
R E V I E W S O F M O D E R N P H Y S I C S V O L U M E 3 0 , N U M B E R 3 J U L Y , 1 9 5 8 

Thermal Inelastic Collision Processes 
M . J. S E A T O N 

Department of Physics, University College, University of London, London, England 

I. OUTLINE 

SE C T I O N I I contains a summary of relevant 
collision theory methods. Section I I I is concerned 

with heavy particle collisions: excitation of H Is 
hyperfine structure (hfs) states by H atom impact; 
excitation of H 2 rotation by H and H2 impact ; H 2s—>2/> 
transitions produced by proton impact ; charge exchange 
reactions ; excitation of atomic levels by proton impact. 
Section IV deals with inelastic collisions between 
atoms and electrons. Use of the Born and distorted 
wave approximations is discussed. Calculations of 
cross sections for excitation of forbidden lines in pq 

configurations are reviewed and new results presented 
for 0 + 2 , N + , C + , and Si + , both variational and semi-
empirical methods being used. In Sec. V, concerned 
with atomic photoionization, new results are given for 
photoionization from 2pq configurations. 

II. GENERAL THEORY 

1. Cross Sections and Reaction Rates 

We consider reactions of the type 

Ai+B-^Aj+B, (1) 

where Aiy Aj denote particle A in state i or state j . 
With particle densities n(Ai), n(B) and initial relative 
velocity Vi the rate of collisions of type (1) is n(A%)n(B) 
Xqa, where q%j=v£)(ij) and Q{ij) is the effective 
cross section. With a normalized velocity distribution 
function f(v) the rate coefficient becomes 

qa= f vtQ(ij)f(vt)dvi. (2) 

Let Ei be the internal energy of Ai, Ej that of Aj. 
In thermodynamic equilibrium the Boltzmann relation 

n(At) COT-
——=- expKEj-Ed/kT] (3) 
η(Α·) COY 

(ω*, COY being statistical weights) combined with the 
detailed balance relation 

n(Ai)n(B)qij= n(AJ)n(B)qJi (4) 

gives the relation 

qa= (wiMqa e x p [ - CEY- E%)/kT\. (5) 

On substituting a Maxwell distribution in (2) and 

requiring (5) to be true for all Γ, we obtain 

o>iVi2Q (ij)=wjvfQ (ji). (6) 

A mean cross section, averaged over a Maxwell 
distribution, is often denned by 

q=vQ 

where v= (SkT/wM^ is the mean thermal velocity. 
Cross sections are frequently expressed in units of 
<7o 2=2.803X10- 1 7 c m 2 or τα0

2= 8 .806ΧΙΟ" 1 7 cm 2 . 

2 . Classical Treatment 

In classical theory definite particle trajectories 
must be considered, each trajectory being characterized 
by an impact parameter R (Fig. 1). With R in the range 
dR let P(i,j; R) be the probability of the reaction (1) 
occurring during collision. The total collision rate with 
R in dR is n(A^n(B)vi'2irRdR and the cross section 
for (1) is therefore 

Q{ij)= f P{i,j;R)2*RdR. (7) 

Clearly, 
P(i,j;R)<l. (8) 

For the calculation of P, various mechanisms may 
be considered. If Β is a charged particle, it will produce 
a variable field l£(R,t) in the neighborhood of A. We 
make a Fourier analysis of this field, pick out the 
component Ev (where hv= \Ej—Ei\), and calculate Ρ 
as the probability of an induced radiative transition. 
The calculated values of Ρ must be made consistent 
with (8). This method requires the kinetic energy of 
Β to be large compared to the transition energy 
(Ej—Ei), since no allowance is made for a change of 
kinetic energy when the transition occurs. If it is 
also assumed that Β is not appreciably deflected 
during collision, it may be expected that Q will depend 
on the velocity of Β but not on its mass. 

For atom-electron collisions the collision mechanism 
may involve capture of the incident electron and 
ejection of an atomic electron. From a classical stand-
point this would represent a distinct physical process. 

FIG. 1. The impact parameter R would be equal to the distance 
of closest approach if the colliding particles were undeflected. 
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3 . Quantal Treatment 

Quantization of angular momentum results from 
putting L=MvR and L2=n2l(l+1), with / integral. 
Then with Ä i = [ / ( / + l ) ] V * < , k^Mvi/n, and δ / = 1 , 
we have 

2RbR=(2l+\)/ki2. 

Replace the integral (7) by a sum, 

e « j ) = — Σ (2l+i)P(i,j;Ri). 

We now put Ql(i,j)=(2l+\)P(i,j; Ri) and 

giving 
ρ(^)=(π /* , · 2 )Ω( ί , ; · ) . (9) 

The dimensionless parameter1 is the collision 
strength. The reciprocity relation (6) gives Ü(i,j) = ü(j,i) 
and the conservation relation (8) gives 

O , ( * , i ) < ( 2 / + I ) . 

With degenerate states i8 (s=l, 2, 
( / = 1,2, · · · coy) the cross section is 

with 

Q(.ij)- -O(*,I) 

Σ 0 ( * . , / i ) . 

(10) 

ω;) and 

(11) 

At temperature Γ ( ° Κ ) the rate coefficient for deactiva-
tion, j — η with Ej>Ei, is 

8.63 ΧΙΟ" 6 

/Mvf 
Xzxp{-Mv?/2kT)di-

\ 2kT )l c m 3 sec (12) 

M being the reduced mass, and m the electron mass. 
This usually varies comparatively slowly with T. 
The corresponding excitation coefficient qi3- is obtained 
from (5) and (12). 

When many quantized angular momentum compo-
nents / are important, a classical or semiclassical 
treatment may be permissible. Low-energy atom-
electron collisions take on a more typically quantum 
mechanical aspect because only a few values of / are 
generally important. The reason for this may be 
understood from the fact that, for large L=mvR, R 
must be very large when m and ν are both small ; such 
remote encounters are not likely to produce transitions. 

Because of the indistinguishability of electrons, 
direct and exchange excitation cannot, in general, be 

regarded as distinct physical processes. However, when 
the total spin is well denned and is different in the 
initial and final atomic states, the transition can take 
place only by exchange. 

For collisions between electrons and neutral atoms 
the collision strengths Ω tend to zero at the threshold. 
Due to the attractive field in collisions between electrons 
and positive ions the electron may have considerable 
velocity in the immediate vicinity of the ion even if 
its velocity tends to zero at infinity. For this reason 
the corresponding collision strengths tend to finite 
limits at thresholds and may be treated as constants 
for sufficiently slow collisions; the quantity in braces 
in (12) may then be equated to Ω. 

