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Abstract We study the following problem: existence and classification of closed curves which are
critical points for the total curvature functional, defined on spaces of curves in a Riemannian manifold.
This problem is completely solved in a real space form. Next, we give examples of critical points for this
functional in a class of metrics with constant scalar curvature on the three sphere. Also, we obtain a
rational one-parameter family of closed helices which are critical points for that functional in CP2(4) when
it is endowed with its usual Kaehlerian structure. Finally, we use the principle of symmetric criticality
to get equivariant submanifolds, constructed on the above curves, which are critical points for the total
mean curvature functional.
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1. Introduction

The tension field of a submanifold is the Euler-Lagrange operator associated with the
energy of the submanifold [9] and it is precisely the mean curvature vector field. Thus,
the amount of tension that a submanifold receives at one point is measured by the mean
curvature function at that point, a. We can also measure the tension in a global manner
and wonder about the minimal amount of total tension / a that a submanifold receives
from the surrounding space. An original argument of Pinkall [14], which involves the
principle of symmetric criticality [13], has been exploited in a series of articles to obtain
a sort of 'bridge' among the one-dimensional and higher-dimensional cases of several
variational problems associated with functionals defined in terms of the tension. In this
context, new examples of Willmore surfaces and Willmore-Chen submanifolds (for a wide
class of conformal structures) starting from "generalized' elasticae have been constructed
(see, for example, [1,2,4,6.14]). Note also that the existence of closed critical points
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is of great importance in all these variational problems. Hence, we are interested in the
following problem.

Problem 1.1. Existence and classification of (closed) critical points for the total cur-
vature functional, T = J K, defined on spaces of curves in a Riemannian manifold.

In § 2, the Euler-Lagrange equation for this functional is computed. Furthermore, in
this section we solve the problem of existence and classification of its critical points in
a real space form completely. For closed critical points the result essentially reduces to
the following: the critical points for T in a real space form are either any closed curve in
the plane or the horizontal liftings, via the usual Hopf map, in S3(l) of certain multiple
covers of closed curves in §2( | ) whose enclosed area is a rational of n.

Next, we study the existence of closed critical points for T in Riemannian manifolds
other than real space forms. We deal with this problem in the most natural spaces after
those with constant curvature. Since, in dimension three, Einstein metrics make no sense,
we consider (in §4) a deformation of the standard metric in S3(l) through metrics with
constant scalar curvature (they constitute the so called canonical variation of S3(l) [7]).
These metrics are less rigid than the standard one; however, they still have a large group
of isometries. Moreover, the holonomy of the natural connection on the Hopf fibration, is
preserved. We then give a one-parameter class of metrics in S3(l) which admit rational
one-parameter families of non-geodesic closed critical points of the total curvature. These
critical points are realized as closed geodesies of minimal flat tori, embedded in these
spaces (see Theorem 3.3).

As we said, three is the largest dimension in which we can expect to find fully immersed
critical points of the total curvature in real space forms. On the other hand, the Fubini-
Study metric on CP2 (4) gives the most important four-dimensional Einstein-Riemannian
space with no constant sectional curvature. In § 5 we investigate the critical points of
the total curvature in the two-dimensional complex projective plane endowed with the
Fubini-Study metric. By means of a technique introduced in [6], consisting basically of
using a new complex Frenet frame constructed via the Hopf map, we prove that every
critical helix of the total curvature in the complex projective plane is the image under
the natural projection of a one-parameter subgroup of SU(3). This key result allows us
to find a one-parameter family of critical helices to the total curvature in CP (4) which
contains a rational indexed subfamily of closed critical points.

In the last section we apply the principle of symmetric criticality to construct equiv-
ariant submanifolds which are critical points of the total mean curvature functional,
starting from closed curves which are critical points for the total curvature functional.
This criterion for reduction of variables in the total mean curvature variational problem
has many applications and we exhibit some of them. In particular, we obtain a rational
one-parameter family of ^-invariant flat tori with non-zero constant mean curvature in
the round five sphere, which are critical points for the total mean curvature functional
(see Corollary 5.2).

