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Abstract

We propose a new Adomian decomposition method (ADM) using an integrating factor
for the Emden–Fowler equation. With this method, we are able to solve certain Emden–
Fowler equations for which the traditional ADM fails. Numerical results obtained from
testing our linear and nonlinear models are far more reliable and efficient than those
from existing methods. We also present a complete error analysis and a convergence
criterion for this method. One drawback of the traditional ADM is that the interval of
convergence of the Adomian truncated series is very small. Some techniques, such as
Pade approximants, can enlarge this interval, but they are too complicated. Here, we use
a continuation technique to extend our method to a larger interval.
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1. Introduction

Scientists and engineers have great interest in the Emden–Fowler equation

y′′(x) +
p
x

y′(x) + a f (x)M(y) = 0 (1.1)

because of its important application in many physical and mathematical models.
There are several research directions for equations of this type. Some researchers
have studied their qualitative properties [1, 5, 9]; for example, Bartolucci and
Montefusco [1] investigated the concentration-compactness problem and the mass-
quantization properties. Others have established the existence and uniqueness of their
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solutions [7, 13, 20]. For example, Guo et al. [6] used a fixed point theorem to
obtain such existence and uniqueness. Recently, much attention has been paid to the
computation of their numerical solutions [2, 12, 17–19]. Chowdhury and Hashim [2],
for example, used a homotopy asymptotic method to find their approximate solutions.

Adomian developed the concept of Adomian decomposition method (ADM), which
has been widely used for nonlinear problems. It is well known in the literature
that this algorithm can obtain a rapidly convergent solution. However, there are
many variants of the ADM: Lin [10] solved double singular boundary value problems
using a modified ADM; Khuri [8] combined the Laplace transform with the ADM to
numerically solve Bratu’s problem; and Duan and Rach [3] modified this method to get
a clever recursion scheme for solving boundary value problems without undetermined
coefficients. But the differential equations in article [3] are limited to

dku(x)
dxk = Nu(x) + g(x)

with k boundary conditions. The purpose of this paper is to introduce a new reliable
modification of the ADM, with an integrating factor, to solve the Emden–Fowler
equation. This extends our previous work [11] on first-order ordinary differential
equations to second-order singular ones. Our new method gives a better approximation
to the solution than the traditional ADM. Also, it handles the convergence issue
successfully in certain problems, where the standard ADM fails. Moreover, we have a
complete error and convergence analysis for this new method along with the existence
and uniqueness of its exact solution.

Wazwaz [17, 18] employed the ADM to solve singular differential equations of
Lane–Emden type, and Emden–Fowler equation (1.1) with p ≥ 0 [19]. Our method
is the same as the ones in these papers, except that it is for a more general case with
p > −1. Besides, Wazwaz did not explain the construction of the differential operators

L(·) = x−p d
dx

(
xp d

dx

)
, L−1(·) =

∫ x

0
x−p

∫ x

0
xp(·) dx dx. (1.2)

Although he later gave a verification of (1.2) in article [19], it was still unknown how
to construct them. In this paper, we use an integrating factor to derive the same results.
This uncovers the general procedure of getting the operators, L and L−1, which can be
applied to other types of differential equations.

The numerical solution obtained by the ADM usually exists only on a small interval.
The solution diverges rapidly when its domain increases, which is a fatal problem for
the ADM. However, there have been many attempts to extend its solution to a larger
interval; we review a few of them below.

Many scholars have used the Laplace–Adomian–Pade technique to compute the
analytic solutions of differential equations. Their results were a great improvement
on the interval of convergence of the Adomian truncated series. Wu [21] used the
Laplace transform to get the Lagrange multiplier needed in the variational iteration
method, then combined Adomian–Pade technique to solve an initial value problem
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(IVP) of regular differential equations. Similarly, Tsai and Chen [14, 15] solved a
second-order IVP and the first-order Riccati differential equations, respectively, and
Zeng and Qin [22] solved fractional differential equations. None of them studied
the second-order singular differential equations; it is unclear at this stage whether the
Laplace–Adomian–Pade technique works for these singular problems.

