GENERALIZED RAMSEY THEORY FOR GRAPHS XII: BIPARTITE RAMSEY SETS

by FRANK HARARY, HEIKO HARBORTH and INGRID MENGERSEN

Dedicated to Gerhard Ringel on his 60th birthday
(Received 21 June, 1979)

Abstract

0. Introduction. Following the notation in Faudree and Schelp [3], we write $G \rightarrow$ (F, H) to mean that every 2 -coloring of $E(G)$, the edge set of G, contains a green (the first color) F or a red (the second color) H. Then the Ramsey number $r(F, H)$ of two graphs F and H with no isolated vertices has been defined as the minimum p such that $K_{\mathrm{p}} \rightarrow(F, H)$.

For bipartite graphs B_{1} and B_{2} without isolated vertices we define the bipartite Ramsey set $\beta\left(B_{1}, B_{2}\right)$ as the set of pairs (m, n), $m \leqslant n$, such that $K_{m, n} \rightarrow\left(B_{1}, B_{2}\right)$ and neither $K_{m-1, n}$ nor $K_{m, n-1}$ have this property. Thus the set $\beta\left(B_{1}, B_{2}\right)$ can be interpreted as a variation of the Ramsey number $r\left(B_{1}, B_{2}\right)$. Instead of 2 -colorings of the complete graph we now consider 2 -colorings of the complete bipartite graph.

The two bipartite Ramsey numbers $b\left(B_{1}, B_{2}\right)$ (the minimum p with $K_{p, \mathrm{p}} \rightarrow\left(B_{1}, B_{2}\right)$), and $b^{\prime}\left(B_{1}, B_{2}\right)$ (the minimum $p=m+n$ such that $\left.K_{m, n} \rightarrow\left(B_{1}, B_{2}\right)\right)$ were defined already in [5]. They are easily expressed in terms of the bipartite Ramsey set $\beta\left(B_{1}, B_{2}\right)$ which we now write in the convenient form: $$
\begin{equation*} \beta\left(B_{1}, B_{2}\right)=\left\{\left(m_{h}, n_{h}\right) ; m_{h}<m_{h+1}, m_{h} \leqslant n_{h}\right\} \text { for } 1 \leqslant h \leqslant k . \tag{1} \end{equation*}
$$

Then $b\left(B_{1}, B_{2}\right)=n_{k}$, the smallest n_{h}, and $b^{\prime}\left(B_{1}, B_{2}\right)=\min \left(m_{h}+n_{h}\right)$. Similar bipartite Ramsey problems are considered in Beineke and Schwenk [1], Faudree and Schelp [3], and Irving [7] while general results on Ramsey theory are given in the book by Bollobás [2].

It is trivial that $\beta\left(B_{1}, B_{2}\right)=\beta\left(B_{2}, B_{1}\right)$. From our Algorithmic Lemma it is easily deduced that $\beta\left(B_{1}, B_{2}\right)$ is a non-empty, finite set for all possible pairs of bipartite graphs B_{1}, B_{2}. Faudree and Schelp [3] have already determined $\beta\left(B_{1}, B_{2}\right)$ for paths: $$
\begin{equation*} \beta\left(P_{s}, P_{t}\right)=\left\{\left(\left[\frac{1}{2} s\right]+\left[\frac{1}{2} t\right]-1,\left[\frac{1}{2}(s+t)\right]-\epsilon\right)\right\}, \tag{2} \end{equation*}
$$ where $\epsilon=0$ for s odd, $s \geqslant t-1$, for s even, t odd, $s \leqslant t+1$, and for $s=t$ odd, and $\epsilon=1$ otherwise. Our purposes include the determination of the bipartite Ramsey sets $\beta\left(B_{1}, B_{2}\right)$ for all pairs of bipartite graphs of order at most five, for all pairs of stars, and for the path-star pairs ($P_{s}, K_{1, t}$) with $s \leqslant 5$. Notation and terminology not specifically mentioned will follow that in [4].

32 FRANK HARARY, HEIKO HARBORTH AND INGRID MENGERSEN

1. Algorithmic Lemma. If the bipartite graph B has $p=p(B)$ vertices, let $Z(B)$ be the set of natural numbers z such that B is a subgraph of $K_{z, p-z}$ and $z \leqslant \frac{1}{2} p$. We use the notation

$$
\begin{equation*}
Z(B)=\left\{z_{1}, z_{2}, \ldots, z_{L}\right\} \quad \text { with } \quad z_{1}<z_{2}<\ldots<z_{L} . \tag{3}
\end{equation*}
$$

Then for connected B we have $L=1$. By $\beta^{\prime}=\beta^{\prime}\left(B_{1}, B_{2}\right)$ we denote the set of all pairs $(a, b), a \leqslant b$, such that $K_{a, b} \rightarrow\left(B_{1}, B_{2}\right)$. Thus of course $\beta\left(B_{1}, B_{2}\right)$ is a subset of β^{\prime}. The independent sets of a and b vertices of $K_{a, b}$ are denoted by V_{1} and V_{2}. If these vertices are labelled by $i, 1 \leqslant i \leqslant a$, and $j, 1 \leqslant j \leqslant b$, then we describe edges of $K_{a, b}$ only by (i, j) with $i \in V_{1}$ and $j \in V_{2}$.