In contrast with the above result, we obtain another family of flat tori with non-
zero constant mean curvature in the round five sphere, which are critical points for this
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functional (see Proposition 5.3). To obtain this second family we use a direct method,
first we compute the Euler-Lagrange equations associated with the functional and then
we use some ideas from the Chen theory of finite-type submanifolds [3,8].

2. The variational problem in a real space form

In this article we will use the notation and terminology of [12]. Let M be an n-dimensional
Riemannian manifold with metric g = (•,•), Levi-Civita connection V and curvature
tensor R. For an immersed curve 7 in M, let K be its oriented curvature if n = 2 and its
curvature (K, ^ 0) otherwise. Let A be the space of closed curves immersed in M if n = 2
and the space of closed curves with a finite number of inflection points otherwise. Notice
that at inflection points, K vanishes and so we cannot define, in general, a unit normal
at those points. We consider the functional T : A —> K defined by

(2.1)

To compute the first variational formula for T, we use a standard argument which
involves some integrations by parts, the Frenet equations of 7 in M which are defined
up to at most a finite number of points when n ^ 3, and a technical lemma similar to
Lemma 1.1 of [12]. We then obtain

^ (0) = / {T2N -TSB + TT]- R(N, T)T, W) ds

where T and N stand for the unit tangent and the unit normal. The latter is well defined
along 7 if n = 2, while perhaps it is not defined in the inflection points j{si), 1 ^ i ^ m
when n ^ 3. Also, B is the unit binormal in this case, r ^ 0 denotes the torsion and TS its
derivative with respect to the arclength parameter s. Finally, r\ belongs to the subbundle
which is normal to the one spanned by {T, N, B}, defined along 7 except at most at a
finite number of points, and W is a generic variational vector field along 7.

The last formula allows us to characterize the critical points for T.

Lemma 2.1. 7 € A is a critical point for T if and only if the following conditions
hold:

(1) N, B and r are well defined in the inflection points of 7; and

(2) the following Euler-Lagrange equation is satisfied

R(N, T)T = T2N - TSB + rn, (2.2)

It should be noticed that the first condition in the statement of this lemma always holds
when n = 2. The Euler-Lagrange equation (2.2), has early but interesting consequences
as follows.
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(1) If M has negative sectional curvature, then it is free of non-geodesic critical points
of the total curvature functional T.

(2) If M is a surface, then a curve 7 is a critical point of T if and only if the Gaussian
curvature G of M vanishes identically along 7. Hence we have, for example, the
following conditions.

(a) Any immersed closed curve in M2, the Euclidean plane, or in a flat torus is
automatically a critical point for T.

(b) If M is a surface of revolution in R3 such that the set {p € M/G(p) = 0}
has empty interior, then the critical points for T are parallels made up of
parabolic points. In particular, a torus of revolution in K3 has exactly two
critical points for T corresponding to two parallels of parabolic points.

(3) Let Mn be a real space form with sectional curvature c and dimension n ^ 3. If
7 is a non-geodesic critical point for T which is fully immersed in M, then n = 3
and c > 0.

To complete the classification of the critical points for J i n a real space form M, we
only need to consider the case M = §3(1), the round unit 3-sphere. To better under-
stand the next theorem, we recall that the usual Hopf map IT : S3(l) -» S2(|) becomes a
Riemannian submersion when the basis §2( |) is chosen to have radius ^.

Theorem 2.2. Let (3 be an immersed closed curve in §3(1), then 0 is a critical point
for T if and only there exists a natural number, say m, such that ft is a horizontal lift,
via the Hopf map, of the m-fold cover of an immersed closed curve 7 in §2(^), whose
enclosed oriented area A is a rational multiple of ir given by A = {p/m)iT, where p and
m are relative primes.