The Laplace–Adomian–Pade calculation, however, is very complicated. Here, we
introduce a new method enlarging the domain. It is a trivial continuation to find a series
solution in one interval, then use the information at the end point as initial condition to
solve the equation in the next interval. After combining solutions in all intervals, we
have a solution in a large domain. Certainly, the accuracy of this numerical solution
quickly deteriorates after each continuation. However, our modified ADM solution
has very high precision. Hence, even though some error magnifications are inevitable,
its final accuracy is still assured.

2. Description of technique

In order to give a brief description of the standard ADM, we consider the general
differential equation

Lu + Ru + Nu = g(x),

where L is the highest-order linear operator which is invertible, R is an operator of the
remaining linear part and N is a nonlinear operator. Applying L−1, the inverse operator
of L, we obtain

u = L−1g + ϕ(x) − L−1Ru − L−1Nu, (2.1)

where ϕ(x) satisfies Lϕ = 0 and can be obtained from the given initial conditions.
According to the ADM, we consider the convergent series solution, u(x), of the

form

u =

∞∑
k=0

uk. (2.2)

Suppose that the nonlinear terms are decomposed into the series

Nu =

∞∑
k=0

Ak(u0, u1, . . . , uk), (2.3)

where the components Ak are called Adomian polynomials. Substituting (2.2) and (2.3)
into equation (2.1) and defining all the terms by

u0 = L−1g + ϕ(x),
u1 = −L−1Ru0 − L−1A0,

u2 = −L−1Ru1 − L−1A1,
...

ui+1 = −L−1Rui − L−1Ai,

we solve ui successively for i = 1, 2, . . . .
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There are many choices of Adomian polynomials Ai. Wazwaz [16] gave

A0 = N(u0), (2.4)
A1 = u1N′(u0),

A2 = u2N′(u0) +
1
2!

u2
1N′′(u0),

A3 = u3N′(u0) + u1u2N′′(u0) +
1
3!

u3
1N′′′(u0),

...

and the other polynomials can be generated similarly. Note that A0 depends only on u0,
A1 depends only on u0 and u1 and so on. Note that El-Kalla [4] made another choice
of such polynomials,

An = N
( n∑

i=0

ui

)
−

n−1∑
i=0

Ai. (2.5)

We now present our modified ADM with an integrating factor. Consider the IVP of
the Emden–Fowler equation,

y′′(x) +
p
x

y′(x) + a f (x)M(y) + ar(x) = 0, y(0) = q, y′(0) = 0, (2.6)

where p > −1 and a are constants; f (x), r(x) and M(x) are continuous functions.
Assume that this IVP problem has a unique solution in [0, c], where c > 0. In order
to find this solution, we multiply the integrating factor exp (

∫
(p/x) dx) = xp on both

sides of (2.6), which yields

d
dx

(xpy′) = xp
(
y′′ +

p
x

y′
)

= −axp[ f (x)M(y) + r(x)].

Then integrating and simplifying both sides, we get

xpy′(x) = y′(0) · 0p − a
∫ x

0
sp[ f (s)M(y(s)) + r(s)] ds, (2.7)

y′(x) = −ax−p
∫ x

0
sp[ f (s)M(y(s)) + r(s)] ds, (2.8)

where p ≥ 0. We need to be more careful if −1 < p < 0, since sp →∞ as s→ 0+ and
the integral in (2.7) is an improper integral. In this case, we choose b ∈ (0, c), so that

xpy′(x) = y′(b) · bp − a
∫ x

b
sp[ f (s)M(y(s)) + r(s)] ds. (2.9)

By L’Hôpital’s rule,

lim
b→0+

y′(b) · bp = lim
b→0+

y′(b)
b−p = lim

b→0+

y′′(b)
−pb−p−1 = lim

b→0+

−1
p

y′′(b)bp+1 = 0.
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Since f (s)M(y(s)) + r(s) is continuous, Lemma 3.1(i) in Section 3 guarantees that the
improper integral∫ x

0
sp[ f (s)M(y(s)) + r(s)] ds = lim

b→0+

∫ x

b
sp[ f (s)M(y(s)) + r(s)] ds

converges. So, after taking the limit as b→ 0+ on both sides of (2.9), we have the same
result as in equation (2.8).