From the definitions we deduce

$$
\begin{gather*}
(a, b) \in \beta^{\prime} \Rightarrow(a+i, b+j) \in \beta^{\prime} \quad \text { for } \quad i, j \geqslant 0, \tag{4}\\
(a, b) \notin \beta^{\prime} \Rightarrow(a-i, b-j) \notin \beta^{\prime} \quad \text { for } \quad i, j \geqslant 0, \tag{5}\\
(a, b) \in \beta \Leftrightarrow(a, b) \in \beta^{\prime},(a-1, b) \notin \beta^{\prime}, \quad \text { and } \quad(a, b-1) \notin \beta^{\prime} . \tag{6}
\end{gather*}
$$

For $1 \leqslant i \leqslant k-1$ we have by definition $\left(m_{i+1}-1, n_{i+1}\right) \notin \beta^{\prime}$. This together with (1) ($m_{i+1}-1 \geqslant m_{i}$) and (5) yields ($\left.m_{i}, n_{i+1}\right) \notin \beta^{\prime}$. Using (5) again and assuming $n_{i+1} \geqslant n_{i}$, we conclude that ($\left.m_{i}, n_{i}\right) \notin \beta^{\prime}$, and this contradiction to the definition proves that

$$
\begin{equation*}
n_{1}>n_{2}>\ldots>n_{k} . \tag{7}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\beta\left(K_{2}, B\right)=\{(z, p(B)-z) ; z \in Z(B)\} . \tag{8}
\end{equation*}
$$

We now derive the bipartite Ramsey set of two copies of K_{2} with any bipartite graph B.

Theorem 1. If B is a bipartite graph with p vertices, and $Z^{*}(B)=\{z ; z \in Z(B)$. $\left.z \neq \frac{1}{2}(p-1), z-1 \notin Z(B), z+1 \notin Z(B)\right\}$, then

$$
\begin{align*}
\beta\left(2 K_{2}, B\right)=\left\{\left(z_{i+1}, p-z_{i}\right) ; 1 \leqslant i \leqslant L-1\right\} \cup\left\{\left(p-z_{\mathrm{L}}\right.\right. & \left.\left., p-z_{\mathrm{L}}\right) ; z_{\mathrm{L}} \leqslant \frac{1}{2}(p-1)\right\} \\
& \cup\left\{(z+1, p-z+1) ; z \in Z^{*}(B)\right\} . \tag{9}
\end{align*}
$$

Proof. We write $\beta\left(2 K_{2}, B\right)=\beta$ and $\beta^{\prime}\left(2 K_{2}, B\right)=\beta^{\prime}$ during this proof, and first show that

$$
\begin{equation*}
(x, y) \in \beta^{\prime} \Leftrightarrow B \subset K_{x-1, y} \quad \text { and } \quad B \subset K_{x, y-1} . \tag{10}
\end{equation*}
$$

(\Rightarrow) In the special 2-colorings of $K_{x, y}$, where all edges of a $K_{x, 1}$ (respectively, of a $K_{1, y}$) are colored green, and all others red, there is no green $2 K_{2}$, and thus a red B exists with $B \subset K_{x-1, y}$ (respectively, $B \subset K_{x, y-1}$).
(\Leftarrow) In every 2-coloring of $K_{x, y}$ either a green $2 K_{2}$ exists, or the green edges form a star. In the last case $K_{x-1, y}$ or $K_{x, y-1}$ exist with red edges only, so that a red B is guaranteed.

Now (x, y) $\in \beta$ with $x \leqslant y$ implies $B \subset K_{x-1, y}$ by (6) and (10). Then a number $z \in Z(B)$
exists with $z \leqslant x-1, p-z \leqslant y$, that is, $x=z+1+f, y=p-z+g, f, g \geqslant 0$. From (10) we find $(z+1, p-z+1) \in \beta^{\prime}$, and this together with (6) shows $g \geqslant 2$, so as $g=1, f \geqslant 1$ must be impossible. Thus the two following conditions are necessary for $(x, y) \in \beta$:

$$
\begin{gather*}
x=z+1, \quad y=p-z+1 \tag{11}\\
x=z+1+f, \quad y=p-z, \quad 0 \leqslant f \leqslant p-2 z-1 \tag{12}
\end{gather*}
$$

For (11) we observe that $(z+1, p-z+1) \in \beta^{\prime}$ as above, and use (6) and (10) to get

$$
(z+1, p-z+1) \in \beta \Leftrightarrow(z, p-z+1) \notin \beta^{\prime}
$$

and the equivalences

$$
(z+1, p-z) \notin \beta^{\prime} \Leftrightarrow B \notin K_{z-1, p-z+1}
$$

and

$$
B \not \subset K_{z+1, p-z+1} \Leftrightarrow z-1 \notin Z(B), z+1 \notin Z(B), z \neq \frac{1}{2}(p-1) \Leftrightarrow z \in Z^{*}(B)
$$

The latter follows since $z=\frac{1}{2}(p-1)$ would give $B \subset K_{z+1, p-z+1}$.
If in (12) $z \neq Z_{\mathcal{L}}$, we use $B \subset K_{z_{i+1}-1, p-z_{i}}, B \subset K_{z_{i+1}, p-z_{i}-1}$, and (10) to get $\left(z_{i+1}, p-z_{i}\right) \in$ β^{\prime}. From $B \notin K_{z_{i+1}-1, p-z_{1}-1}$ and (10), it follows that $\left(z_{i+1}-1, p-z_{i}\right) \notin \beta^{\prime}$ and $\left(z_{i+1}, p-\right.$ $\left.z_{i}-1\right) \notin \beta^{\prime}$. We then note that (6) enables us to conclude $\left(z_{i+1}, p-z_{i}\right) \in \beta$, and (x, y) $\notin \beta$ for $f \neq z_{i+1}-z_{i}-1$ in (12). It remains to consider $z=z_{L}$ in (12). Here we use $B \subset K_{p-z_{L}-1, p-z_{L}}$ (as $z \leqslant \frac{1}{2}(p-1)$ in (12)), and $B \notin K_{p-z_{L}-1, p-z_{L}-1}$ to deduce, as before, from (10) and (6) that $(x, y) \in \beta$ holds only for $x=y=p-z_{L}, z_{L} \leqslant \frac{1}{2}(p-1)$.