4 . Scattering Matrix 

Let φα(τΑ) be an atom wave function satisfying the 
Schroedinger equation 

ΗΑψα(ΤΑ) = Εαφα(ΤΑ), 

Ha being the atom Hamiltonian. Consider that incom-
ing electrons with angular momentum quantum 
numbers / ' , m' are incident on an atom in state a! and 
that outgoing electrons are associated with a' and with 
all other states a of the atom. The appropriate wave 
function is then 

1 
* ( τ ' I ΓΑΓ) = ΣΨύ(τα,τ)^(ύ' I f), (13) 

y r 

where y=(ail,m), ^y(rA,f)=ypa(xA)Yim(f) (Ylm being 
a normalized spherical harmonie) and where, for r—»oo, 

1 

^ ( ï ' k ) ; P ( 7 y ) r ^ - ^ W - S ( 7 , 7 ' ) e + i ( f c r - ^ f f ) ] . 
kj 

The probability that the atom is excited to state α 
and that the outgoing electron has angular momentum 
Im is 

Q I - . I ' * ' ( « , « ' ) = | S ( a / w , a 7 W ) I2 (14) 

and the total collision strength is 

Ω(α,ΰ0= Σ | S ( a / w , a 7 W ) | 2 . 
I mV m' 

(15) 

When electron spin is included and properly anti-
summetrized wave functions are used, 2 ( b ) (15) is 
replaced by 

Ω(α,α') = \ Σ IS (almw^a'Vmim:) | 2 , (16) 
Imimtl'mi'mt 

1 M. H. Hebb and D. H. Menzel, Astrophys. J. 92, 408 (1940). 

2 (a) M. J. Seaton, Proc. Roy. Soc. (London) A208, 408 (1951); 
(b) Phil. Trans. A245, 469 (1953); (c) Proc. Roy. Soc. (London) 
A218, 400 (1953); (d) Ann. Astrophys. 17, 550 (1954); (e) The 
Air glow and the Aurorae, edited by Ε. B. Armstrong and A. 
Dalgarno (Pergamon Press, London, 1955), p. 289; (f) Ann. 
Astrophys. 18, 188 (1955); (g) ibid. 18, 206 (1955); (h) Compt. 
rend. 240, 1317 (1955); (i) Monthly Notices Roy. Astron. Soc. 
115, 279 (1955); (j) Proc. Phys. Soc. (London) A68, 457 (1955); 
(k) Proc. Roy. Soc. (London) A231, 37 (1955); (1) Proc. Phys. 
Soc. (London) A70, 620 (1957). 
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the factor | being introduced on averaging over the 
initial spin orientation (quantum number ma) of the 
colliding electron. The conservation theorem follows 
from S being unitary, Σ Γ IS (7,7') 12

 = 1. 
The wave function Ψ should be a solution of the 

Schroedinger equation (Η—Ε)Ψ=0. Suppose that an 
approximate solution Ψ* has been obtained with 
scattering matrix S'. It was shown by Kohn 3 that an 
improved estimate for S is 

im r 
S(7,7') = S < ( 7 y ) + — I ^(y)LH-E-]^(yf)drAdr, (17) 

h2J 

Ψ' being a conjugate function for the final state. The 
error in S calculated from (17) will be of quadratic 
order in the errors in the wave functions* Ψ', Φ'. 

For practical calculations the Schroedinger equation 
is replaced by a set of coupled equations of the type 2 ( b ) 

[d? 1(1+1) I 
+ k 2 Fy = ZlUyy>-Xr,'lFr, 

Idr2 r2 J 7 ' 

(18) 

where Uyy> is an interaction potential and Xyy> an 
exchange operator : 

Xyy>Fy(r) = f KyAr/)Fy(r')dr'. (19) 

When these equations are satisfied the correction term 
in (17) is zero. 

The distorted wave (DW) approximation is obtained 
on solving 

Vd2 1(1+1) 1 
+K2 Fy<=VyyFyt 

.dr2 r2 J 
(20) 

and substituting the solutions in (17). For 75̂ 7' this 
gives 

S(7,7') =- JFy'(y I r)\yiY-X1ryrr,(y' I r)dr. (21) 

The Born approximation is obtained by neglecting the 
right-hand side of (20) and neglecting Xyy> in (21). 
The assumptions made in the Born approximation are 
(i) the distortion is small, (ii) the coupling is weak, 
and (iii) exchange can be neglected. 

5 . Quantum Defect Method 

The bound state energy levels of a neutral atom form 
infinite sequences converging to spectral limits in 
which the ion is left in a state of definite energy. The 
corresponding positive energy states represent scatter-

3 W. Kohn, Phys. Rev. 74, 1763 (1948). 
* It is assumed that exact atomic wave functions are used ; 

an additional error will result from using approximate atomic 
functions. 

ing of an electron by a positive ion. It might be expected 
that the scattering matrix for slow collisions could be 
deduced by extrapolating information obtained from a 
study of the bound states. The theory developed so 
fa r2(h)(i),4 j s d i r e c t l y applicable only to the problem of 
elastic scattering but may be used in certain cases to 
obtain empirical estimates of inelastic scattering cross 
sections. 

Let Ini be the energy required to remove electron 
nl and — 2Z/r be the asymptotic form of the potential 
U(r) in which it moves, both measured in rydbergs 
(13.60 ev or 109 737 c m - 1 ) . Then Ini=Z2/m*2 defines 
the effective quantum number and μι(—Ιηι) = ηι* 
— η defines the quantum defect μι. For the correspond-
ing continuum the phase shift ôi(k2) is defined in terms 
of the asymptotic behavior of the wave function : 

F(k,l,Z;r)~kr* sin \n(2kr) [kr-ilw+j 

+^rgT^l+l-ij^+ôl(k
2)j. (22) 

For the pure Coulomb field, U(r)=— 2Z/r, both phase 
shifts δι and quantum defects μι are zero. 

For k<£2irZ it may be shown that 

8i(k2) = w(k2), (23) 

where μι(Ιζ2) is the quantum defect extrapolated as a 
function of the energy. Use of this relation is referred 
to as the quantum defect method. 

III. COLLISIONS BETWEEN HEAVY PARTICLES 

Inelastic collisions between particles of atomic mass 
have been discussed in a recent review by Bates and 
Dalgarno. 6 Here we consider certain processes of 
particular importance for studies of interstellar matter. 

1. Collisional Excitation of the hfs 
States of Η Is 

The hfs states of Η Is have F=0 or F=l, where 
F is the total spin quantum number. Let the number 
density of H atoms in these states be no and n\ and let 
the total hydrogen density be n= (no+n-i). The ratio 
no/n\ is determined from 21-cm observations with the 
spin temperature Ts defined by the Boltzmann relation 
(3). Purcell and Field 6 have discussed the relation 
between the spin temperature, the kinetic temperature 
TH, and the radiation temperature TR (defined by 
expressing the energy density of background radiation 
at the frequency of the 21-cm line as a Planck function 

4 F. S. Ham, Solid State Physics, edited by F. Seitz and D . Turn-
bull (Academic Press, Inc., New York, 1955), Vol. 1, p. 127. 

6 D . R. Bates and A. Dalgarno, The Airglow and the Aurorae, 
edited by Ε. B. Armstrong and A. Dalgarno (Pergamon Press, 
London, 1955), p. 328. 

6 Ε. M. Purcell and G. B. Field, Astrophys. J. 124, 542 (1956). 
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FIG. 2. Interaction poten-
tials for collisions between 
two H atoms. 

I.4a0 r 

PV(TR)). The equation denning a steady state for the 
hfs level populations is 

ηι[ηςιο+Α10+Β10ρν(Τκ)^= ηο[ης01+Β01ρν(ΤΒ)], (24) 

where qFF' is the rate coefficient for 

H+H(Z9-*H+H(F0, (25) 

^4ιο=2.85Χ10~ 1 δ s e c - 1 is the spontaneous emission 
probability, Boi the Einstein absorption coefficient 
and Bio the Einstein stimulated emission coefficient. 
From (24) Purcell and Field obtain 

with 

xn 1 
Ts= ΤΗΛ TR, 

1+xn 1+xn 

x=hvqio/kTHA1Q. 