Integrating (2.8) and using initial conditions y(0) = q, we obtain

y(x) = q − a
∫ x

0
t−p

∫ t

0
sp[ f (s)M(y(s)) + r(s)] ds dt. (2.10)

Again, more care is needed if p ≥ 0, since t−p →∞ as t→ 0+. Similarly, we select a
b ∈ (0, c), then

y(x) = y(b) − a
∫ x

b
t−p

∫ t

0
sp[ f (s)M(y(s)) + r(s)] ds dt. (2.11)

Lemma 3.2 in Section 3 ensures that the improper integral∫ x

0
t−p

∫ t

0
sp[ f (s)M(y(s)) + r(s)] ds dt = lim

b→0+

∫ x

b
t−p

∫ t

0
sp[ f (s)M(y(s)) + r(s)] ds dt

converges. So, after taking the limit of (2.11) as b→ 0+, we have the same result
(2.10).

Now the solution of (2.10) by the ADM has the form

y(x) =

∞∑
n=0

yn(x),

where

y0(x) = q − a
∫ x

0

[
t−p

∫ t

0
spr(s) ds

]
dt, (2.12)

ym(x) = −a
∫ x

0

[
t−p

∫ t

0
sp f (s)Am−1(s) ds

]
dt, m ≥ 1. (2.13)

The Adomian polynomials

M(y) =

∞∑
n=0

An(y0, y1, . . . , yn)

can be Wazwaz’s representation (2.4), that is,

An =
1
n!

[ dn

dλn M
( ∞∑

i=0

λiui

)]
λ=0

(2.14)
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in general form; El-Kalla’s formula (2.5), that is, A0 = M(y0) and

An = M
( n∑

i=0

yi

)
− M

( n−1∑
i=0

yi

)
for n ≥ 1; (2.15)

or others.
This method is the same as that of Wazwaz [19] who only dealt with the case p ≥ 0

in (2.6). We extend it to p > −1 and carefully justify all improper integrals. Besides,
Wazwaz did not point out why his ADM used (1.2); this seems clear now from the
point view of the integrating factor. Furthermore, we easily extend this method to
solve more general differential equations, such as

y′′(x) + L(x)y′(x) + k(x)N(y(x)) + r(x) = 0.

3. Analysis of convergence

We now study the convergence and error analysis of our method. Let C(I) be the
space of all continuous functions on an interval I, and Ck(I) be the set of all k times
differentiable functions on I with continuous kth derivatives. For the rest of the paper,
the norm we use on C(I) is the supremum norm ||g(x)|| = maxx∈I |g(x)|, which is always
finite for g ∈ C(I) with I compact.

Lemma 3.1. If −1 < p < 0 and h(x) ∈ C[0, c], then:

(i) the improper integral
∫ t

0 sph(s) ds converges and is in C[0, c] ∩ C1(0, c];

(ii)
∫ x

0 [t−p
∫ t

0 sph(s) ds] dt exists and is in C2[0, c].

Proof. (i) For a fixed t ∈ (0, c], it is well known from calculus that the improper integral∫ t
0 sp ds converges. Observe that

0 ≤ |sph(s)| ≤ sp||h(s)||, s ∈ (0, t],

where ||h(s)|| is finite for h(x) ∈ C[0, c]. By the comparison test, the improper integral∫ t
0 |s

ph(s)| ds converges too, and so does
∫ t

0 sph(s) ds. The latter integral is continuous
at t = 0 since ∣∣∣∣∣ ∫ t

0
sph(s) ds

∣∣∣∣∣ ≤ ∫ t

0
|sph(s)| ds ≤ ||h(s)||

∫ t

0
spds

= ||h(s)||
tp+1

p + 1
→ 0, as t→ 0+. (3.1)

As a consequence,
∫ c/2

0 sph(s) ds also converges, and is a constant. Since sph(s) ∈

C(0, c],
∫ t

c/2 sph(s) ds ∈ C1(0, c], so does∫ t

0
sph(s) ds =

∫ c/2

0
sph(s) ds +

∫ t

c/2
sph(s) ds.
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(ii) Since t−p,
∫ t

0 sph(s) ds ∈ C[0, c] by (i), it follows that∫ x

0

[
t−p

∫ t

0
sph(s) ds

]
dt ∈ C1[0, c] exists.

Notice that∫ x

0

[
t−p

∫ t

0
sph(s) ds

]
dt =

∫ c/2

0

[
t−p

∫ t

0
spr(s) ds

]
dt +

∫ x

c/2

[
t−p

∫ t

0
spr(s) ds

]
dt.