In the following we denote by $b_{i}(B)=b_{i}$ the maximum of all line independence numbers of the complements of B with regard to $K_{z_{i, p}-z_{i}}$. We now find the bipartite Ramsey set of the 3-point path with any bipartite graph.

Theorem 2. If B is a bipartite graph, with p vertices, and $\bar{Z}(B)=\left\{z_{i} \in Z(B)\right.$; $b_{i}(B)<b_{i}(B)$ for $\left.1 \leqslant j \leqslant i-1\right\}$, then

$$
\begin{equation*}
\beta\left(P_{3}, B\right)=\left\{\left(z_{i}, p-b_{i}(B)\right) ; z_{i} \in \bar{Z}(B)\right\} . \tag{13}
\end{equation*}
$$

Proof. Again it is convenient to write β and β^{\prime} for $\beta\left(P_{3}, B\right)$ and $\beta^{\prime}\left(P_{3}, B\right)$. We first determine the set β^{\prime} by showing that

$$
\begin{equation*}
(x, y) \in \beta^{\prime} \Leftrightarrow z_{i} \in Z(B) \text { exists with } x \geqslant z_{i}, y \geqslant p-b_{i}(B) . \tag{14}
\end{equation*}
$$

(\Rightarrow) If the edges $(1,1),(2,2), \ldots,(x, x)$ of $K_{x, y}$ are colored green and all others red, then no green P_{3} and thus a red B exists in $K_{x, y}$. The subgraph $K_{z_{1}, p-z_{i} .}$ of $K_{x, y}$ with the vertices of this red B contains at most b_{i} of the x independent green edges. Then z_{i} vertices either belong to V_{1} (or to V_{2}) and at least $p-z_{i}-b_{i}$ (or $z_{i}-b_{i}$) of the vertices in V_{2} are among the vertices $x+1, x+2, \ldots, y$, that is, $y-x \geqslant p-z_{i}-b_{i}$ (or $y-x \geqslant z_{i}-b_{i}$). These inequalities yield $y \geqslant p-b_{i}$ if $x \geqslant z_{i}$ (or $x \geqslant p-z_{i} \geqslant z_{i}$).
(\Leftarrow) Because of (4) it suffices to show $\left(z_{i}, p-b_{i}\right) \in \beta^{\prime}$ for $z_{i} \in Z(B)$. In any 2-coloring of $K_{z_{i}, p-b_{1}}$ we either find a green P_{3}, or at least $p-b_{i}-z_{i}$ vertices in V_{2} are incident only with red edges. A subgraph $K_{z_{i}, p-z_{i}}$ of $K_{z_{i}, p-b_{i}}$ in which these $p-b_{i}-z_{i}$ vertices are among

34 FRANK HARARY, HEIKO HARBORTH AND INGRID MENGERSEN

the $p-z_{i}$ vertices, contains at most b_{i} green edges, which are independent. Thus the complement of these green edges with regard to $K_{z_{i}, p-z_{i}}$ contains a red B, and (14) is proved.

Now (14) always guarantees $\left(z_{i}, p-b_{i}\right) \in \beta^{\prime}$. Also from (14) we deduce $\left(z_{i}-1, p-b_{i}\right) \notin \beta^{\prime}$ and $\left(z_{i}, p-b_{i}-1\right) \notin \beta^{\prime} \Leftrightarrow b_{j}<b_{i}$ for $1 \leqslant j<i$. Then (6) completes the proof of Theorem 2.

The following lemma describes algorithmic steps for the general determination of $\beta\left(B_{1}, B_{2}\right)$. We start with m_{1} from (a). For $h \geqslant 1$, we then may use (b), (c), and (d) cyclically to find for m_{h} the corresponding n_{h} by (b), to ask whether we have finished using (c), and, otherwise, to find the next value m_{h+1} by means of (d).

Algorithmic Lemma. (a) $m_{1}=z_{1}\left(B_{1}\right)+z_{1}\left(B_{2}\right)-1$;
(b) $\left(m_{h}, y\right) \in \beta^{\prime}\left(B_{1}, B_{2}\right)$, and $x \geqslant m_{h}$ exists with $(x, y-1) \notin \beta^{\prime}\left(B_{1}, B_{2}\right) \Rightarrow y=n_{h}$;
(c) $\left(n_{h}-1, n_{h}-1\right) \notin \beta^{\prime} \Leftrightarrow h=k$;
(d) $\left(x, n_{h}-1\right) \notin \beta^{\prime}\left(B_{1}, B_{2}\right)$, and $y \leqslant n_{h}-1$ exists with $(x+1, y) \in \beta^{\prime}\left(B_{1}, B_{2}\right) \Rightarrow$ $x+1=m_{h+1}$, if $h<k$.