Proof. Let 7 be a closed curve in S2(|) of length L enclosing an oriented area
A e [— \ir, \-K\. If 7 is a horizontal lift of 7. then ^(L) = e"5 • 7(0) for some S 6 [—7r, TT]
(this number 5 is known as the holonomy number of the canonical principal connection
denned on the circle bundle n : §3(1) -» S2(|)). Now, 7 closes up if and only if there
exists m € N such that after m consecutive liftings of 7 (that means, we lift the m-fold
cover of 7) we get j(m • L) = e'm<5 • 7(0) = 7(0). Then 6 = 2np/m for a certain integer
p. On the other hand, a well-known argument (from [11]) can easily be adapted to give
that 5 = 2A. Hence, 7 closes after m consecutive liftings if and only if A = (p/m)7r.

Obviously a geodesic of §3(1) is a critical point (it is a minimum) for T and certainly
it is obtained by lifting horizontally the 2-fold cover of a geodesic in §2(i). Thus, in the
next argument we consider non-geodesic critical points for T. According to the Euler-
Lagrange equation (2.2), a curve /? immersed in §3(1) is a critical point for J- if and only
if its torsion satisfies r2 = 1. Also, if 7 is a horizontal lift of 7, it is not difficult to see
that R = K-TT and f2 = 1, where R, f and n stand for the curvature and the torsion of 7
and the curvature of 7, respectively. Consequently, (3 and 7 must be congruent in S3(l)
when 7 = n(0). •
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To illustrate this theorem, we will exhibit some examples.

(1) A rational one-parameter family of closed helices in §3(1) which are critical points
for T can be obtained as follows. The enclosed area A of a small circle 7 in S2(|) of
radius r € (0, \\ is given by A = ^7r(l — y/1 — 4r2). A horizontal lift of the m-fold cover
of 7 closes up if and only if ^(1 — \/l — 4r2) = p/m. We now solve this equation in r to
obtain a rational one-parameter family of radii whose circles lift to critical points for T.

(2) A horizontal lifting in §3(1) of the 2-fold cover of any closed free elastica in S2(^)
is a critical point for T. In fact, closed free elasticae in §2( |) were studied in [12]. In
particular, they enclose an area A = |TT, and so we only need to apply Theorem 2.2.

(3) The spherical elliptic lemniscate. In spherical coordinates {<j>, 6) on §2( |) , 4> standing
for the longitude and 9 denoting the latitude, we consider the curve given by

1: \(J>2 + sin2 9)2= a2 sin2 9+ b2cj>2,

with parameters a and b satisfying b2 Js 2a2. This curve is the image under an appropriate
Lambert projection of an elliptic lemniscate in the plane (that is the inverse curve of an
ellipse of axis 2a and 2b with respect to its centre). Since the Lambert projection preserves
the area, the area enclosed by 7 in §2(|) is A = \(a2 + b2)ir. Now we choose a and b
such that a2 + b2 is a rational number, say p/q, with a2 + b2 ^ 1. Then, a horizontal lift
of the 2g-fold cover of 7 gives a critical point for J- in §3(1). See figures 1 and 2.

(4) The spherical limacon or the spherical snail of Pascal. In the above spherical coordi-
nates on S2(i) we choose the curve

7 : (l4>2 + \ sin2 9 - 2a(f>)2 = h2(<p2 + sin2 9),

for suitable parameters a and h. This is nothing but the image under the Lambert
projection of a limagon of Pascal (the inverse curve of an ellipse with respect to a focus),
see figures 3 and 4. Therefore, 7 encloses the area A = (h2 + \a2)ix. Again, for a suitable
choice of parameters a and h, we get examples of critical points for T in §3(1) by applying
Theorem 2.2.

(5) The spherical folium. It can be obtained from the folium simple in the plane (see
figures 5 and 6). via a Lambert projection. In spherical coordinates on §2(^) it is defined
by

and it encloses an area A = -^a2IT on S2(^). For example, if we choose o = 1, then a
horizontal lift of the 32-fold cover of the corresponding spherical folium is a critical point
for JFin§3(l).