(3.2)
On the right-hand side of (3.2), the first integral exists and is a constant, and the second
integral is in C2(0, c] due to t−p,

∫ t
0 sph(s) ds ∈ C1(0, c]. Then the left-hand side of (3.2)

is also in C2(0, c]. With more detailed analysis, we can show that the second derivative
of (3.2) exists, and is continuous at x = 0. This completes the proof. �

Lemma 3.2. If p ≥ 0 and h(x) ∈ C[0, c], then the improper integral
∫ x

0 [t−p
∫ t

0 sph(s) ds] dt
converges and is in C2[0, c].

Proof. Since sp, h(s) ∈ C[0, c], the regular integral∫ t

0
sph(s) ds ∈ C1[0, c].

For t ∈ (0, c], from (3.1),

0 ≤
∣∣∣∣∣t−p

∫ t

0
sph(s) ds

∣∣∣∣∣ ≤ t−p||h(s)||
tp+1

p + 1
=
||h(s)||
p + 1

t.

So by the comparison test, the improper integral
∫ x

0 |t
−p

∫ t
0 sph(s) ds|dt converges and

so does
∫ x

0 [t−p
∫ t

0 sph(s) ds] dt. The latter integral in C2[0, c] follows by the same
reasoning as the proof of Lemma 3.1(ii), and this completes the proof. �

Corollary 3.3 (C2 solution). Assume that p > −1, f (x), r(x),M(x) ∈ C[0, c] and y(x) ∈
C[0, c] is a solution of (2.10). Then y(x) ∈ C2[0, c] is nonsingular at x = 0 with finite
||y(x)||.

Proof. Since f (x), r(x), M(y(x)) ∈ C[0, c], by both Lemmas 3.1 and 3.2, the integral
in (2.10) is in C2[0, c], and then so is the left-hand side y(x) of (2.10). The proof is
complete. �

Proposition 3.4 (C2 series). If p > −1, f (x), r(x) and M(x) ∈ C[0, c], then ym(x)
generated from (2.12), (2.13) and (2.15) is in C2[0, c] for m = 0, 1, 2, . . . .

Proof. According to Lemmas 3.1 and 3.2, we can prove the two cases of p together.
Recall that

y0(x) = q − a
∫ x

0

[
t−p

∫ t

0
spr(s) ds

]
dt.
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Since r(s) ∈ C[0, c], by both lemmas the integral exists, and is in C2[0, c], then so is
y0(x).

Suppose, for certain m,

y0(x), y1(x), . . . , ym(x) ∈ C2[0, c].

Since f (s), M(s) ∈ C[0, c], from (2.15) we have f (s)Am(s) ∈ C[0, c]. Again from the
lemmas it follows that

ym+1(x) = −a
∫ x

0

[
t−p

∫ t

0
sp f (s)Am(s) ds

]
dt ∈ C2[0, c].

Now, by induction, the proposition holds. �

Corollary 3.5 (Nonsingular and bounded). Under the assumptions of Proposition 3.4,
ym(x) is nonsingular at x = 0 with finite ||ym(s)|| for m = 0, 1, 2, . . . .

Theorem 3.6 (Uniqueness). Assume that p > −1, f (x), r(x) ∈ C[0, c], M(x) is Lipschitz
continuous with |M(y) − M(z)| ≤ L|y − z| and α = |a|L|| f ||c2/(2(p + 1)) < 1. Then
equation (2.6) has at most one solution in [0, c].

Proof. Let y(x) and z(x) be two solutions of (2.6), then they satisfy (2.10), and are
nonsingular at x = 0 by Corollary 3.3.

Moreover,

|y(x) − z(x)| =
∣∣∣∣∣a ∫ x

0
t−p

∫ t

0
sp f (s)[M(y(s)) − M(z(s))] ds dt

∣∣∣∣∣
≤ |a|

[ ∫ x

0
t−p

∫ t

0
sp|| f ||L||y − z|| ds dt

]
≤ |a|L|| f || · ||y − z||

∫ x

0
t−p tp+1

p + 1
dt

≤ |a|L|| f || · ||y − z||
c2

2(p + 1)
= α||y − z||,

||y − z|| = max
x∈[0,c]

|y(x) − z(x)| ≤ α||y − z||.

