) \in \beta'(P_5, K_{1,4}).$$
 (20)

Any 2-coloring of $K_{3,6}$ either contains a red $K_{1,4}$, or every vertex of V_1 is incident with at least 3 green edges, and at least one vertex of V_2 with 2 green edges, and thus a green P_5 occurs.

We now consider $K_{i+1,i+1}$, t odd, and $K_{i-1,i+1}$, t even. For $1 \le i \le \frac{1}{2}(t+1)$, and $1 \le i \le \frac{1}{2}(t-2)$, respectively, the edges (2i-1, 2i-1), (2i-1, 2i), (2i, 2i-1), (2i, 2i), and for $K_{i-1,i+1}$ in addition (t-1, t-j), $0 \le j \le 2$, are colored green and all others red. Thus

there is no green P_5 and no red $K_{1,p}$, and therefore

$$(t+1, t+1) \notin \beta'(P_5, K_{1,t}), t \text{ odd}$$
 (21)

$$(t-1, t+1) \notin \beta'(P_5, K_{1,t}), t \text{ even.}$$
 (22)

Next we suppose for a 2-coloring of $K_{t,t+1}$, t even, that there exist neither a green P_5 nor a red $K_{1,t}$. Then every vertex in V_1 is incident with at least two green edges, and every vertex in V_2 with at least one green edge, and as maximal connected subgraphs the only possibilities are $K_{2,2}$ or $K_{1,r}$ with $r \ge 2$ vertices in V_2 . If there are g copies of green $K_{2,2}$, and K_{1,r_1} , K_{1,r_2} , ..., K_{1,r_b} denote the green stars, then we have t = b + 2g and $t + 1 = 2g + \sum_{i \le b} r_i$ vertices. Together with $r_i \ge 2$ we obtain $b \le 1$. Since b = 2g - t is even we get b = 0, and this implies t = 2g - 1, which contradicts t even; hence

$$(t, t+1) \in \beta'(P_5, K_{1,t}), t \text{ even.}$$
 (23)

We now apply the Algorithmic Lemma to deduce $\beta(P_s, K_{1,t})$ for s = 4, 5. From (a) we see that $m_1 = 2 = f_1$. Then from (b) we obtain $n_h = t + [(t-1)/(m_h - 1)]$ if for $m_{k(5,t)} = t$ we use (23) and (21), and if for $m_h = f_h$ with $h \neq k(5, 4) - 1$ we use $h = m_h$ in (19) and (18). For $m_{k(5,4)-1} = f_2 = 3$ we use (20), (22) with a = 3, and (b) to get $n_{k(5,4)-1} = 6$.

For s = 4, or s = 5, t even, t > 4, we get $n_d = t + 1$, and for s = 5, t = 4, we find $n_{d+1} = n_3 = t + 1 = 5$. By substituting a = t in (18) and using (c), it follows that k(4, t) = d(t), k(5, t) = d(t), t even, t > 4, and k(5, 4) = d + 1 = 3. If s = 5, t odd, then $n_{d-1} = t + 2$, and we obtain k(5, t) = d(t) - 1, t odd, from (21) and (c).

In the cases s = 4, h < d(t), and s = 5, h < d(t) - 1, we consider $a = f_{h+1} - 1$ in (18) together with $[(t-1)/(f_{h+1}-2)] = [(t-1)/(f_h-1)]$ from (16), so as $a = f_{h+1}$ in (19) together with (16), to conclude $m_{h+1} = f_{h+1}$ using part (d) of the Lemma. For s = 5, t even, t > 4, the case h = d(t) - 1 yields $n_{d-1} = t + 2$, and from (22), (23), and (d) we obtain $m_{h+1} = m_d = m_{k(5,t)} = t$. For s = 5, t = 4, there remain two cases. If h = 1, then $n_1 = 7$, and a = 2 in (18), (20), and (d) show $m_2 = f_2 = 3$. If h = 2, then $n_2 = 6$, and (22), (23), and (d) imply $m_3 = t = 4$. \Box

Figure 1. The small bipartite graphs.

2. Bipartite Ramsey sets for small graphs. From the list of all graphs of order $p \le 6$ in [4], we show in Fig. 1 those bipartite graphs which have $p \le 5$ vertices and no isolates. We call these twelve graphs the small bipartite graphs and list symbolic names for all but the tenth one which is then denoted by B_{10} . (It can also be written as $K_1 + K_1 + K_1 + \bar{K}_2$ but that is too long a symbol.)

THEOREM 5. For all pairs (B_i, B_j) of small bipartite graphs B_i and B_j from Fig. 1 the bipartite Ramsey sets $\beta(B_i, B_i)$ are gathered in Table 1.