(6) The spherical roses. Let (p, ijj) be polar coordinates in the plane. For an integer
number m, we consider the curve

6 : p = c • sin(mip).
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Figure 1. Spherical elliptic lemniscate for a2 = A; b2 = \.

Figure 2. Stereographic projection of a closed lifting of the spherical elliptic lemniscate.

where c is a real number. The curve 5 defines a rose in the plane with m petals if m is odd
and 2m petals when m is even. These curves are also called clover curves (for example,
if 77i = 2 we obtain the four-leaved clover, while if m = 3 we get the three-leaved clover
or trefoil, which are very important when plotting tensor properties of quaternary and
ternary crystals). The enclosed area in the plane by a clover curve is A = \c2ir if m is
odd and A = \C'2"K if m is even. Now, we take the image under the Lambert projection
in §2(^) of a suitable clover curve, to obtain closed curves enclosing the same area in
§2( | ) . Finally, we choose c such that c2 is a rational number and apply Theorem 2.2 to
have new examples of critical points for T in §3(1).

https://doi.org/10.1017/S0013091500021210 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021210


Critical points for the total mean curvature functional 593

Figure 3. Spherical limagon for a = b = \.

Figure 4. Stereographic projection of a closed lifting of the spherical limagon.

3. Critical points of the total curvature functional in non-standard 3-spheres

The proof of Theorem 2.2 depends on two main facts. Firstly, it uses the extreme rigidity
of the standard metric g on §3(1). Secondly, it is based also on the non-trivial holonomy of
the natural connection on the principal bundle IT : §3(1) -» §2(§)- In this section we wish
to modify this setting by studying critical points of the total curvature functional on the
3-sphere when it is endowed with metrics of lower degree of rigidity than the standard
one, but still very rich in isometries. For a Riemannian submersion, one can define a
deformation of the total space metric by changing the relative scales of the base and the
fibres. This deformation is called the canonical variation (see [7] for details). In particular,
the canonical variation of n : §3(1) —»S2^)—or simply the canonical variation of the
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Figure 5. Spherical folium for a = 1.

Figure 6. Stereographic projection of a closed lifting of the spherical folium,

standard metric, g, of §3(1)—is defined to be

{St =Tr*(g) + t2- d r 2 , t > 0 } , (3.1)

where dr2 is the usual metric on the fibres S^l). Observe that g\ = g. Some important
properties of this one-parameter family of metrics on the 3-sphere are collected in the
following lemma [7].

Lemma 3.1. We have the following.
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(1) For any t > 0, n : (§3,<?t) -* (§2,s) is a Riemannian submersion with geodesic
Rbres. Moreover, these Riemannian submersions have the same horizontal distribu-
tion.

(2) For any t > 0, the S1 -action on S3 to obtain §2 as orbit space is performed by
isometries of (§3, g~t) •

(3) For any t > 0, (§3,gt) has constant scalar curvature.

Given an immersed curve 7 in S2(;j), we denote by M^ = n~1(-/) its complete lift
endowed with the (^-induced metric. These surfaces have been studied in [l] from the
point of view of the Willmore conjecture and in [5] in relation to the Lawson conjecture.
Next, we give some of their properties.

Lemma 3.2. The following assertions hold.

(1) Let 7 be an immersed closed curve in S 2 ^ ) of length L > 0 and enclosing an
oriented area A. Then M^ = TT~1(7) is a fiat torus isometric to M.2/rt, where Ft is
the lattice spanned by (0,2nt) and (L,2A). This torus is embedded if and only if
7 has no self-intersections in §2(^).

(2) If j(s) is a horizontal lift of i(s) (here s works as the arclength parameter), then
<j) : M2 —> M^ = TT- 1(7) defined by <p(s, z) = e12 • j(s) is a covering map. It maps
the lines parallel to the z-axis into the Bbres (which are circles of radius t) and the
s-lines into the horizontal lifts ofj.