So we have (1 − α)||y − z|| ≤ 0, and then y = z when α < 1. This completes the
proof. �

Theorem 3.7 (Convergence). Under the assumptions of Theorem 3.6, the ADM
solution using (2.12), (2.13) and (2.15) converges to a solution of (2.10).

Proof. Recall that yi ∈ C
2[0, c] for all i by Proposition 3.4. Let

S n(x) =

n∑
i=0

yi(x) ∈ C([0, c]).
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denote the nth partial sum. We now prove that this sequence {S n} is a Cauchy sequence
in the Banach space (C([0, c]), || · ||) with supremum norm. Hence {S n} converges to
some function in C([0, c]).

For x ∈ [0, c], by (2.13) and (2.15),

|S m+1(x) − S m(x)| = |ym+1(x)| =
∣∣∣∣∣a ∫ x

0
t−p

∫ t

0
sp f (s)Am ds dt

∣∣∣∣∣
≤ |a|

∫ x

0
t−p

∫ x

0
sp| f (s)||M(S m) − M(S m−1)| ds dt

≤ |a| · || f ||L||S m − S m−1||

∫ x

0
t−p

∫ t

0
spdt

≤ α||S m − S m−1||,

||S m+1 − S m|| = max
x∈[0,c]

|S m+1(x) − S m(x)| ≤ α||S m − S m−1||

for all m. Therefore,

||S m+1 − S m|| ≤ α||S m − S m−1|| ≤ α
2||S m−1 − S m−2|| ≤ · · · ≤ α

m||S 1 − S 0||.

By Corollary 3.5, ||y1(x)|| is finite, so for n > m,

||S n − S m|| ≤ ||S n − S n−1|| + ||S n−1 − S n−2|| + · · · + ||S m+1 − S m||

≤ (αn−1 + αn−2 + · · · + αm)||S 1 − S 0||

= αm
(1 − αn−m

1 − α

)
||y1(x)|| ≤

αm

1 − α
||y1(x)|| → 0, (3.3)

as m→∞.
Let the limit of {S n} be

y(x) = lim
n→∞

S n(x) ∈ C([0, c]). (3.4)

In view of (2.15) or (2.5),
n∑

i=0

Ai = M(S n).

So by (2.12) and (2.13),

S n =

n∑
i=0

yi = q − a
∫ x

0
t−p

∫ t

0
sp

[
r(s) + f (s)

n−1∑
i=0

Ai

]
ds dt

= q − a
∫ x

0
t−p

∫ t

0
sp[r(s) + f (s)M(S n−1)] ds dt.

Taking its limit n→∞, we see that y(x) satisfies (2.10), which completes the proof. �

Theorem 3.8 (Existence). Under the assumptions of Theorem 3.6, (2.6) has a unique
solution in C2[0, c].
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Proof. According to Theorem 3.7, (2.10) has a solution y(x) of (3.4). By Corollary 3.3,
y(x) ∈ C2[0, c]. So y(x) is a solution of (2.6). The uniqueness part follows from
Theorem 3.6. The proof is complete. �

Theorem 3.9 (Error bound). Under the assumptions of Theorem 3.6, the ADM solution∑m
i=0 yi of (2.6) using (2.12), (2.13) and (2.15) has maximal truncation error∣∣∣∣∣y(x) −

m∑
i=0

yi(x)
∣∣∣∣∣ ≤ αm+1

L(1 − α)
||M(y0(x))|| for x ∈ [0, c].

Proof. Observe from (2.13) that

|y1(x)| =
∣∣∣∣∣a ∫ x

0

[
t−p

∫ t

0
sp f (s)A0(s) ds

]
dt

∣∣∣∣∣
≤ |a| · || f ||

∣∣∣∣∣ ∫ x

0
t−p

∫ t

0
spM(y0(s)) dt

∣∣∣∣∣
≤ |a| · || f || · ||M(y0(x))||

c2

2(p + 1)

=
α

L
||M(y0(x))||, x ∈ [0, c].

So ||y1(x)|| has the same upper bound. Let n→∞ in (3.3), we achieve the desired
bound, and so the proof is now complete. �

4. Numerical examples

In the numerical experiments below, we test our new ADM with integrating factors
for the following examples. The computations are performed using Mathematica
software with 32 working digits. We use the representation 3.7(−2) = 3.7 · 10−2 for
errors.