	K ₂	P ₃	2K ₂	P ₄	<i>K</i> _{2,2}	<i>K</i> _{1,3}	$P_3 \cup K_2$	P ₅	<i>K</i> _{1,4}	B ₁₀	$K_{2,3} - e$	K _{2,3}
K ₂	(1, 1)	(1, 2)	(2, 2)	(2, 2)	(2, 2)	(1, 3)	(2, 3)	(2, 3)	(1, 4)	(2, 3)	(2, 3)	(2, 3)
P ₃		(1, 3)	(2, 2)	(2, 3)	(2, 4)	(1, 4)	(2, 3)	(2, 3)	(1, 5)	(2, 4)	(2, 4)	(2, 5)
2K ₂			(3, 3)	(3 3)	(3, 3)	(2, 4)	(3, 3)	(3, 3)	(2, 5)	(3, 3)	(3, 3)	(3, 3)
					(-,-,	(3, 3)			(4, 4)			
P ₄		-		(3, 3)	(3, 4)	(2, 5)	(3, 3) (3	(3, 4)	(2, 7)	(3, 4)	(3, 4)	(3, 7)
				(0,0)	(0, 1)	(3, 4)			(3, 5)			(4, 5)
K _{2,2}					(3, 7)	(2, 6)	(3, 4) (3,	(3, 4)	(2, 8) (3, 7)	(3, 5)	(3, 7)	(3, 10)
					(5, 5)	(3, 5)			(5, 6)	(-,-)	(5, 5)	(4, 8)
K _{1,3}						(1, 5)	(2, 5)	(2, 5)	, 5) (1, 6)	. (2, 5)	(2, 6)	(2, 7)
						(-,-,-,	(3, 4)	(-, -)			(3, 5)	(4, 6)
$P_3 \cup K_2$		t i					(3, 3)	(3, 4) (2, 6)	. (3, 4)	(3, 4)	(3, 5)	
					 				(3, 5)			
P ₅								(3, 5)) (2,7) (3,6)	(3, 5)	(3, 5)	(3, 7)
									(4, 5)			(4, 5)
K _{1,4}									(1,7)	(2, 7)	(2, 8) (3, 7) (5, 6)	(2, 9)
										(3, 6)		(3, 8)
B ₁₀										(3, 5)	(3, 5)	(3, 7)
												(4, 6)
K _{2,3} -e											(3, 7)	(3, 10)
											(5, 5)	(4, 8)
K _{2,3}												(3, 13) (5, 11)
												(7,9)

 $T_{ADIC} = 1 - \rho(P, P)$

Proof. The first three rows of Table 1 are immediate consequences of (8), (13), and (9). Then $\beta(P_s, P_t)$, $4 \le s$, $t \le 5$, $\beta(K_{1,s}, K_{1,t})$, $3 \le s$, $t \le 4$, and $\beta(P_s, K_{1,t})$, $4 \le s \le 5$, $3 \le t \le 4$, can be derived from (2), (15), and (17), respectively. For the remaining pairs (B_i, B_j) (excluding $(K_{2,3}, K_{2,3})$ for the moment) we first prove the validity of $(x, y) \in \beta'(B_i, B_j)$ for all pairs of Table 1. By the g-degree and r-degree of a vertex v we will mean the number of green and red edges incident with v in a 2-coloring of $K_{x,v}$.

For $B = P_3 \cup K_2$ we prove $(3, 3) \in \beta'(B, P_4)$, $(3, 3) \in \beta'(B, B)$, $(3, 4) \in \beta'(B, K_{2,3} - e)$, $(3, 5) \in \beta'(B, K_{2,3})$, (2, 6) and $(3, 5) \in \beta'(B, K_{1,4})$: All green edges in $K_{x,y}$ without a green $P_3 \cup K_2$ are either part of one star, or of one $K_{2,2}$, or they all are independent, and in any case a red B_i occurs.