(26) 

(27) 

A change in atom spin can be grought about during 
collision only by exchange of electrons. The two atoms 
may approach either along a repulsive 3Σ potential 
curve or an attractive 2Σ potential curve (Fig. 2) . 
In the former case the distance of closest approach 
will be large and the exchange probability small; but 
along the attractive curve the atoms may approach 
much more closely, and the average exchange probabil-
ity will be close to one-half. The potential curves of 
Fig. 2 may be used without modification for states of 
zero relative angular momentum. With impact param-
eter R, and initial relative velocity v, the angular 
momentum is L=MvR\ and the effective potential 
becomes V'= V+L2/2Mr2= V+ER2/r2, where E=Mv2/ 
2. For given kinetic energy Ε the centrifugal force 
gives rise to a potential barrier (Fig. 3) which increases 

(V.ERVr2) 

f = ^ = . Τ E = 4Mv8 

with increasing R. According to classical theory, for 
R greater than a critical value Rc the colliding particles 
will be unable to penetrate the barrier; the exchange 
probability will then be small. For collisions along the 
attractive curve it may therefore be expected that the 
exchange cross section should be close to TRc

2/2. More 
complete analysis b y 7 Purcell and Field shows that the 
spin-change cross section Q(1,0) is equal to irRc

2/8. 
The results obtained by Purcell and Field are given 

in Table I. Putting {MvRc)
2=h2lc(lc+\), a condition 

for the validity of their semiclassical treatment is 
that lc should be large; values given in Table I show 
that the results will be less reliable at the lowest 
temperature considered. Purcell and Field point out 
that the gas-kinetic cross section for collision of two 
Η atoms will be close to 8Q(1—K)). 

With n>l and TR not too large Ts will be nearly 
equal to TH, but exceptional conditions may occur 
for which this is no longer the case. 

2 . Cooling of the Interstellar Gas by Excitation 
of Molecular Rotation 

Excitation of H 2 rotational levels may occur through 
atom-molecule collisions, 

H + H 2 ( / = 0 ) - > H + H 2 ( / = 2 ) , (28) 

TABLE I . Cross sections for excitation of the hfs states of Η Is. 

TH ÖU.0) 
Orao 2) lc X 

10 13.5 3 190 
100 8.0 7 35 

1000 4.9 17 6.7 

or through molecule-molecule collisions, 

H , ( / = 0 ) + H , ( / = 0 ) - > H 1 ( / = 0 ) + H , ( / = 2 ) . (29) 

Cross sections for the H 2 — H 2 case, which will be the 
most important when w(H 2 ) greatly exceeds w(H), may 
be deduced from results of ultrasonic dispersion 
measurements.8 

Lacking further information on the H — H 2 case, 
which is likely to be the more important in typical 
interstellar clouds, Spitzer9 assumed the cross section 
to be the same as that for H 2 —H 2 . Improved estimates 
of the cooling rate may now be obtained using the 
results of recent calculations by Takayanagi 1 0 for (28) 
and (29). 

The following expression is used for the H — H 2 and 
H 2 — H 2 interaction potential 1 1 , 1 2 (see Fig. 4) : 

V= Zte-*<«*>[1 - 2 ^ ' ° > + / ? P 2 ( c o s x ) ] . (30) 

FIG. 3. Η — Η collisions: attractive 1 Σ potential plus 
repulsive centrifugal potential. 

7 See also J. P. Wittke and R. H . Dicke, Phys. Rev. 103 , 620 
(1956). 

8 J. E. Rhodes, Phys. Rev. 70, 932 (1946). 
9 L . Spitzer, Astrophys. J. 109, 337 (1949). 
1 0 K. Takayanagi, Proc. Phys. Soc. (London) A70, 348 (1957). 
1 1 H. Margenau, Phys. Rev. 63 , 131 (1943). 
1 2 A. A. Evett and H. Margenau, Phys. Rev. 90, 1021 (1953). 
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For V in a t o m i c units the parameters in (30) are given 
in Table II . It is seen that D, r0, and a are very similar 
for the two cases but that the coefficient β, determining 
the anisotropy of the potential, is much larger for 
H 2 —Η than for H 2 —H 2 . The wave functions of 
relative motion are calculated neglecting the term 
ßP 2 (cosx) , which is then treated as the coupling term 
leading to rotational transitions (compare the D W 
method of Sec. 114) . Since a number of partial waves 
of different / have to be considered, the calculations are 
simplified by using the modified wave-number method 1 3 

which employs an effective centrifugal potential 
—h2l(l+\)/2Mf2 independent of r. Takayanagi obtains 
for the cross sections, averaged over Maxwellian 
velocity distributions, 

TABLE II. Parameters in the H 2 —Η and H 2 —H 2 potentials. 

0 ( 0 , 2 ) =ß*G(T)irf\ (31) 

where G(T) is given as a function of kinetic temperature 
Τ Η in Table III . 

The value of f should be comparable with the 
molecular dimensions. Adopting f = 5 atomic units for 
H 2 - H 2 , Takayanagi obtains Q(0,2) = 2.8X10~ 2 a0

2 

for Γ = 1 9 7 . 7 ° Κ compared with 5 .2X10" 2 a0

2 from the 
ultrasonic dispersion measurements. For this type of 

o 
Η or Η, 

FIG. 4. For the H 2 —H 2 case the potential is averaged over 
all orientations of the second molecule. 

calculation the agreement may be regarded as 
satisfactory. 

According to these calculations the cross section for 
H 2 — Η should exceed that for H 2 — H 2 by a factor of 
about 10, this factor being determined almost entirely 
by the ratio of the values of β2 for the two cases (the 
similarity of the potentials suggests that similar values 
of f should be used). Takayanagi has also considered 
H 2 — H 2 collisions in which both molecules are excited 
to the J = 2 state, and H 2 —Η collisions in which the 
molecule is excited to the 7 = 4 state. He concludes that 
such processes will be less important than (28), (29) 
for Γ < 1 0 3 °K. The para-ortho transitions with Δ / = 1 
involve a change in the total nuclear spin eigenfunctions 
and will therefore have probabilities much less than for 
the para-para transitions /=0—>2. 

When w ( H ) > w ( H 2 ) , and w(H) is small, the cooling 
rate due to excitation of molecular rotation should 
therefore be ten times greater than that estimated by 
Spitzer. When n(H) exceeds a certain critical value 
[inversely proportional to 0 ( 0 , 2 ) ] collisions produce 
a Boltzmann distribution among the rotational levels, 

1 3 K. Takayanagi and S. Kaneko, Sei. Rept. Saitama Univ. 
Al, 111 (1954). 

H j - H H 2 - H a 

D 1.0X10" 4 1.1X10-* 
ro 6.3 6.4 
2a 1.87 1.87 
ß 0.26 0.075 

and the cooling rate is then determined by the abun-
dance of molecules and the radiative transition prob-
abilities, but does not depend on w(H) or on the cross 
sections. Quite generally the revised cooling rate may be 
written 

L=-
10w(H>(H 2 )TiT 2 

ergs c m - 3 s ec - 1 , (32) 
10w(H)T 2 +T! 

where T x and T 2 are the functions tabulated by Spitzer. 