Example 4.1. Consider Wazwaz’s Emden–Fowler equation [19]

y′′(x) +
2
x

y′(x) + ayn(x) = 0, y′(0) = 0, y(0) = 1. (4.1)

Multiplying the differential equation by the integrating factor x2 and simplifying,
we get

[x2y′(x)]′ = x2y′′(x) + 2xy′(x) = −ax2yn(x),

x2y′(x) = A − a
∫ x

d
s2yn(s) ds, (4.2)

y′(x) =
A
x2 −

a
x2

∫ x

d
s2yn(s) ds, (4.3)

where the constant A is obtained by setting x = d in (4.2), that is,

A = d2y′(d). (4.4)
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Now integrating both sides of (4.3) yields

y(x) = B −
A
x
− a

∫ x

d

1
t2

∫ t

d
s2yn(s) ds dt, (4.5)

which on substituting x = d in (4.5) becomes

B = y(d) +
A
d

= y(d) + dy′(d). (4.6)

Since the given initial values are y(0) = 1 and y′(0) = 0, and since d = 0, A = 0 and
B = 1, we have

y(x) = 1 − a
∫ x

0

1
t2

∫ t

0
s2yn(s) ds dt. (4.7)

For numerical testing, consider the case n = 1, when equation (4.1) has the exact
solution y(x) = (sin

√
ax)/

√
ax which can be compared to the solution by the ADM.

Applying (2.12) and (2.13) to (4.7), our ADM with the integrating factor becomes

y0(x) = 1,

ym(x) = −a
∫ x

0

1
t2

∫ t

0
s2ym−1(s) ds dt, m ≥ 1,

in which case the Adomian polynomials in (2.14) and (2.15) are the same. Choosing
a = 1 for the experiment, our ADM generates

y0 = 1,
y1 = −0.166 667x2,

y2 = 0.008 333 33x4,

y3 = −0.000 198 413x6,

...

Next, we apply our convergence theorems in Section 3 to this example. For p = 2,
M(y) = y and f (x) = 1, we have L = 1, || f || = 1 and α = c2/6 in Theorem 3.6. So,
Theorem 3.7 ensures that our ADM solution converges in the interval [0, c] for c <

√
6.

In fact, this solution exists in a even bigger interval, for example, [0, 5]. If we choose
c = 1, then α = 1/6 and Theorem 3.9 gives the error bound∣∣∣∣∣y(x) −

m∑
i=0

yi(x)
∣∣∣∣∣ ≤ 1

5 · 6m· for x ∈ [0, 1].

The maximal truncation errors and their error bounds for 0 ≤ x ≤ 1 and a few values
of m are shown in Table 1.

The traditional ADM for (4.7) computes the sequence

ym+1 =

∫ x

0

∫ t

0

[
−

2
s

y′m(s) − ym(s)
]

ds dt.
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Table 1. Maximal errors and bounds of the traditional and our ADM for Example 4.1.

m Traditional ADM Our method Error bound
3 1.4 2.7(−6) 1.0(−3)
4 2.8 2.5(−8) 1.5(−4)
5 5.7 1.6(−10) 2.5(−5)
6 11.3 7.6(−13) 4.2(−6)
7 22.7 2.8(−15) 7.1(−7)

This yields

y0 = 1,
y1 = −0.5x2,

y2 = x2 + 0.041 667x4,

y3 = −2x2 − 0.111 11x4 − · · · ,

y4 = 4x2 + 0.240 741x4 + · · · ,

...

Actually, its solution
∑n

i=0 yi(x) does not converge since y1, y2, . . . all have an x2 term;
this is verified in Table 1.

One major defect of the traditional ADM is that it cannot be used for a large interval
or global solution. Its numerical solution diverges rapidly when the applied domain
increases. Here, we employ a trivial continuation to extend its solution domain. We try
to solve (4.1) in many small intervals and combine them together. To be more precise,
after we find the numerical solution y(x) of (4.1) on [0, c], we use y(c) and y′(c) as the
initial conditions to compute y(x) on [c, c′], and then approximate y(x) on [c′, c′′] etc.
Repeating this process, we obtain a solution in a large interval.

The details of this continuing process are as above (see (4.2)–(4.6)). Suppose that
we already have the numerical solution y(x) of (4.1) on [0, d]. Then the extended
solution on [d, d′] is

y(x) = y(d) + dy′(d)
(
1 −

d
x

)
− a

∫ x

d

1
t2

∫ t

d
s2yn(s) ds dt.