(3) If p denotes the curvature function ofj in § 2 ( | ) , then £ = <psA((l/t)4>z) = i-<f>s is a
unit normal vector field on M^ = TT~1(ry) in (§3,<?t). Moreover, the shape operator
with respect to {(j>s,r) = (l/t)<pz} is given by

(4) Let fig be the geodesic of M^ = n J (7) with slope 6 (slope measured with respect
to the horizontal lifts of 7J, then the Frenet apparatus {Te,Ng,Bg,Ke,T0} of fie in
(§3,3t) is given by

Te =cos6-<j)s + sin6 • 77, (3.2)

Ne = i-4>B, (3.3)

Be = - s i n 9 • (j>s + c o s 6 • rj, (3.4)

KQ = p(s) cos2 9 +tsin 20, (3.5)

Te = -\p{s) sin 29 + t cos 29. (3.6)

We can use some formulae relative to Riemannian submersions (see [7, Theorems 9.28
and 9.69]) in the Euler-Lagrange equations (2.2) to see that f3e is a critical point of the
total curvature functional in (§3,gt) if and only if its torsion and slope are related by

T
2 = (4-3 t 2 )cos 2 0 + i2sin20. (3.7)
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Theorem 3.3. For any rational number q, it is possible to find a positive real number
t, with t2 € (1,2), and a curve /3q, such that f3q is a closed critical point of the total
curvature functional in (§3,<7t). The curve (3q appears as a closed geodesic in a minimal
fiat torus embedded in (§3,gt).

Proof. First we use Lemma 3.1 to see that a geodesic of slope 9 in M* = TT~1(J) is
closed if and only if there exists a rational number q such that

2A 2TTA .„ „.

— +q— J; (3.8)
hence, choosing 7 as a geodesic of S2( |) , formula (3.8) turns into

(3.9)

for a rational number q verifying 1 + 2qt ^ 0. With this choice of 7, we combine (3.7)
with (3.6) and p = 0 to see that 0$ is a critical point of the total curvature functional in
(§3,<?t) if and only if

cos220 = ^ - . (3.10)

In order to obtain closed critical points fie, we compare tan2 9 computed from (3.9) and
(3.10), respectively. We have

t a n 2 29 + 4t{1 + 2qt)2 - 2 t 2 ~ 2 (3 i n
tan 29+ {1 ^ + ^ ) 2 ) 2 - ^ - ^ (3.11)

Consequently, we are looking for the zeros of the function

F(t, q) = 4t2(2 - t2)(l + 2tq)2 + (2 - 2i2)(l - *2(1 + 2tq)2)2. (3.12)

It is obvious that for any q 6 Q, l i m ^ j F(t, q) > 0 and limt2_>2 F(t,q) < 0. Hence,
there exists t > 0 with t2 6 (1,2) such that F(t,q) = 0. Now, for this t, we compute 9
by using either (3.9) or (3.10), it does not matter which, and we obtain a closed critical
point of the total curvature functional in {S3,gt)- •

4. Critical points of the total curvature functional in the complex projective
plane

Let CP2(4) be the complex projective plane endowed with its usual complex structure
J and the Fubini-Study metric of constant holomorphic sectional curvature 4. For an
arclength immersed curve 7(s) in CP2(4), we choose {T, £2, £3, £4} to be a Frenet reference
along 7 and denote by {K, T, 6} the three curvatures of 7. It is clear that JT = cos </>2̂2 +
coŝ >3^3 + cos </>4£4 with cos2 02 + cos2 03 + cos2 04 = 1. In particular, 02 is the angle
between the complex tangent plane span{T,JT} and the osculating plane span{T,£2}-
A curve 7 is said to be of constant slant if 02 is constant along 7.
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A straightforward computation involving the Euler-Lagrange equations (2.2), the Pre-
net equations for 7 in CP2(4), and the expression of the curvature tensor field of CP2(4)
shows that 7 is a critical point for the total curvature functional in CP (4) if and only if
{K, T, 8} are solutions of