Proof. (a) If in $K_{x, y}$ all edges which are incident with $z_{1}\left(B_{1}\right)-1$ vertices of V_{1} (and all edges in case of $x<z_{1}\left(B_{1}\right)-1$) are colored green and all others red, then for $x-$ $\left(z_{1}\left(B_{1}\right)-1\right) \leqslant z_{1}\left(B_{2}\right)-1$ neither a green B_{1} nor a red B_{2} can occur, and hence $m_{1} \geqslant$ $z_{1}\left(B_{1}\right)+z_{1}\left(B_{2}\right)-1$.

For any 2 -coloring of $K_{x, y}$ with $x=z_{1}\left(B_{1}\right)+z_{1}\left(B_{2}\right)-1$, and $y=$ $1+2^{x} \max _{i=1,2}\left\{p\left(B_{i}\right)-z_{1}\left(B_{i}\right)-1\right\}$ we consider the (x, y)-matrix M with elements $a_{i, j}=1$ if the edge (i, j) is green, and $a_{i, j}=0$ otherwise. Then in M at least one of the 2^{x} different columns occurs at least $\max _{i=1,2}\left\{p\left(B_{i}\right)-z_{1}\left(B_{i}\right)\right\}$ times. This column contains $z_{1}\left(B_{1}\right)$ entries 1 , or $z_{1}\left(B_{2}\right)$ entries 0 . Hence M must contain a $\left(z_{1}\left(B_{1}\right), p\left(B_{1}\right)-z_{1}\left(B_{1}\right)\right.$)-submatrix only with entries 1 , or a $\left(z_{1}\left(B_{2}\right), p\left(B_{2}\right)-z_{1}\left(B_{2}\right)\right.$)-submatrix only with entries 0 . Thus $K_{x, y}$ contains a green B_{1} or a red B_{2}, and $m_{1} \leqslant z_{1}\left(B_{1}\right)+z_{1}\left(B_{2}\right)-1$ is proved.
(b) If $y>n_{h}$ then $\left(m_{h}, y-1\right) \in \beta^{\prime}$, while if $y<n_{h}$ then $\left(m_{h}, y\right) \notin \beta^{\prime}$, and either case yields a contradiction.
(c) For $h<k$ we deduce from $\left(m_{h+1}, n_{h+1}\right) \in \beta^{\prime}$ and (4) that $\left(n_{h}-1, n_{h}-1\right) \in \beta^{\prime}$, as (1) and (7) yield $m_{h+1} \leqslant n_{h+1} \leqslant n_{h}-1$. The assumption ($n_{k}-1, n_{k}-1$) $\in \beta^{\prime}$ then implies the existence of n_{h} with $n_{h} \leqslant n_{k}-1$ which contradicts (7).
(d) For $x+1>m_{h+1}$, from $\left(m_{h+1}, n_{h+1}\right) \in \beta^{\prime}$ by (4) and (7) we get $\left(m_{h+1}, n_{h}-1\right) \in \beta^{\prime}$, and then (4) gives the contradiction $\left(x, n_{h}-1\right) \in \beta^{\prime}$. If now ($\left.m_{h+1}, n_{h}-1\right) \in \beta^{\prime}$ is assumed, then by (4), there exist m_{i}, n_{i} with $m_{i} \leqslant m_{h+1}-1$ and $n_{i} \leqslant n_{h}-1$, that is, by (1) and (7) the contradiction $i \leqslant h$ and $i \geqslant h+1$, respectively, follows. Hence ($m_{h+1}-1, n_{h}-1$) $\notin \beta^{\prime}$ which yields for $x+1<m_{h+1}$ by (5) the contradiction $(x+1, y) \notin \beta^{\prime}$. Thus only $x+1=m_{h+1}$ is possible.

We are now able to utilize the Algorithmic Lemma to verify easily that the bipartite Ramsey set of a pair of stars is a singleton ordered couple.

Theorem 3. $\beta\left(K_{1, s}, K_{1, t}\right)=\{(1, s+t-1)\}$.

Proof. At first $m_{1}=1$ follows from (a) of the Lemma. In any 2-coloring of $K_{1, s+t-1}$ the one vertex of V_{1} is incident either with s green or t red edges, and hence $(1, s+t-1) \in \beta^{\prime}\left(K_{1, s}, K_{1, t}\right)$. If in $K_{s+t-2, s+t-2}$ the edges $(i, i+j), 1 \leqslant i \leqslant s+t-2,0 \leqslant j \leqslant$ $s-2, i+j(\bmod s+t-2)$, are colored green and all others red, then no green $K_{1, s}$ and no red $K_{1, t}$ can exist, that is, $(s+t-2, s+t-2) \notin \beta^{\prime}\left(K_{1, s}, K_{1, t}\right)$. For $s+t \geqslant 3$, this together with (b) and (c) of the Lemma proves Theorem 3, and for $s=t=1$ we use (8).

We now apply the Algorithmic Lemma further in order to determine the bipartite Ramsey set of a small path $P_{s}, s \leqslant 5$, and any star $K_{1, r}$. This result will be useful in the next section on bipartite Ramsey sets for small graphs.