So for n = 1 our ADM solution can be produced from

y0(x) = y(d) + dy′(d)
(
1 −

d
x

)
, (4.8)

ym(x) = −a
∫ x

0

1
t2

∫ t

0
s2ym−1(s) ds dt, m ≥ 1. (4.9)

As a numerical example, let a = 1 and d = 5. We use the ADM solution previously
solved in [0, 5] and apply equations (4.8) and (4.9) to compute the approximate
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Table 2. Errors of our ADM in the enlarged interval [0, 10] for Example 4.1.

m x = 2 x = 3 x = 5 x = 10 Max error
8 2.1(−12) 3.1(−9) 3.0(−5) 9.9(−5) 9.9(−5)
9 2.0(−14) 6.7(−11) 1.8(−6) 6.6(−6) 6.6(−6)

10 1.7(−16) 1.2(−12) 8.9(−8) 3.6(−7) 3.6(−7)

solution in [5, 10] as follows:

y0 = −
2.377 24

x
− 0.283 664,

y1 =
17.8962

x
− 8.340 42 + 1.188 62x − 0.047 277 4x2,

y2 = −
32.3591

x
+ 27.3647 − 8.948 11x + 1.390 07x2 + · · · ,

...

Its maximal errors and errors at certain middle points in the extended interval [0, 10]
are shown in Table 2.

Example 4.2. Consider another Emden–Fowler equation by Wazwaz [19]

y′′(x) +
5
x

y′(x) + 8a(ey + 2ey/2) = 0, y′(0) = y(0) = 0. (4.10)

This has the exact solution
y(x) = −2 ln(1 + ax2). (4.11)

Multiplying both sides of (4.10) by the integrating factor x5,

[x5y′(x)]′ = x5y′′(x) + 5x4y′(x) = −8ax5(ey + 2ey/2),

x5y′(x) = A − 8a
∫ t

d
s5[ey(s) + 2ey(s)/2] ds. (4.12)

Setting x = d in (4.12), we have the constant

A = d5y′(d).

Then, dividing both sides of (4.12) by x5 and integrating yields

y(x) = B −
A

4x4 − 8a
∫ x

d

1
t5

∫ t

d
s5[ey(s) + 2ey(s)/2] ds dt. (4.13)

Again setting x = d in (4.12), we have the constant

B = y(d) +
A

4d4 = y(d) +
1
4

dy′(d). (4.14)
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Since the given initial values are y(0) = y′(0) = 0, we have d = A = B = 0 and the
integral equation

y(x) = −8a
∫ x

0

1
t5

∫ t

0
s5[ey(s) + 2ey(s)/2] ds dt. (4.15)

From the power series

ey = 1 + y +
y2

2
+

y3

6
+

y4

24
+ · · · ,

ey/2 = 1 +
y
2

+
y2

8
+

y3

48
+ · · · ,

we obtain

ey + 2ey/2 = 3 + 2y +
3y2

4
+

5y3

24
+

9y4

192
+ · · · .

Applying (2.12) and (2.13) to (4.15), our ADM with the integrating factor becomes

y0(x) = −8a
∫ x

0

1
t5

∫ t

0
s5 · 3 ds dt,

ym(x) = −8a
∫ x

0

1
t5

∫ t

0
s5Am−1(s) ds dt, m ≥ 1.

In this case, the Adomian polynomials (2.14) and (2.15) are totally different except for

A0 = 2y0 +
3y2

0

4
+

5y3
0

24
+

9y4
0

192
+ · · · .

If equation (2.15) is used, then we can apply the convergence theorems in Section 3.
For this example, we set p = 5, f (x) = 8 and M(y) = ey + 2ey/2. Assuming a > 0, the
true solution (4.11) has range (−∞, 0]. By the mean value theorem,

M(y) − M(z) = M′(ζ)(y − z) = (eζ + eζ/2)(y − z)

for ζ between y and z in (−∞, 0]. So the Lipschitz constant L = 2 and α = 4ac2/3 in
Theorem 3.6. Hence, Theorem 3.7 guarantees that our ADM solution converges in
[0, c] for c <

√
3/a/2.