O = 1 - T 2 + 3 C O S 2 0 2 , (4.1)

0 = T' + 3/t cos $2 cos (£3, (4.2)

(4.3)

We recall that a helix in a Riemannian manifold is a curve whose Frenet curvatures are
constant. The standard Frenet equations of a curve 7 into CP2(4) are useful, for example,
in defining the concept of helix. For our purposes we have need of a reference frame along
the curve 7 other that the Frenet one, which involves the complex structure J of CP2(4)
and the Hopf map -n : S5(l) -» CP2(4). This new frame was introduced in [6] for the
study of elastic curves in CP2(4). One way to describe this frame is to begin by lifting the
curve 7 in CP2(4) to a horizontal curve Y(s) in S5. It should be noticed that this lifting
is not unique, but different lifts are all of the form e'r • Y(s), r being a constant. We also
observe that Y(s) is arclength parametrized too, because n is a Riemannian submersion.
The tangent vector T(s) = 7'(s) lifts to T(s) = Y'(s). Now, we may uniquely choose
a vector field U(s) along 7(s), orthogonal to T(s), so that its horizontal lift U(s) gives
the third component in a special unitary frame cr(s) = {Y(s),T(s), U(s)} in C3. In other
words, a(s) is a lifting of the curve f(s) to a curve in SU(3). It is not difficult to see that
a satisfies the following differential equation:

^ ) - A ( s ) , (4.4)

where A(s) is a matrix in su(3). Since the curve Y(s) is horizontal, then A(s) must have
the form:

'0 - 1 0

This equation can be projected down to CP2(4). Hence, the new frame along j(s) is
{T, JT,U, JU}(s) and its associated equations are

VTT = nxJT + K2U + K3JU, (4.5)

V r J T = -nxT - K3U + K2JU, (4.6)

VTU = -K2T + K3JT - KIJU, (4.7)

VTJU = -K3T- K2JT + KIU. (4.8)

Notice that K\ + K\ + t 2 = «2- In this setting, we use once more the Euler-Lagrange
equations (2.2) in CP2(4), to see that •y(s) is a critical point of the total curvature in
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CP2(4) if and only if {K\, K2, «3}(S) are solutions of

— + — + «2 — -Kl — • (4-11)

Next, we will solve the following problem in the affirmative.

Problem 4.1. Do there exist closed helices in CP2(4) which are critical points for the
total curvature functional?

The following result is the chief point in the solution.

Theorem 4.2. Every critical helix for the total curvature functional in CP2(4) is the
image, under the natural projection, of a one-parameter subgroup of 5(7(3).

Proof. If 7 is a critical helix of T in CP2(4), then it has constant slant, say </>2 = 4>.
Also, r and 5 can be expressed in terms of <f> by

2 o 2 , -. , r 3 COS 0 ( 1 - C O S 2 ^i) . , „ ,
r 2 = 3 c o s 2 0 + l and 6= n ^ • (4.12)

(3 cos2 <$> + \yil

We compare V%T when it is computed using the complex and the Prenet equations,
respectively, to obtain

+ (4)2 = « V . (4.13)

From K\ + K\ + «2 = K2, it is clear that we can find a function ip(s), along 7(s), such that

«i = Kcoscfr, «2 = Ksini/>cos^(s), n^ = K sin <f> sin ip(s). (4-14)

We put UJ — ip' and then combine (4.13) with (4.14) to get

T2 = w2 sin2 0, (4.15)

which proves that a; is a non-zero constant.
Since 7 satisfies the Euler-Lagrange equations, we may substitute these into equations

(4.9)-(4.11). The resulting equations are dependent and can be simplified to

C = ^ , (4.16)

4
where C and 5 are constants given by

Mi = C, K2 = SCOSUJS, K3 = Ssincos. (4-18)
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Thus, by using (4.14), (4.15), (4.18) and (4.12), we have that the other constants can
also be expressed in terms of u>:

K2 = 2 + w 2 - ( 3 / w 2 ) , (4.19)

S2 = K2 - C. (4.22)

Note from (4.19) that w2 G (l,oo).
The differential equation (4.4) giving the lift a(s) of 7 to SU(3) may be now written

as

(0 - 1 0

1 Ci -Se->"s

0 5eiws -C i
We define a new curve in SU(3), say a(s) = (Y, Z, U)(s) by

cr(s) = o-(s) • I 0 e- i^/s 0
0 0 e2io;s/3

We observe that Y(s) = e - i w s / 3 • Y(s) and so II(Y(s)) = II(Y(s)) = -y(s). That means
that Y(s) is a lift of 'y(s), although it is not a horizontal curve. The advantage of using a(s)
is that it satisfies the following system of differential equations with constant coefficients:

cr'(s) = cr(s) • M,

where M £ su(3) is given by

a

Corollary 4.3. There exists a one-parameter family of critical helices of the total
curvature living fully into CP2(4). For any choice ofw2 € (0,00), we have a critical helix
of the total curvature in CP2(4) with curvatures given by formulae (4.19)—(4.22), and
slant given by

0 0 8 2 ' -RTsH 0 ' 1 * -
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It remains to examine which among the above critical helices are closed. It is enough,
of course, for the lifted curve a(s) to be a closed curve in 5C/(3). Therefore, we must find
a positive number, say L, so that a(s + L) = a(s). Since a(s) = esM is a one-parameter
subgroup of SU(Z), this reduces to the problem of finding L > 0 such that the eigenvalues
of L • M are all integer multiples of 2?ri. Let t\, t2 > h be the eigenvalues of M. Since M
is in su(3), we have t\ + £2 + £3 = 0. It follows that the required condition for the roots
is that t2/t\ be rational.

The characteristic equation of M can be written as

r3 - 1(9 + u;2)r - £ ( 9 +UJ<2)W = 0.

The roots of this equation turn out to be

where
—u)

cos 6 = . , sin 9 -
V2

As a consequence, we have the following theorem.

Theorem 4.4. Let q be a rational number with \/3 < q < 3. Define an angle 6,
|?r < 6 < TV, by q = \/3 tan \6. Then for u> = — 3 cot 6, the corresponding critical helix of
the total curvature in CP2(4) is closed.

5. Equivariant critical points of the total mean curvature functional

Let G be a ^-dimensional, compact Lie group endowed with a bi-invariant metric dcr2

and let p : P -> M be a principal fibre G-bundle with a principal connection 1-form w.
For any Riemannian metric g on M, we can find one and only one Riemannian metric
g on P such that p : (P, g) -4 (M, g) is a Riemannian submersion with totally geodesic
fibres isometric to (G, da2) and horizontal distribution associated with u>. This metric
can be denned as

g=p*(g)+u*(da2).

The natural action of G on P is carried out by isometries of (P,g)- Let 7 be a curve
immersed in M, then its complete lift 7V7 = p~1{ry) is a (q+ l)-dimensional submanifold
in P which is G-invariant. Furthermore, any (q+l)-dimensional G-invariant submanifold
in P is obtained in this way. This is the chief point that allows us to apply the principle of
symmetric criticality (see [13]) to obtain the following criterion for reduction of variables.

Proposition 5.1. iV7 = p~l(i) is a critical point of the total mean curvature func-
tional in (P, g) if and only if 7 is a critical point of the total curvature functional in
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Proof. According to the principle of symmetric criticality, iV7 = p-1(7) is a critical
point of the total mean curvature functional in (P, g) if and only if it is a critical point of
that functional but restricted to the submanifold of G-invariant immersions. To compute
this restriction, we only need to consider the following relationship between the mean
curvature a of iV7 = p"1 (7) in (P, g) and the curvature K of 7 in (M, g), which was given
in [1]:

a = {l/q + l)(/cop).