Theorem 4. Let $t \geqslant 3, f_{1}=2$, and let f_{h+1} be the smallest integer with

$$
\begin{equation*}
\left[(t-1) /\left(f_{h+1}-1\right)\right]<\left[(t-1) /\left(f_{h}-1\right)\right], \quad \text { and } \quad f_{d(t)}=\left[\frac{1}{2}(t+3)\right] . \tag{16}
\end{equation*}
$$

For $s=4$ and $s=5$ then $k(4, t)=d(t) ; k(5, t)=d(t)$ if t is even and $t>4 ; k(5,4)=3$; $k(5, t)=d(t)-1$ if t is odd; and

$$
\begin{align*}
\beta\left(P_{s}, K_{1, t}\right) & =\left\{\left(m_{h}, n_{h}\right) ; 1 \leqslant h \leqslant k(s, t), m_{k(5, t)}=t \text { if } t\right. \text { is even, } \\
m_{h} & \left.=f_{h} \text { otherwise, } n_{k(5,4)-1}=6, \quad n_{h}=t+\left[(t-1) /\left(m_{h}-1\right)\right] \text { otherwise }\right\} . \tag{17}
\end{align*}
$$

Proof. We use $c=[(t-1) /(a-1)], 2 \leqslant a \leqslant t$. In $K_{a, t+c-1}$ the edges $(i,(i-1) c+j)$ with $1 \leqslant i \leqslant a-1,1 \leqslant j \leqslant c$, and $i=a, 1 \leqslant j \leqslant t-1-(a-2) c$ are colored green, and all others red. Then every vertex is incident with at most $t-1$ red edges, and neither a red $K_{1, t}$ nor a green P_{4} can occur, that is,

$$
\begin{equation*}
(a, t+[(t-1) /(a-1)]-1) \notin \beta^{\prime}\left(P_{s}, K_{1, t}\right), \quad 2 \leqslant a \leqslant t, \quad 4 \leqslant s \tag{18}
\end{equation*}
$$

In any 2 -coloring of $K_{\text {a.t }+c}$ either we find a red $K_{1, t}$, or every vertex in V_{1} is incident with at least $c+1$ green edges. Because of $a(c+1)>c+t$ at least one vertex in V_{2} is incident with two green edges. As $c+1 \geqslant 2$, and $c+1 \geqslant 3$ for $a \leqslant\left[\frac{1}{2}(t+1)\right]$, there exist a green P_{4}, and a green P_{5}, respectively, and hence

$$
(a, t+[(t-1) /(a-1)]) \in \beta^{\prime}\left(P_{\mathrm{s}}, K_{1, t}\right), \quad 2 \leqslant a \leqslant \begin{cases}t, & s=4 \tag{19}\\ {\left[\frac{1}{2}(t+1)\right]} & s=5\end{cases}
$$

In a similar way we get

$$
\begin{equation*}
(3,6) \in \beta^{\prime}\left(P_{5}, K_{1,4}\right) \tag{20}
\end{equation*}
$$

Any 2-coloring of $K_{3,6}$ either contains a red $K_{1,4}$, or every vertex of V_{1} is incident with at least 3 green edges, and at least one vertex of V_{2} with 2 green edges, and thus a green P_{5} occurs.

We now consider $K_{t+1, t+1}, t$ odd, and $K_{t-1, t+1}, t$ even. For $1 \leqslant i \leqslant \frac{1}{2}(t+1)$, and $1 \leqslant i \leqslant \frac{1}{2}(t-2)$, respectively, the edges $(2 i-1,2 i-1),(2 i-1,2 i),(2 i, 2 i-1),(2 i, 2 i)$, and for $K_{t-1, t+1}$ in addition $(t-1, t-j), 0 \leqslant j \leqslant 2$, are colored green and all others red. Thus
there is no green P_{5} and no red $K_{1, t}$, and therefore

$$
\begin{array}{ll}
(t+1, t+1) \notin \beta^{\prime}\left(P_{5}, K_{1, t}\right), & t \text { odd } \\
(t-1, t+1) \notin \beta^{\prime}\left(P_{5}, K_{1, t}\right), & t \text { even. } \tag{22}
\end{array}
$$

Next we suppose for a 2 -coloring of $K_{t, t+1}, t$ even, that there exist neither a green P_{5} nor a red $K_{1, c}$. Then every vertex in V_{1} is incident with at least two green edges, and every vertex in V_{2} with at least one green edge, and as maximal connected subgraphs the only possibilities are $K_{2,2}$ or $K_{1, r}$ with $r \geqslant 2$ vertices in V_{2}. If there are g copies of green $K_{2,2}$, and $K_{1, r_{1}}, K_{1, r_{2}}, \ldots, K_{1, r_{r}}$ denote the green stars, then we have $t=b+2 \mathrm{~g}$ and $t+1=$ $2 g+\sum_{i \leqslant b} r_{i}$ vertices. Together with $r_{i} \geqslant 2$ we obtain $b \leqslant 1$. Since $b=2 g-t$ is even we get $b=0$, and this implies $t=2 g-1$, which contradicts t even; hence

$$
\begin{equation*}
(t, t+1) \in \beta^{\prime}\left(P_{5}, K_{1, t}\right), \quad t \text { even. } \tag{23}
\end{equation*}
$$

We now apply the Algorithmic Lemma to deduce $\beta\left(P_{s}, K_{1, t}\right)$ for $s=4$, 5 . From (a) we see that $m_{1}=2=f_{1}$. Then from (b) we obtain $n_{h}=t+\left[(t-1) /\left(m_{h}-1\right)\right]$ if for $m_{k(5, t)}=t$ we use (23) and (21), and if for $m_{h}=f_{h}$ with $h \neq k(5,4)-1$ we use $h=m_{h}$ in (19) and (18). For $m_{k(5,4)-1}=f_{2}=3$ we use (20), (22) with $a=3$, and (b) to get $n_{k(5,4)-1}=6$.