3 . H 2s-^2p Transitions Produced by Proton 
and by Electron Impact 

The two-quantum process , 1 4 , 1 5 , 2 ( i ) 

K(2s)->K(ls)+hv1+hv2, (33) 

will give an important contribution to the continuum 
intensities of gaseous nebulae, provided that the 
probability of collisions 

H(2s)+A-*K(2p)+A (34) 

followed by emission of Lyman-α is not large compared 
to the radiative transition probability for (33), A = 8.227 
sec" 1 . Purcell 1 6 has shown that the most important 
collisions will be 

H(2s)+H+->H(2/>)+H+ (35) 

although similar collisions with electrons also have to 
be taken into account. Purcell calculated the transition 
probabilities P(R) by the method described in Sec. 112 
and applied a correction to insure that the conservation 
condition (8) was satisfied for all R. In view of the 
importance of (35) indicated by Purcell's result a 
quantum mechanical study of the problem has been 
made. 2 ( j ) It is possible to formulate an exactly soluble 
problem in which the essential features of the problem 
presented by the reaction (35) are retained. The 
solutions for Ω* are shown in Fig. 5 (/ is so large that 

TABLE III. 

TH (°K) H 2 - H 
G(T) 

H j - H i 

100 0.003 0.003 
200 0.047 0.063 

1000 1.45 1.99 

1 4 L. Spitzer and J. L. Greenstein, Astrophys. J. 114, 407 (1951). 
1 8 A. Y . Kipper, Tartu Astron. Obs. Publ. 32, 63 (1952). 
1 6 Ε. M. Purcell, Astrophys. J. 116, 457 (1952) 
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2 χ Ι 0 4 

FIG. 5. Collision 
strengths obtained 
from exactly soluble 
equations resembling 
the collision equa-
tions for H(25) + H+ 
->H(2/>)+H+. The 
maximum value of 
Ω* consistent with 
the conservat ion 
theorem is (2 /+1) . 

it may be represented as a continuous variable). The 
Born approximation gives good results for large I but 
leads to a violation of the conservation theorem (10) 
for small /. Defining h by 

ß*°Born=e (2 / 0+l ) (36) 

it is found that the Born approximation is satisfactory 
for l> h and that little error is introduced on putting 
Ω ' = ^ ( 2 / + 1 ) for Klo. For a reaction such as (35), 
ß z B o m would be difficult to evaluate but, so long as 
Ri (see Sec. 113) is much greater than the atomic 
dimensions (which is the case for l> k) the Bethe 
approximation, ß Z B e the, does not differ significantly 
from ΩΖΒοηι and may be evaluated much more easily. 
Defining lc by 

ß*Bethe^(2 /+l ) for l^lc (37) 

ß i Bethe>K2/+l) for Klc, (37) 

the approximation used for Ω (2s,2p) is 

0 = Σ è(2/+l)+ Σ ß*Bethe. (38) 
1=0 

The rate coefficients obtained for proton and electron 
impact are given in Table IV. For equal electron and 
proton densities the rate of 2s-+2p transitions per c m 3 / 
sec is n(e)n(H,2s)q(2s—*2p). Consideration of the 
exactly soluble problem and of results obtained on 
using (38) for excitation of the Na D lines by electron 
impact (Sec. IV3) , which is a less favorable case than 
K2s-^2p, suggests that the errors in the Table IV 
results should not exceed ± 2 0 % . 

4 . Charge Transfer Reactions 

The cross section for 

A+B+-+A++B (39) 

will be large when the ionization potentials 1(A) and 
1(B) are nearly equal; this is illustrated by the results 
of Dalgarno and Yadav 1 7 for 

H + + H - + H + H + . (40) 

Chamberlain 1 8 has discussed the possible importance of 

H + + 0 - * H + 0 + (41) 

in the Cassiopeia radio source. Since 7(H) = 13.595 ev 
1 7 A. Dalgarno and Η. N. Yadav, Proc. Phys. Soc. (London) 

A66, 173 (1953). 
1 8 J. W. Chamberlain, Astrophys. J. 124, 390 (1956). 

and 7 ( 0 ) = 13.614 ev it may be expected that the cross 
section for (41) will be of the same order as that for 
(40); in the temperature range 1 X 1 0 4 to 2 X 1 0 4 °K 
Chamberlain adopts ^ ~ 1 0 ~ 8 cm 3 s e c - 1 for (41). Accord-
ing to Chamberlain such an order of magnitude 
estimate may be sufficient to establish that (41) is 
the dominant process; this being so, the ionization 
ratio n(0)/n(0+) is determined by considerations of 
detailed balancing. 

5 . Excitation of Atoms by Impact 
of Thermal Protons 

Cross sections for excitation of neutral atoms by 
proton impact will be of similar magnitude to those 
for electron impact when the velocities of relative motion 
are the same (see Sec. 112). The electron excitation 
cross sections rise steeply just beyond the threshold 
and have maxima at energies about twice the threshold 
energy. For proton impact the energies at which the 
cross-section maxima occur will therefore be much 
greater and the cross sections at thermal energies 
will be small.f Thus, for the reaction 

0 ( 1 P ) + H + - ^ 0 ( 1 S ) + H + , (42) 

TABLE IV. H2s—2p transitions produced by electron 
and by proton impact. 

Totals WXq(2s->2p) 

Τ =2X10* °K 

2.51 
2.23 

0.22 
0.35 

5.3 

2.08 
2.19 

0.17 
0.27 

4.7 

the rate coefficient at thermal energies is at most a few 
percent of that for excitation by electron impact. 2 ( d ) 

Due to the repulsive Coulomb field, cross sections will 
be minute for transitions in positive ions produced by 
impact of thermal protons. 

6 . Chemical Processes 

Little can be added to the discussions by Bates and 
and Spitzer 1 9 and by Herzberg 2 0 of the reactions leading 
to formation and destruction of interstellar molecules. 
The most uncertain single quantity is the / value for 
CHX4300. 

IV. INELASTIC COLLISIONS BETWEEN 
ATOMS AND ELECTRONS 

Experimental and theoretical work on atom-electron 
collisions has been discussed in two recent review 
articles by Massey. 2 1 

t In the case of Η 2s-*2p the large excitation rate for proton 
impact may be understood as a consequence of the threshold 
energies being very small. 

1 9 D . R. Bates and L. Spitzer Astrophys. J. 113, 441 (1951). 
2 0 G. Herzberg, Mém. soc. roy. sei. Liège 15, 291 (1955). 
2 1 H. S. W. Massey, Handbuch der Physik (Springer-Verlag, 

Berlin, 1956), Vol. 36, p. 307; Revs. Modern Phys. 28,199 (1956). 
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4 x 1 0 * U 
He l ' S - 3 ' P 

6 χ Ι 0 4 
He l ' S - 4 ' D 

eV 

FIG. 6. The Born approximation (B) for excitation of He by 
electron impact. Experimental cross sections (E) measured in 
arbitrary units have been fitted to the Born curves at high energies. 