•
We can combine the last proposition with the results explained in § 2 to obtain inter-

esting consequences. Next we display some of them.

(1) If (M,g) is a real space form of dimension n, then Ny = p~l{"i) is a critical point
of the total mean curvature functional in (P, g) if and only if either

(a) (M, g) is flat and 7 is any closed curve immersed in a totally geodesic surface
of (M,g), or

(b) the Riemannian universal covering of (M, g) is a round n-sphere, say of radius
one, §™(1). Moreover, up to covering maps, 7 must be contained in some S3(l)
and it must be obtained according to Theorem 2.2.

(2) Let M be a genus-one compact surface and denote by M a regular covering of
M. Let H be the deck transformation group. Obviously, M can be regarded as
a principal fibre i/-bundle which admits a trivial flat connection u>. Let h be a
monomorphism from H into G. The transition functions of the above .ff-bundle
can be extended, via h, to G-functions, which can be chosen as transition functions
of a principal fibre G-bundle, say p : P —> M, on M. Also, the connection w can
be used to define a flat connection ui on this. Then we have the following.

(a) If (M,g) is a flat torus, then any iV7 = p-1(7) is a critical point for the total
mean curvature functional in (P,g).

(b) If g is chosen such that (M, g) is an anchor ring, then (P, g) has exactly two G-
invariant submanifolds which are critical points for the total mean curvature
functional.

We can also combine Theorem 4.4 with Proposition 5.1, to obtain the following corol-
lary.

Corollary 5.2. There exists a rational one-parameter family of S1 -invariant tori,
which are critical points for the total mean curvature functional in the round five sphere.

Now, we use a direct method to obtain critical points for the total mean curvature
functional in the round five sphere (compare with [3]). In contrast with Corollary 5.2, the
following examples cannot be obtained as liftings, via the Hopf map, of curves in CP2(4).
In order to do this, first we compute the first variation of the total mean curvature defined
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on the space of immersions of a compact surface in S5(l). We use a standard argument
which essentially involves some integrations by parts (see [16] for a similar computation)
to obtain the following Euler-Lagrange equations,

AH - A(H) + Aa2H = 0, (5.1)

where H is the mean curvature vector field, A denotes the Laplacian associated with the
normal connection, and A is the Simons operator [15].

Since minimal surfaces are trivial examples of critical points for the total mean cur-
vature functional, we will construct examples of non-minimal flat tori which are critical
points for this functional in §5(1). Given three real numbers a, b and c with a,b > 0,
we consider the lattice F in M2 spanned by {2-KCL,2TTC) and (0,2TT&). We choose n,m,n e
7L — {0} such that ui = {n/a) — (mc/ba) and Co = na satisfy u> ^ Hi and w ^ 0, we also
consider that m/b > 1. Then we define y : K2 —> C3 by

y(s, t) = I r cos -eluis, r sin - e
V r r

where r = b/m. Now, this is an isometric immersion if and only if r2w2 + (1 — r2)o)2 = 1.
Furthermore, in this case, it induces an isometric immersion x from the flat torus T =
M2/F in S5(l). Some interesting properties of these immersions are collected below.

(1) The centre of mass of x in C3 coincides with the centre of S5(l) [8].

(2) The immersion x is not minimal in §5(1). In fact, it is constructed in C3 by using
eigenfunctions for the Laplacian of T associated with two different eigenvalues,
namely LO2 + (1/r2) and u>2. Therefore, we say that it is of 2-type in the sense of
Chen [8].

(3) These immersions have non-zero constant mean curvature.

(4) They are not invariant under the natural S^action on §5(1) to obtain CP2(4) as
space of orbits.

Finally, a straightforward long computation gives the following proposition.

Proposition 5.3. The immersion x : T —> §°(1) is a critical point for the total mean
curvature functional, that is it is a solution of (5.1) if and only if the following equation
holds

r2( l - 2r2 V 4 + (4r2 - 3)w2 + (2 - r2) = 0.
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