For $s=4$, or $s=5, t$ even, $t>4$, we get $n_{d}=t+1$, and for $s=5, t=4$, we find $n_{d+1}=n_{3}=t+1=5$. By substituting $a=t$ in (18) and using (c), it follows that $k(4, t)=$ $d(t), k(5, t)=d(t), t$ even, $t>4$, and $k(5,4)=d+1=3$. If $s=5$, t odd, then $n_{d-1}=t+2$, and we obtain $k(5, t)=d(t)-1, t$ odd, from (21) and (c).

In the cases $s=4, h<d(t)$, and $s=5, h<d(t)-1$, we consider $a=f_{h+1}-1$ in (18) together with $\left[(t-1) /\left(f_{h+1}-2\right)\right]=\left[(t-1) /\left(f_{h}-1\right)\right]$ from (16), so as $a=f_{h+1}$ in (19) together with (16), to conclude $m_{h+1}=f_{h+1}$ using part (d) of the Lemma. For $s=5, t$ even, $t>4$, the case $h=d(t)-1$ yields $n_{d-1}=t+2$, and from (22), (23), and (d) we obtain $m_{h+1}=$ $m_{d}=m_{k(5, t)}=t$. For $s=5, t=4$, there remain two cases. If $h=1$, then $n_{1}=7$, and $a=2$ in (18), (20), and (d) show $m_{2}=f_{2}=3$. If $h=2$, then $n_{2}=6$, and (22), (23), and (d) imply $m_{3}=t=4$.

Figure 1. The small bipartite graphs.
2. Bipartite Ramsey sets for small graphs. From the list of all graphs of order $p \leqslant 6$ in [4], we show in Fig. 1 those bipartite graphs which have $p \leqslant 5$ vertices and no isolates. We call these twelve graphs the small bipartite graphs and list symbolic names for all but the tenth one which is then denoted by B_{10}. (It can also be written as $K_{1}+K_{1}+K_{1}+\bar{K}_{2}$ but that is too long a symbol.)

Theorem 5. For all pairs (B_{i}, B_{j}) of small bipartite graphs B_{i} and B_{j} from Fig. 1 the bipartite Ramsey sets $\beta\left(B_{i}, B_{i}\right)$ are gathered in Table 1.

Table 1. $\beta\left(B_{i}, B_{i}\right)$ for all small bipartite graphs.

	K_{2}	P_{3}	$2 K_{2}$	P_{4}	$K_{2,2}$	$K_{1,3}$	$P_{3} \cup K_{2}$	P_{5}	$K_{1,4}$	B_{10}	$K_{2,3}-e$	$K_{2,3}$
K_{2}	$(1,1)$	$(1,2)$	$(2,2)$	$(2,2)$	$(2,2)$	$(1,3)$	$(2,3)$	$(2,3)$	$(1,4)$	$(2,3)$	$(2,3)$	$(2,3)$
P_{3}		$(1,3)$	$(2,2)$	$(2,3)$	$(2,4)$	$(1,4)$	$(2,3)$	$(2,3)$	$(1,5)$	$(2,4)$	$(2,4)$	$(2,5)$
$2 K_{2}$			$(3,3)$	$(3,3)$	$(3,3)$	$(2,4)$	$(3,3)$	$(3,3)$	$(2,5)$	$(3,3)$	$(3,3)$	$(3,3)$
P_{4}												

FRANK HARARY, HEIKO HARBORTH AND INGRID MENGERSEN

Proof. The first three rows of Table 1 are immediate consequences of (8), (13), and (9). Then $\beta\left(P_{s}, P_{t}\right), 4 \leqslant s, t \leqslant 5, \beta\left(K_{1, s}, K_{1, t}\right), 3 \leqslant s, t \leqslant 4$, and $\beta\left(P_{s}, K_{1, t}\right), 4 \leqslant s \leqslant 5,3 \leqslant t \leqslant$ 4, can be derived from (2), (15), and (17), respectively. For the remaining pairs (B_{i}, B_{i}) (excluding ($K_{2,3}, K_{2,3}$) for the moment) we first prove the validity of ($\left.x, y\right) \in \beta^{\prime}\left(B_{i}, B_{j}\right.$) for all pairs of Table 1. By the g-degree and r-degree of a vertex v we will mean the number of green and red edges incident with v in a 2 -coloring of $K_{x, y}$.

For $B=P_{3} \cup K_{2}$ we prove $(3,3) \in \beta^{\prime}\left(B, P_{4}\right),(3,3) \in \beta^{\prime}(B, B),(3,4) \in \beta^{\prime}\left(B, K_{2,3}-e\right)$, $(3,5) \in \beta^{\prime}\left(B, K_{2,3}\right),(2,6)$ and $(3,5) \in \beta^{\prime}\left(B, K_{1,4}\right)$: All green edges in $K_{x, y}$ without a green $P_{3} \cup K_{2}$ are either part of one star, or of one $K_{2,2}$, or they all are independent, and in any case a red B_{i} occurs.