1. Born Approximation 

Although correctly considered a high-energy approxi-
mation, the Born method may often be used to obtain 
low-energy results which will be good to within better 
than an order of magnitude. It is usually better for 
optically forbidden transitions not involving a change 
of spin than for optically allowed transitions. Figure 
6 shows some typical results for transitions in He 
and Fig. 7 some ionization cross sections. 2 2 A modified 
form of the Born approximation has been used by 
Geltman 2 3 to obtain Η and He ionization cross sections 
near threshold; his He results are about one-half of 
those obtained experimentally. 

Rate coefficients for Η excitation have been calculated 
by Chamberlain 2 4 using Born cross sections for Is—>2$, 
2p, 3s, 3p, and 3d and estimates for n>3. Born cross 
sections for excitation of higher excited states of Η 
and for ionization are given by McCarroll. 2 5 Born 
cross sections have been calculated by Moiseiwitsch 2 6 

for transitions from He 2 3 S. 

Born's approximation cannot be used for spin 
change transitions. Such exchange processes depend on 
the overlap between atomic wave functions and the 
wave functions of the colliding electron, and therefore 
involve much more refined properties of the collision 
wave functions than those required when the Born 
approximation is successful. In consequence Oppen-
heimer's exchange modification of the Born approxima-
tion is of little practical use. The Born approximation 
also fails completely for slow collisions between electrons 
and positive ions since it gives cross sections with 
incorrect energy dependence. 

2 . Distorted Wave Approximation 

In some cases the main defect in the Born approxima-
tion may be neglect of distortion of the wave functions 
of relative motion by the atomic field. In such cases 

2 2 These figures are taken from Bates, Fundaminsky, Leech, 
and Massey, Phil. Trans. Roy. Soc. A243, 93 (1950). 

2 3 S. Geltman, Phys. Rev. 102,171 (1956). 
2 4 J. W. Chamberlain, Astrophys. J. 117, 387 (1952). 
2 5 R. McCarroll, Proc. Phys. Soc. (London) A70, 460 (1957). 
2 6 B. L. Moiseiwitsch, Monthly Notices Roy. Astron. Soc. 

117, 189 (1957). 

0.5 

E/I 

FIG. 7. Comparison of Born cross sections (B) with absolute 
experimental measurements (E) for ionization. (E/I) is the 
ratio of the incident electron energy to the threshold ionization 
energy. 

improved results are obtained with the D W approxima-
tion. This method, including important results obtained 
for Η and He excitation, is discussed fully in the 
review articles by Massey. 2 1 

3 . Strong Coupling in Optically 
Allowed Transitions 

For optically allowed transitions for which the line 
strength2 7 is large, the main defect in the Born ap-
proximation may be the assumption of weak coupling. 

(nah 

FIG. 8. Cross sections for Na 3s—>3/> produced by electron 
impact. Experimental, ; Born approximation, 
strong coupling approximation [Eq. (38) j , . 

In such cases the strong coupling formula (38) may be 
used. Figure 8 shows results obtained 2 ( j ) for Na 3s—>3p. 

The same method has been used by Moiseiwitsch 2 6 for 
He 2 35—»2 3jP. It would be of interest to apply a similar 
method, but with allowance for Coulomb distortion, 
to excitation of the C a + Η and Κ lines. 

4 . Excitation of Forbidden Lines in 

pq Configurations 

The configurations 2pq and 3pq, with q=2, 3, and 4, 
contain the following spectral terms, conveniently 
denoted by n= 1, 2, and 3 : 

q=2 and 4 

zp 

q=3 

2P. 

2 7 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1951), p. 98. 
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TABLE V . Deactivation coefficients for 0° and N ° 
(qnn' in cm 8 sec" 1). 

Ο» N» 
Te 10»<z« 10»(Z«i 10*532 10»<Z2i 10»g3i 10»38* 

5 X 1 0 2 0.9 0.8 0.4 0.5 0.4 0.9 
1X10 3 1.6 1.2 0.6 0.8 0.6 1.5 
5 X 1 0 3 5.0 3.5 1.9 2.6 1.8 4.4 
1X10 4 6.7 5.1 3.0 3.5 2.7 6.9 
5 X 1 0 4 7.6 7.2 5.6 4.0 3.7 13 
IX10* 6.8 6.6 6.0 3.5 3.4 14 

Excitation of these terms by electron impact produces 
most of the forbidden line emission in gaseous nebulae. 

For neutral atomic oxygen (O 0) the coupling is very 
strong, and the D W approximation gives results2 8 

exceeding the conservation theorem maximum by a 
large factor. 2 2 The dominant coupling terms are retained 
in the exact resonance (ER) approximation 2 ( b ) in which 
the equations (18) are simplified on neglecting all but 
the spherically symmetric parts of the expansions of 
the interelectronic potentials l / | r»— ry| ; the equations 
(18) may then be replaced by uncoupled equations. 
The E R approximation involves neglect of energy 
differences between the spectral terms. For O 0 a 
correction for energy differences was applied and the 
results obtained checked by solution of the full coupled 
equations for one value of k2. Calculated deactivation 
coefficients for O 0 and estimates for N° are given in 
Table V. 

Born-Oppenheimer calculations2 9 for 0 + 2 , and calcula-
tions allowing for Coulomb distortion 1 for 0 + 2 and 
for 0 + and N+ (Aller 3 0 and Aller and White 3 1) give 
collision strengths which are too large. The D W and 
E R approximations have been used 2 ( c ) ( k ) for calculations 
on N+, 0 + 0 + 2 , Ne+ 2 , and S+. For 0 + 2 neglect of energy 
differences in the E R approximation was shown to 
introduce little error. The E R wave functions should 
be a good deal more accurate than the D W wave 
functions, but the S matrix calculated in the E R 
approximation must be corrected for the neglected 
contributions to the potentials and exchange operators 
Uyy> and ΧΎΎ' (Sec. 114). These corrections were 
originally made using expressions similar to (17) in 
which the E R functions were used for and the D W 

TABLE VI. Collision strengths for 0 + . 

* j * J Ω (ij) 

0.33 2 i yZ>§ 0.89 
2P* 2Z> 4 0.33 2P* 4S§ 0.39 
W W 0.38 0.85 

0.19 0.51 
2 P | 2 A 0.52 2Z>§ 4Sf 0.77 

2 8 Yamanouchi, Inui, and Amemiya, Proc. Phys. Math. Soc. 
Japan 22, 847 (1940). 

2 9 S. Miyamoto, Mém. Coll. Sei., Kyoto Imp. Univ. A23, 467 
(1941). 

3 0 L. H. Aller, Astrophys. J. I l l , 609 (1950). 
3 1 L. H. Aller and M. L. White, Astrophys. J. 54, 181 (1949), 

functions for Φ*. Improved variational results32 for 0 + 
have been obtained using the more accurate E R 
functions for both and (Table VI ) . Previously 
unpublished results obtained for 0 + 2 and N+ using the 
same method are given in Table VII . 

A partial check on the calculations may be made 2 ( e ) « 3 2 

using similar variational expressions to calculate 
quantum defects for the limits of various p*nl series. 
For 0 + 2 and N + semiempirical estimates of collision 
strengths have been obtained (Table VII) by adjusting 
the parameters in the variational expressions so as to 
obtain good agreement with observed quantum defects. 
These results may be the most accurate, but this is 
not certain. The recommended values of Table VI I 
are obtained on taking the mean of the variational 
and semiempirical results. 