For t=3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 5 in this sequence we obtain $(2,5) \in \beta'(K_{1,3}, B_{10})$, (2,7) and $(3,6) \in \beta'(K_{1,4}, B_{10})$, $(3,4) \in \beta'(K_{2,3}-e, P_4)$, $(2,6) \in \beta'(K_{1,3}, K_{2,3}-e)$, $(2,7) \in \beta'(K_{1,3}, K_{2,3})$, (2,8), (3,7), and $(5,6) \in \beta'(K_{1,4}, K_{2,3}-e)$, (2,9) and $(3,8) \in \beta'(K_{1,4}, K_{2,3})$, $(3,5) \in \beta'(B_{10}, K_{2,3}-e)$, (3,7) and $(4,6) \in \beta'(B_{10}, K_{2,3})$, (3,7) and $(5,5) \in \beta'(K_{2,3}-e, K_{2,3}-e)$, $(3,10) \in \beta'(K_{2,3}-e, K_{2,3})$, if we check for $\beta'(B_i, B_j)$ that $K_{x,t}$ ($t \leq y$) with a green star $K_{1,t}$ contains either a green B_i (if one vertex of V_1 has g-degree ≥ 2 for $B_i \neq K_{1,t}$), or a red B_j , and that $K_{x,y}$ with r-degree $\geq y-t+1$ for all vertices of V_1 contains a red B_j .

 $(3, 4) \in \beta'(K_{2,2}, P_5)$: In $K_{3,4}$ two vertices of V_1 with sum of g-degrees ≥ 6 guarantee a green $K_{2,2}$. If otherwise the sum of r-degrees for all pairs of vertices in V_1 is ≥ 3 , then either one vertex of V_1 has r-degree ≥ 3 , and another r-degree ≥ 2 , so that a red P_5 exists, or two vertices of V_1 have r-degree 2, and the third has r-degree 1 or 2, and always a green $K_{2,2}$ or a red P_5 must exist.

 $(3,5) \in \beta'(P_5, K_{2,3}-e)$: If in $K_{3,5}$ two vertices of V_1 have g-degree ≥ 3 , then a green P_5 exists. Otherwise two vertices in V_1 have r-degree ≥ 3 . If all vertices in V_1 have r-degree ≥ 3 , or two vertices have the sum of their r-degrees ≥ 7 , then a red $K_{2,3}-e$ exists. If otherwise two vertices of V_1 have r-degree 3, and the third ≤ 2 , then either a green P_5 or a red $K_{2,3}-e$ exists.

(3, 7) and $(4, 5) \in \beta'(P_5, K_{2,3})$: If all vertices of V_2 in $K_{3,7}$ or $K_{4,5}$ have g-degree ≤ 1 , then there are at least 14 or 15 red edges, and two vertices of V_1 have the sum of their *r*-degrees ≥ 10 or ≥ 8 , respectively, and thus a red $K_{2,3}$ exists. Otherwise V_2 contains a vertex v with g-degree ≥ 2 . If g-degree ≥ 2 for two vertices w_1, w_2 of green edges (w_i, v) , then either a green P_5 exists, or both have g-degree 2, and are adjacent by green edges to the same vertex of V_2 ($\neq v$), and thus a red $K_{2,3}$ exists. Otherwise w_1 , for instance, has g-degree 1, and either a red $K_{2,3}$ exists, or w_2 has g-degree ≥ 5 or ≥ 3 , respectively. If no green P_5 exists, then at least 4 or 2 vertices $j \neq v$ of V_2 with green edges (w_2, j) have *r*-degree 2 or 3, respectively, and a red $K_{2,3}$ occurs.

 $(4, 8) \in \beta'(K_{2,3} - e, K_{2,3})$: If in $K_{4,8}$ three vertices of V_1 have *r*-degree ≥ 5 , then a red $K_{2,3}$ exists. Otherwise, there are two vertices in V_1 with g-degree ≥ 4 . If no green $K_{2,3} - e$ exists, then the remaining two vertices of V_1 have *r*-degree ≥ 6 , and we get a red $K_{2,3}$.

For the pairs still missing in Table 1 (excluding $(K_{2,3}, K_{2,3})$) we use the fact that $(x, y) \in \beta'(B_i, B_j)$ implies $(x, y) \in \beta'(B_a, B_b)$ if $B_a \subset B_i$ and $B_b \subset B_j$.

In a second step we collect in Table 2 certain pairs (x, y) with $(x, y) \notin \beta'(B_i, B_i)$. From

Figure 2. Bipartite graphs with green edges used for Table 2.

Figures 2.N, $1 \le N \le 15$, (where only green edges are reproduced) we can deduce the pairs $(x, y)_N$ of Table 2. From Table 1 follow $(3, 3) \notin \beta'(P_4, K_{1,3})$ and $(2, 6) \notin \beta'(P_4, K_{1,4})$. As $(x, y) \notin \beta'(B_i, B_j)$ implies $(x, y) \notin \beta'(B_a, B_b)$ if $B_i \subset B_a$ and $B_j \subset B_b$, all other pairs of Table 2 are checked easily.

By use of the Algorithmic Lemma we now can determine the sets $\beta(B_i, B_j)$ of Table 1.