For $t=3,4,4,3,3,3,4,4,4,4,4,3,3,3,4,3,5$ in this sequence we obtain $(2,5) \in \beta^{\prime}\left(K_{1,3}, B_{10}\right),(2,7)$ and $(3,6) \in \beta^{\prime}\left(K_{1,4}, B_{10}\right),(3,4) \in \beta^{\prime}\left(K_{2,3}-e, P_{4}\right),(2,6) \in$ $\beta^{\prime}\left(K_{1,3}, K_{2,3}-e\right),(2,7) \in \beta^{\prime}\left(K_{1,3}, K_{2,3}\right),(2,8),(3,7)$, and $(5,6) \in \beta^{\prime}\left(K_{1,4}, K_{2,3}-e\right),(2,9)$ and $(3,8) \in \beta^{\prime}\left(K_{1,4}, K_{2,3}\right),(3,5) \in \beta^{\prime}\left(B_{10}, K_{2,3}-e\right),(3,7)$ and $(4,6) \in \beta^{\prime}\left(B_{10}, K_{2,3}\right),(3,7)$ and $(5,5) \in \beta^{\prime}\left(K_{2,3}-e, K_{2,3}-e\right),(3,10) \in \beta^{\prime}\left(K_{2,3}-e, K_{2,3}\right)$, if we check for $\beta^{\prime}\left(B_{i}, B_{j}\right)$ that $K_{x, t}(t \leqslant y)$ with a green star $K_{1, t}$ contains either a green B_{i} (if one vertex of V_{1} has g-degree $\geqslant 2$ for $B_{i} \neq K_{1, t}$), or a red B_{j}, and that $K_{\dot{x}, y}$ with r-degree $\geqslant y-t+1$ for all vertices of V_{1} contains a red B_{j}.
$(3,4) \in \beta^{\prime}\left(K_{2,2}, P_{5}\right)$: In $K_{3,4}$ two vertices of V_{1} with sum of g-degrees $\geqslant 6$ guarantee a green $K_{2,2}$. If otherwise the sum of r-degrees for all pairs of vertices in V_{1} is $\geqslant 3$, then either one vertex of V_{1} has r-degree $\geqslant 3$, and another r-degree $\geqslant 2$, so that a red P_{5} exists, or two vertices of V_{1} have r-degree 2 , and the third has r-degree 1 or 2 , and always a green $K_{2,2}$ or a red P_{5} must exist.
$(3,5) \in \beta^{\prime}\left(P_{5}, K_{2,3}-e\right)$: If in $K_{3,5}$ two vertices of V_{1} have g-degree $\geqslant 3$, then a green P_{5} exists. Otherwise two vertices in V_{1} have r-degree $\geqslant 3$. If all vertices in V_{1} have r-degree $\geqslant 3$, or two vertices have the sum of their r-degrees $\geqslant 7$, then a red $K_{2,3}-e$ exists. If otherwise two vertices of V_{1} have r-degree 3 , and the third $\leqslant 2$, then either a green P_{5} or a red $K_{2,3}-e$ exists.
$(3,7)$ and $(4,5) \in \beta^{\prime}\left(P_{5}, K_{2,3}\right)$: If all vertices of V_{2} in $K_{3,7}$ or $K_{4,5}$ have g-degree $\leqslant 1$, then there are at least 14 or 15 red edges, and two vertices of V_{1} have the sum of their r-degrees $\geqslant 10$ or $\geqslant 8$, respectively, and thus a red $K_{2,3}$ exists. Otherwise V_{2} contains a vertex v with g-degree $\geqslant 2$. If g-degree $\geqslant 2$ for two vertices w_{1}, w_{2} of green edges (w_{i}, v), then either a green P_{5} exists, or both have g-degree 2 , and are adjacent by green edges to the same vertex of $V_{2}(\neq v)$, and thus a red $K_{2,3}$ exists. Otherwise w_{1}, for instance, has g-degree 1 , and either a red $K_{2,3}$ exists, or w_{2} has g-degree $\geqslant 5$ or $\geqslant 3$, respectively. If no green P_{5} exists; then at least 4 or 2 vertices $j \neq v$ of V_{2} with green edges (w_{2}, j) have r-degree 2 or 3 , respectively, and a red $K_{2,3}$ occurs.
$(4,8) \in \beta^{\prime}\left(K_{2,3}-e, K_{2,3}\right)$: If in $K_{4,8}$ three vertices of V_{1} have r-degree $\geqslant 5$, then a red $K_{2,3}$ exists. Otherwise, there are two vertices in V_{1} with g-degree $\geqslant 4$. If no green $K_{2,3}-e$ exists, then the remaining two vertices of V_{1} have r-degree $\geqslant 6$, and we get a red $K_{2,3}$.

For the pairs still missing in Table 1 (excluding ($K_{2,3}, K_{2,3}$)) we use the fact that $(x, y) \in \beta^{\prime}\left(B_{i}, B_{j}\right)$ implies $(x, y) \in \beta^{\prime}\left(B_{a}, B_{b}\right)$ if $B_{a} \subset B_{i}$ and $B_{b} \subset B_{j}$.

In a second step we collect in Table 2 certain pairs (x, y) with $(x, y) \notin \beta^{\prime}\left(B_{i}, B_{i}\right)$. From

Figure 2. Bipartite graphs with green edges used for Table 2.

Figures $2 . N, 1 \leqslant N \leqslant 15$, (where only green edges are reproduced) we can deduce the pairs $(x, y)_{N}$ of Table 2. From Table 1 follow $(3,3) \notin \beta^{\prime}\left(P_{4}, K_{1,3}\right)$ and $(2,6) \notin \beta^{\prime}\left(P_{4}, K_{1,4}\right)$. As $(x, y) \notin \beta^{\prime}\left(B_{i}, B_{j}\right)$ implies $(x, y) \notin \beta^{\prime}\left(B_{a}, B_{b}\right)$ if $B_{i} \subset B_{a}$ and $B_{i} \subset B_{b}$, all other pairs of Table 2 are checked easily.

By use of the Algorithmic Lemma we now can determine the sets $\beta\left(B_{i}, B_{j}\right)$ of Table 1.