All available results, including estimates for cases 
for which calculations have not been made, are given 
in Table VIII . Further improvements could be made; 
firstly, by obtaining solutions of the full coupled 
equations using an electronic calculator, and secondly, 
by making further use of the quantum defect method. 

5. Transitions between Fine Structure Levels 

Assuming LS coupling the S matrix is most con-
veniently calculated in a representation of total spin 

TABLE VII. Collision strengths for 0 + 2 and N + . 

Previous Variational 
Semi-

empirical 
Recom-
mended 

0+2 
(O (1,2) 
Ω (1,3) 

LO (2,3) 

1.73 
0.195 
0.61 

1.84 
0.255 
0.62 

1.34 
0.188 
0.66 

1.59 
0.22 
0.64 

N + . 
Ό (1,2) 
Ω (1,3) 
Ο (2,3) 

2.39 
0.223 
0.46 

2.63 
0.403 
0.50 

1.71 
0.213 
0.50 

2.17 
0.31 
0.50 

and total orbital angular momenta, STLT. Then for 
transitions between spectral terms, 

ü(aSL,a'S'L') = h Σ (2ST+1)(2LT+1) 
U'STL* 

XlSiaSLlSTLT^'S'L'l'STLT)^. (43) 

T o obtain Îl{aSLJ,a'S'L'J'), we use the transformation 

S(aSLJljJT, a'S'L'J'l'j'JT) 

/L S J \ 
= ΣΑ[1 è j )S(ctSLlSTLT,a'S'L'l'STLT) 

/ £ ' s' r \ 

Χ Λ Ι / ' I / } , (44) 

3 8 M. J. Seaton and D . E. Osterbrock, Astrophys. J. 125, 66 
(1957). 
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where A is the transformation coefficient33 between 
LS and jj coupling. Then 

Ü(aSLJ,a'S'L'J') = ± Σ (2JT+1) 
ll'jj'JT 

Χ IS (aSLJljJT, a'S'L'J'VjT) \ \ (45) 

These formulas have been used in calculating the 0 + 

collision strengths given in Table VI . It should be 
noted that the important ratios 

TABLE I X . Collisions strengths for C + and Si + . 

A ( 4 - V A ) 

Ω ( 4 ^ , 2 Α ) 

Ω ( 4 5 , ' Ρ } ) 
(46) 

are determined entirely by properties of the transforma-
tion coefficients. 

The collision strengths C + &{2ph2pù and Si+ 
Ω (3pi,3pj) are needed in order to calculate the rate of 
cooling of the interstellar gas due to electron-ion 

TABLE VIII . Collision strengths for p° ions.* 

Configura-
tion 

If 

3p* 

Ion Ω (1,2) Ω (1,3) Ω (2,3) 

2.17 0.31 0.50 
0+* 1.59 0.22 0.64 

1.21 0.17 0.58 
k Ne + 4 0.84 0.16 0.53 

0 + 1.28 0.58 2.12 
JT+2 1.00 0.22: 3.11 
N e + 3 0.68 0.23: 3.51 
,Na + 4 0.43 0.25: 3.49 

0.95 0.057 0.17 
Ne"^ 0.76 0.077 0.27 
N a + 3 0.61 0.092 0.30 

0.54 0.112 0.30 

S + im 0.383 12.7 

• Estimated values are given in italic type. Values marked ( : ) may be 
too small by a factor of about two. 

collisions. Calculations may be made by purely 
empirical methods. In LS coupling, 

S(plSTLT,plSTL^ = expl2iwß(plSTLT,k2)l, (47) 

where ß(plSTLT,k2) is the extrapolated quantum 
defect for the pnlSTLT series. Neglecting a small 
contribution from V the collision strengths may be 
calculated from (44) and (45). For the lower pnlSTLT 

states of the neutral atoms, C° and Si0, LS coupling is 
a sufficiently good approximation to enable one to 
eliminate the spin-orbit energies by using the centres 
of gravity of the spectral terms. Only the differences of 
the quantum defects, ß(plSTLT)- (plS'TL'T), enter the 
final expression for Ω. In practice, observed rather than 
extrapolated quantum defects have been used, this 
approximation being checked by using the ß(pnlSTLT) 

Ω» (pm,pm) 
l C + Si + 

0 0.03 0.1 
1 0.76 0.8 
2 0.48 6.5 

estimated, / > 3 0.01 0.3 

Ω (PbPi) 1.28 7.7 

and verifying that the final results for Ω are not far 
different for various values of n. The results obtained 
are given in Table I X . A previous calculationj by the 
D W method for C + gave 0 = 1 . 1 6 ; for S i + a value 
Ω = 6 was estimated. 

With the interstellar abundances previously as-
sumed^ 0 the revised cooling rate due to electron-ion col-
lisions is 

Z = l ^ 2 3 r r i { 0 . 6 4 e ~ 9 2 / r « + 6 . 4 e - 4 1 3 / r « + 1 . 7 € - 5 6 4 / : r « 

+2.2e-*«llT°)n(e)n(U) ergs cm" 3 sec" 1, (48) 

Te being the electron temperature. Consistent with the 
assumed abundances, w(e) = 2X10~ 4 w(H) . The last 
two terms in the curly bracket in (48) are estimated 
contributions from collisions with F e + . 

6 . Elastic Collisions and Spin-Change Collisions 
between Electrons and Hydrogen Atoms 

When the electron temperature Te in the interstellar 
gas clouds is not equal to the kinetic temperature 
Τ Η of the hydrogen atoms the rate of energy transfer 
between electrons and atoms is 3 4 

m /2kTt 

7 = 8 & i ( ^ (kTH-kTe), 

where Qei is the cross section for elastic collisions. This 
cross section is also of interest in connection with the 
electrical conductivity of the neutral H gas. 3 5 The usual 
quantal expression is 

& i = ( V * 2 ) E K 2 / + l ) [ S I N V + 3 sin^r] 

Vi~ being the partial wave phases for the singlet 
and triplet spin interactions. The cross section for 
transitions between hyperfine structure states, 

H ( F = l)+e-+K(F=0)+e, (49) 
is given by 

0 ( 1 , 0 ) = (ΤΓ /4£ 2 )Σ*(2/+1) S I N W - ^ r ) . 

The possible importance of (49) in the galactic halo was 
mentioned by Field during the Symposium discussions. 

3 3 J. M. Kennedy and M. J. Cliff, Report CRT-609, Atomic 
Energy of Canada Ltd., Chalk River Project (1955). 

Î See reference 2(f). It may be noted that the agreement 
between the empirical and D W results for the individual elements 
of the S matrix is a good deal less satisfactory than the agreement 
between the final collision strengths. 

3 4 L. Spitzer and M. P. Savedoff, Astrophys. J. I l l , 593 (1950). 
3 5 D . E. Osterbrock, Phys. Rev. 87, 468 (1952). 
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TABLE X. Scattering of electrons by H atoms: elastic cross 
sections Qei and spin-change cross sections Q( l , 0 ) . e 

k OEL 0(1,0) k OEL 0(1,0) 

0.00 65 5.5 0.2 37 2.5 
0.05 62 4.9 0.3 25 1.4 
0.10 54 4.2 0.4 18 0.9 
0.15 44 3.3 0.5 14 0.7 

The wave function X/(E) for A+, together with the 
ejected electron, is normalized per unit energy : 

» Cross sections in units of χ α ο 2 , k2 in units of 13.60 ev. 