The only remaining case, $\beta(K_{2,3}, K_{2,3})$, is a consequence of a result in Irving [7]. Here sets $C_{s,t}$, $s \leq t$, are considered, which contain all pairs (a, b), such that every 2-colored $K_{a,b}$ has a monochromatic $K_{s,t}$ with the s and t vertices chosen from the a and b vertices, respectively, and such that 2-colorings of $K_{a-1,b}$ and $K_{a,b-1}$ exist without a monochromatic $K_{s,t}$. From this we deduce

$$\beta(K_{s,t}, K_{s,t}) = \{(a, b); a \le b, (a, b) \text{ or } (b, a) \in C_{s,t}, (a - i, b - j) \\ and (b - i, a - j) \notin C_{s,t} \text{ for } i, j \ge 0, i + j \ge 1\}.$$

Now $C_{2,3} = \{(3, 13), (5, 11), (7, 9), (15, 7), (21, 5)\}$ is proved in [7], and we obtain $\beta(K_{2,3}, K_{2,3}) = \{(3, 13), (5, 11), (7, 9)\}$, which completes the proof of Theorem 5.

As the conjecture in [7] that $K_{13,17} \rightarrow (K_{3,3}, K_{3,3})$ was recently proved in [6], we obtain from [7] and [6] the set

$$C_{3,3} = \{(5, 41), (7, 29), (9, 23), (13, 17), (17, 13), (23, 9), (29, 7), (41, 5)\},\$$

	K _{2,2}	K _{1,3}	$P_3 \cup K_2$	P ₅	K _{1,4}	B ₁₀	K _{2,3} –e	K _{2.3}
P ₄	(3, 3) ₆	(3, 3)			(2, 6)	(3, 3)	(3, 3)	$(3, 6)_8$ $(4, 4)_{10}$
K _{2,2}	(4, 6) ₁₃	(2, 5) (4, 4)	(3, 3)	(3, 3)	$(2, 7)_4$ $(4, 6)_{13}$ $(5, 5)_{14}$	(4, 4)	(4, 6)	(3, 9) ₉ (7, 7) ₁₅
	(2, 5) ₃		(2, 4)			(2, 4)	(2, 5)	(3, 6) ₈
Λ _{1,3}	(4, 4) ₁₂		(3, 3)			(4, 4) ₁₂	(4, 4)	(5, 5) ₁₄
$P_3 \cup K_2$	(3, 3) ₆	$(2, 4)_1$ $(3, 3)_6$		(3, 3) ₇	$(2, 5)_2$ $(4, 4)_{10}$	(3, 3)	(3, 3)	(4, 4) ₁₀
P ₅						(4, 4) ₁₁	(4, 4)	(3, 6) (4, 4)
K _{1,4}						(2, 6) (5, 5)	(2, 7) (4, 6) (5, 5)	$(2, 8)_5$ $(7, 7)_{15}$
B ₁₀				t	(5, 5) ₁₄	(4, 4)	(4, 4)	(3, 6) (5, 5)
							(4, 6)	(3, 9) (7, 7)

TABLE 2. PAIRS $(x, y) \notin \beta'(B_i, B_i)$.

and in addition to Table 1 we conclude with the bipartite Ramsey set of the most famous nonplanar bipartite graph.

Theorem 6. $\beta(K_{3,3}, K_{3,3}) = \{(5, 41), (7, 29), (9, 23), (13, 17)\}.$

REFERENCES

1. L. W. Beineke and A. J. Schwenk, On a bipartite form of the Ramsey problem, Proc. Fifth British Combinatorial Conference (Utilitas, Winnipeg (1976) 17-22).

2. B. Bollobás, Extremal graph theory (Academic Press, London, 1978).

3. R. J. Faudree and R. H. Schelp, Path—path Ramsey—type numbers for the complete bipartite graph, J. Combinatorial Theory Ser. B **19** (1975) 161–173.

4. F. Harary, Graph theory (Addison-Wesley, Reading, Mass., 1969).
5. F. Harary, The foremost open problems in generalized Ramsey theory, Proc. Fifth British Combinatorial Conference (Utilitas, Winnipeg (1976) 269-282).

6. H. Harborth and H.-M. Nitzschke, Solution of Irving's Ramsey problem, Glasgow Math. J. 21 (1980), 187-197.

7. R. W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers, Glasgow Math. J. 19 (1978), 13-26.

FRANK HARARY UNIVERSITY OF MICHIGAN ANN ARBOR U.S.A.

HEIKO HARBORTH AND INGRID MENGERSEN TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG West Germany