The only remaining case, $\beta\left(K_{2,3}, K_{2,3}\right)$, is a consequence of a result in Irving [7]. Here sets $C_{s, t} s \leqslant t$, are considered, which contain all pairs (a, b), such that every 2-colored $K_{a, b}$ has a monochromatic $K_{s, t}$ with the s and t vertices chosen from the a and b vertices, respectively, and such that 2-colorings of $K_{a-1, b}$ and $K_{a, b-1}$ exist without a monochromatic $K_{s, t}$. From this we deduce

$$
\begin{aligned}
\beta\left(K_{\mathrm{s}, \mathrm{t}}, K_{\mathrm{s}, \mathrm{t}}\right)= & \left\{(a, b) ; a \leqslant b,(a, b) \text { or }(b, a) \in C_{\mathrm{s}, \mathrm{t}},(a-i, b-j)\right. \\
& \text { and } \left.(b-i, a-j) \notin C_{\mathrm{s}, \mathrm{t}} \text { for } i, j \geqslant 0, i+j \geqslant 1\right\} .
\end{aligned}
$$

Now $C_{2,3}=\{(3,13),(5,11),(7,9),(15,7),(21,5)\}$ is proved in [7], and we obtain $\boldsymbol{\beta}\left(K_{2.3}, K_{2.3}\right)=\{(3,13),(5,11),(7,9)\}$, which completes the proof of Theorem 5.

As the conjecture in [7] that $K_{13,17} \rightarrow\left(K_{3,3}, K_{3,3}\right)$ was recently proved in [6], we obtain from [7] and [6] the set

$$
C_{3,3}=\{(5,41),(7,29),(9,23),(13,17),(17,13),(23,9),(29,7),(41,5)\},
$$

Table 2. Pairs $(x, y) \notin \boldsymbol{\beta}^{\prime}\left(B_{i}, B_{j}\right)$.

	$K_{2,2}$	$K_{1,3}$	$\mathrm{P}_{3} \cup \mathrm{~K}_{2}$	P_{5}	$K_{1,4}$	B_{10}	$K_{2,3}-e$	$\mathrm{K}_{2,3}$
P_{4}	$(3,3) 6$	$(3,3)$			$(2,6)$	$(3,3)$	$(3,3)$	$(3,6)_{8}$ $(4,4)_{10}$
$K_{2,2}$	$(4,6) 13$	$\begin{aligned} & (2,5) \\ & (4,4) \end{aligned}$	$(3,3)$	$(3,3)$	$(2,7){ }_{4}$ $(4,6)_{13}$ $(5,5)_{14}$	$(4,4)$	$(4,6)$	$(3,9)_{9}$ $(7,7)_{15}$
$K_{1,3}$	$\begin{aligned} & (2,5)_{3} \\ & (4,4)_{12} \end{aligned}$		$\begin{aligned} & (2,4) \\ & (3,3) \end{aligned}$			$\begin{aligned} & (2,4) \\ & (4,4)_{12} \end{aligned}$	$\begin{aligned} & (2,5) \\ & (4,4) \end{aligned}$	$\begin{aligned} & (3,6)_{8} \\ & (5,5)_{14} \end{aligned}$
$P_{3} \cup K_{2}$	$(3,3) 6$	$\begin{aligned} & (2,4)_{1} \\ & (3,3)_{6} \end{aligned}$		$(3,3) 7$	$\begin{aligned} & (2,5)_{2} \\ & (4,4)_{10} \end{aligned}$	$(3,3)$	$(3,3)$	$(4,4) 10$
P_{5}						$(4,4)_{11}$	$(4,4)$	$\begin{aligned} & (3,6) \\ & (4,4) \end{aligned}$
$K_{1,4}$						$\begin{aligned} & (2,6) \\ & (5,5) \end{aligned}$	$\begin{aligned} & (2,7) \\ & (4,6) \\ & (5,5) \end{aligned}$	$\begin{aligned} & (2,8)_{5} \\ & (7,7)_{15} \end{aligned}$
B_{10}					$(5,5)_{14}$	$(4,4)$	$(4,4)$	$\begin{aligned} & (3,6) \\ & (5,5) \end{aligned}$
$K_{2,3}-e$							$(4,6)$	$\begin{aligned} & (3,9) \\ & (7,7) \end{aligned}$

and in addition to Table 1 we conclude with the bipartite Ramsey set of the most famous nonplanar bipartite graph.

Theorem 6. $\beta\left(K_{3,3}, K_{3,3}\right)=\{(5,41),(7,29),(9,23),(13,17)\}$.

REFERENCES

1. L. W. Beineke and A. J. Schwenk, On a bipartite form of the Ramsey problem, Proc. Fifth British Combinatorial Conference (Utilitas, Winnipeg (1976) 17-22).
2. B. Bollobás, Extremal graph theory (Academic Press, London, 1978).
3. R. J. Faudree and R. H. Schelp, Path-path Ramsey-type numbers for the complete bipartite graph, J. Combinatorial Theory Ser. B 19 (1975) 161-173.
4. F. Harary, Graph theory (Addison-Wesley, Reading, Mass., 1969).
5. F. Harary, The foremost open problems in generalized Ramsey theory, Proc. Fifth British Combinatorial Conference (Utilitas, Winnipeg (1976) 269-282).
6. H. Harborth and H.-M. Nitzschke, Solution of Irving's Ramsey problem, Glasgow Math. J. 21 (1980), 187-197.
7. R. W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers, Glasgow Math. J. 19 (1978), 13-26.

Frank Harary
University of Michigan
Heiko Harborth and Ingrid Mengersen

Ann Arbor
U.S.A.
Technische Universität Braunschweig
West Germany