Results of recent calculations 3 6 are given in Table X . 
The phases ην*1, calculated allowing for exchange and 
for polarization of the atom, are in good agreement 
with previous calculations 3 7 - 3 9 ; the low-energy limits 
for the cross sections, determined by (ηο^/Ιζ), are un-
likely to be in error by more than ± 1 5 % . The phases 
771=*=, calculated allowing for exchange but neglecting 
polarization, are found to give small contributions to 
the cross sections in the range 0 < & < 0 . 5 (k2 in units 
of 13.60 ev). Recent attempts to measure the elastic 
scattering cross section 4 0 ' 4 1 give results much larger 
than those calculated. It is not yet certain whether the 
discrepancy is due to the experimental results being in 
error or due to the effect of polarization tteing unex-
pectedly large for partial waves other than the s wave. 

V. PHOTOIONIZATION CROSS SECTIONS 

Photoionization cross sections and radiative recom-

bination coefficients are required in order to interpret 

observed recombination spectra and in order to predict 

the ionization equilibrium to be expected with a 

given radiation field, electron density, and electron 

temperature. 

1. General Formulas 

The photoionization cross section for 

A+hv-+A++e 

(A may be an ion) is 

8TT 3 A I r 
av= Σ Ι Χ * * Ε Σ Λ ] Χ , ( £ ) Λ 

3c<t)i I J 

(50) 

(51) 

where ry is the position vector of the ^th electron and 

Xi is the initial bound wave function normalized to 

unity. 

3 6Bransden, Dalgarno, John, and Seaton, Proc. Phys. Soc. 
(London) 71, 877 (1958). 

3 7 H. S. W. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc. 
(London) A205, 483 (1951). 

3 8 T . B. Staver, Arch. Math. Naturvidenskab B51, 29 (1951). 
3 9 S. Borowitz and H. Greenberg, Bull. Am. Phys. Soc. Ser. II, 

2, 172 (1957). 
^Maecker, Peters, and Schenk, Ζ. Physik 140, 119 (1955). 
4 1 Pederson, Malamud, and Hammer, Bull. Am. Phys. Soc. Ser. 

II, 2, 172 (1957). 

/ Χ/* (Ε')Χ,(Ε)άτ=S(E-E'). (52) 

The summation in (51) is over all initial and final states 
of given energy, and ω» is the statistical weight of the 
initial level of A. 

The recombination coefficient for the inverse of 
(50) is 

1 / 2 \ * ω, ζ·00 

C 2 \ T / ω+
 J ii 

Xe-WW'dihv), (53) 

ω + being the statistical weight for A+ and Λ the 
threshold energy for (50). 

In nebulae ionization need usually be considered 
only from ground states and from low-lying metastable 

TABLE X I . 

Q SL S'L' c Q SL S'L' c 

1 2J> lS 1/3 4 zP 
4S 4/9 

2 zP 
2p 2/3 4 zP w 5/9 

2 lD 2P 2/3 4 zP 
2jp 1/3 

2 lS 2P 2/3 4 W 4 5 0 
3 4 S zP 1 4 lD 1 
3 4 S 'D 0 4 W 2P 1/3 
3 4 5 lS 0 4 *S 4 5 0 
3 W zP 1/2 4 'S W 0 
3 W lD 1/2 4 'S 2P 4/3 
3 *D 'S 0 5 2P zP 1 
3 2J> IP 1/2 5 2P 

lD 5/9 
3 *P lD 5/18 5 2P AS 1/9 
3 2J> 'S 2/9 6 lS 2P 2 

states but recombination to all excited states of the 
final system has to be considered. 

2 . Calculations for Η 

The photoionization cross sections and recombination 

coefficients may be calculated exactly. The problem 

of the statistical equilibrium of Η in nebulae has been 

treated in detail by Baker and Menzel, 4 2 the only essen-

tial approximation for optically thin nebulae being the 

assumption that, for fixed n, the populations are equal 

for all quantum states nlm. Some preliminary calcu-

lations by Joslet (unpublished) have indicated that 

without this assumption the calculated Balmer decre-

ments may be significantly different, the biggest change 

being in the H a /H /3 ratio. Further calculations are being 

made by Burgess at University College, London. 

4 2 J. G. Baker and D. H. Menzel, Astrophys. J. 88, 52 (1938). 
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3 . Photoionization from 2pq Configurations 

Calculations have been made§ for all ions with 
outer 2pq configurations likely to be of importance in 
gaseous nebulae. Exchange atomic wave functions 
have been used for|| Ne°, 0° , N°, C°, Na+, Ne+, 0 + 
N+ Mg+ 2 , Ne+ 2 , 0 + 2 , Ne+ 3, 0+ 3 , and Ne+ 4 . Some use 
has also been made of approximate analytic wave 
functions and of a general formula obtained by Burgess 
and Seaton. 4 3 Continuum wave functions calculated 
with allowance for potential and exchange distortion 
have been used for ionization of the neutral atoms and 
singly ionized positive ions. For the higher stages of 
ionization, distortion effects were found to be of little 
importance. The cross sections may be expressed as 

av= 10~1K:(i*SL->fr-1S'L') 

XB^a(j-^ + ( l - a ) ^ — J J cm 2 . (54) 

The coefficients C given in Table X I have been cal-

TABLE XI I . 

Ion Β s α Ion Β 5 α 

Ne° 2.5 1 4.3 N a + 4.0 2 4.2 
F° 3.7 1 4.1 Ne+ 5.0 2 3.8 
0° 5.7 1 4.0 F + 6.4 2 3.1 
N° 8.9 1 3.1 0+ 8.1 2 2.45 
C° 15.8 1 1.9 N+ 10.2 2 2.06 
B° 31 C + 12.9 2 1.67 

Mg+2 2.6 2 2.65 A l + 3 1.9 2 1 
3.2 2 2.4 Mg+3 2.3 2 1 

Ne-*2 3.82 2 2.07 N a + 3 2.7 2 1 
F+ 2 4.5 2 1.7 Ne+ 3 2.95 2 1.20 
Ο-Ηί 5.23 2 1.30 F+3 3.1 2 1 
N"^ 6.0 2 0.9 0 + 3 3.33 3 1.82 

S i + 4 1.6 2.3 1 
A l + 4 1.8 2.3 1 
Mg+ 4 1.9 2.3 1 
N a + 4 2.0 2.3 1 
N e + 4 2.16 2.31 1 
F+4 2.4 2.3 1 

culated from first principles and found to be in agree-
ment with values tabulated by Bates 4 4 (C=Cz_i) . 
In the notation of Seaton, 2 ( a ) 

B= 1 . 7 1 / { σ ΐ + 1 ( Ι ) σ ΐ + 1 ( Κ ) + Κ ι α ) σ Μ ( ^ ) } , (55) 

§ For previous calculations, see D. R. Bates and M. J. Seaton, 
Monthly Notices Roy. Astron. Soc. 109, 698 (1949); M. J. 
Seaton, Proc. Roy. Soc. (London) A208, 408 (1951); L. H. Aller, 
Gaseous Nebulae (Chapman and Hall, Ltd., London, 1956), 
p. 145. 