Unfortunately, the ADM with (2.15) takes too much time to compute. So we
use (2.14) instead, in the following experiment with a = 1. We compare the maximal
errors of the traditional and our ADM for 0 ≤ x ≤ 1 in Table 3. It is easy to see that the
former solution diverges.

We now try the previously stated trivial continuation to extend the domain to a large
interval. Suppose that we have the numerical solution y(x) of (4.10) on [0, d]. Then as
in (4.12)–(4.14) above the extended solution on [d, d′] is

y(x) = y(d) +
d
4

y′(d)
(
1 −

d4

x4

)
− 8a

∫ x

d

1
t5

∫ t

d
s5[ey(s) + 2ey(s)/2] ds dt. (4.16)

As a numerical example, let a = 0.1, d = 4, and d′ = 4.5. We first solve the ADM
solution in [0, 4], and then compute the approximate solution of (4.16) in [4, 4.5]. The
results are shown in Table 4.

https://doi.org/10.1017/S1446181114000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000340


206 Y. Lin, T. T. Lu and C. K. Chen [15]

Table 3. Maximal errors of the traditional and our ADM for Example 4.2.

m Traditional ADM Our ADM
2 0.7 1.0(−2)
3 1.4 1.1(−3)
4 2.8 2.8(−4)
5 5.7 3.5(−5)

Table 4. Maximal errors in the enlarged interval [0, 4.5] for Example 4.2.

m Max error [0, 4] m Max error [4, 4.5]
4 3.8(−2) 1 4.2(−2)
6 7.1(−3) 2 4.0(−2)
8 3.1(−4) 3 3.9(−2)

Example 4.3. Consider the final Emden–Fowler equation

y′′(x) +
2
x

y′(x) + axy2(x) = 0, y′(0) = 0, y(0) = 1, (4.17)

which has no exact solution. A residual function is introduced to measure the accuracy
of our numerical solution. Multiplying both sides of equation (4.17) by x,

xy′′(x) + 2y′(x) + x2y2(x) = 0.

We use its left-hand side as our residual function

R(z) = xz′′(x) + 2z′(x) + x2z2(x) (4.18)

to estimate the error of the numerical solution to

z = z0 + z1 + · · · + zm.

If z(x) is the exact solution of (4.17), then the residual in (4.18) becomes a zero
function. Normally for numerical solution z(x), R(x) is not identically zero, and ||R(x)||
shows how close z(x) is to the exact solution y(x). So all methods try to minimize the
residual function in (4.18).

Now we show our ADM solution of (4.17) with Adomian polynomials (2.14) and
extended intervals. Again (2.15) is not used due to its long computing time. We choose
a = 0.1 in this case, and first solve the solution in [0, 6], then extend it to the intervals
[6, 10] and [10, 12]. The maximal errors of residual R(x) in these three intervals are
listed in Table 5.

5. Conclusion

We recommend a new reliable and efficient numerical method, the ADM with an
integrating factor, for solving Emden–Fowler equation. Because of the singularity, this
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Table 5. Maximal errors of residuals R(x) in [0, 12] for Example 4.3.

m ||R|| in [0, 6] m ||R|| in [6, 10] m ||R|| in [10, 12]
50 1.2(−5) 4 9.1(−4) 5 7.8(−2)
51 8.2(−6) 5 1.7(−4) 6 2.7(−2)
52 5.6(−6) 6 3.1(−5) 7 3.5(−3)

type of equation cannot be solved by the traditional ADM. Our numerical results show
that only a few terms of a series solution are enough to achieve very high accuracy.
We demonstrate how an integrating factor can be used in the ADM, so that it may
be applied to equations more general than the Emden–Fowler equation. For example,
Wazwaz’s methods [17, 18] can be regarded as special cases of our method. An even
wider range of problems can be solved by Duan and Rach’s method [3] using our
integrating factor technique. One can say the same thing about the Laplace–Adomian–
Pade method.

We present a complete error and convergence analysis for our ADM method
using El-Kalla’s Adomian polynomials (2.15). This underlined theory supports the
validity of our method. On the other hand, the analysis of the ADM with Wazwaz’s
representation (2.14) still remains open.

Since our method yields very high precision, we extend the domain of our solution
simply by means of a trivial continuation. This process is repeatedly applied to solve
Emden–Fowler equations in a large interval. As for the Pade technique to extend the
interval, so far it is unknown whether this works for these singular problems, and it
deserves further investigation in future.
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