II I am indebted to Miss C. Froese for the N e + 4 results and to 
D. R. Hartree for Ne + 3 . 

4 3 A. Burgess and M. J. Seaton, Revs. Modern Phys. 30, 992 
(1958), following paper. 

4 4 D . R. Bates, Monthlv Notices Roy. Astron. Soc. 106, 432 
(1946). 

TABLE XI I I . Photoionization of Ne°. 

λ (A) Measured 
ΙΟ" Xa„ 

Calculated 

573 4.8 5.0 
500 7.2 6.2 
400 7.7 7.0 
300 5.4 6.7 

the product of the dipole length and dipole velocity 
matrix elements being used. For all the positive ions 
the σζ_ι are small compared to the σι+ι. Values of Β not 
calculated directly may be estimated with some 
precision using the fact that IB varies little from one 
ion to another. The frequency is v, threshold frequency 
VQ. The quantities B, s, and a are given in Table X I I , 
and the calculated results for Ne° are compared with 
measurements made by Po Lee and Weissler 4 5 in Table 
X I I I . The positive ion results, which are less sensitive 
to the wave functions than those for neutral atoms, are 
probably correct to within ± 2 0 % in most cases. 

4 . Photoionization from Valence Electron States 

Using the quantum defect method, calculations for 

photoionization from valence electron states, similar to 

the Bates and Damgaard 4 6 calculations for transition 

probabilities, have been made by Burgess and Seaton. 

These are reported in the following paper. 4 3 

5 . Photoionization of Neutral Atomic Ca 

The cross section for photoionization of Ca° is 

required for the interpretation of Ca° /Ca + abundance 

ratios deduced from observations of interstellar Cal 

and Ca l l lines. Laboratory measurements by Jutsum 4 7 

give a threshold cross section in very poor agreement 

with results obtained using the Hartree-Fock method. 4 8 

This discrepancy has been explained as a consequence 

of configuration interaction and an attempt has been 

made 2 ( g ) to extrapolate the measured cross section to 

higher energies. Further laboratory work by T. R. 

Kaiser (private communication) has shown this 

extrapolated cross section to be incorrect.If 

4 δ Po Lee and G. L. Weissler, Proc. Rov. Soc. (London) 
A220, 71 (1953). 

4 6 D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. London 
A242, 101 (1949). 

4 7 P. J. Jutsum, Proc. Phys. Soc. (London) A67, 190 (1954). 
4 8 D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London) 

A177, 329 (1941). 
^ Note added in proof {June 17', 1958).—Improved calculations 

[Burgess, Monthly Notices Roy. Astron. Soc. (to be published)] 
give radiative Balmer decrements similar to those obtained by 
Baker and Menzel. A recent experimental determination of the 
elastic electron-hydrogen cross section [Brackmann, Fite, and 
Neynaber, Phys. Rev. (to be published)] is consistent with the 
results of Table X . Field [Proc. Inst. Radio Engrs. 46, 240 (1958)] 
obtains cross sections for (49) in close agreement with our results. 
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DISCUSSION 

L. SPITZER, JR., Princeton University, Observatory, 
Princeton, New Jersey: From a casual glance at the 
energy-level diagram, one might suspect that the ratio 
of the upper transition to the lower transition would 
depend very much on the temperature, perhaps more 
on the temperature than the pressure. Can you explain 
how it is that the temperature disappears in these 
results? 

M . J. SEATON, University College, London, England: 
We have put all the blame on the variations in 
density. Maybe we could have proceeded in a different 
way and assumed the density to be uniform and that 
there were differences in temperature. In point of fact 
we have made other approximations which may tend 
to some extent to cancel the approximation that the 
temperature is constant. We have assumed that the 
ratio n(<y~)/ne is constant, which means that we are 
assuming that the ionization equilibrium remains the 
same in the dense regions and the less dense regions. 
Now this is certainly not going to be correct, but at 
least the approximation of taking the temperature to be 
constant and of taking this ratio to be constant go in 
different directions, and they tend to cancel each other 
in our integrals. 

G . M Ü N C H , California Institute of Technology, 
Pasadena, California: I would like to ask if any estimate 
can be made of the linear scale of the variations in 
density. How large is the dimension of the region over 
which the variation amounts to a factor of 15? 

M . J. SEATON : All I have been speaking about 
depends entirely on the spectrum and, of course, from 
this one cannot deduce anything about the scale, so 
I suggest the question should be addressed to 
Minkowski. 

R . M I N K O W S K I , Mount Wilson and Palomar Obser-
vatories, Pasadena, California: N G C 7027 is a very 
small object. It is of the order of 10 sec of arc, and 
on the best 200-in. photographs which we have, 
one can just see that it is not the structureless cloud 
it looked to be on the older pictures, but that there 
are condensations. But I do not know what the smallest 
condensations are and whether the larger ones which 
one sees are not groups of smaller ones. 

G . M Ü N C H : I wonder if Wilson can tell what is the 
velocity width of the lines. Is it purely thermal or is 
there some turbulent motion? 

O . C . W I L S O N , Mount Wilson and Palomar Ob-

servatories, Pasadena, California: In this nebula the lines 

are double. This is standard in practically all lines of 

planetaries. The nebula is expanding in the usual 
fashion. The lines themselves are not particularly wide 
and my impression is that the turbulence is small. I have 
never measured the individual components, but there 
is nothing exceptionally large about them. 

H . ZANSTRA, Sterrenkundig Instituut, Amsterdam, 
Netherlands: It would be desirable to look for observa-
tional criteria to settle whether actually condensations 
are to be made responsible for the electron concentra-
tions from relative intensities of forbidden lines coming 
out larger than those from surface brightness (or 
the absolute Ba c intensity). 

R . M I N K O W S K I : I think it is a quite likely thing 
that this difference in concentrations is really due to 
condensations, and I would again refer to the observers 
that it would be very desirable to get means of confirm-
ing this highly interesting interpretation. 

L. SPITZER, JR. : If ZanstraY mechanism were 
correct, am I right in assuming that you would then 
have to.blame the observed differences more on the 
temperature than on the densities? In such a case, the 
pressure would be constant throughout the nebula ; the 
regions of high temperature would be regions of low 
density and vice versa. 

M . J. SEATON : I think we would still have the main 
conclusion that it would be necessary to introduce 
density differences, but the numerical results might be 
different. What, eventually, we shall have to do from the 
theoretical side, is to make a quantitative study of the 
ionization equilibrium in nebulae. For this study, our 
biggest handicap has been lack of atomic cross sections ; 
I will report on the status of this material on Thursday. 
Given the results of such a study, it should be possible 
to investigate the Zanstra mechanism in much more 
detail. Theoretical models could be constructed with 
different conditions of temperature and density in 
different regions and a model could then be chosen 
consistent with the observations. 

M . MlNNAERT : The method which has been used by 

Seaton seems perfectly general. Is it possible to apply 

it to the few planetaries where the conditions of ob-

servation are much more favorable and where conden-

sations are really observable and visible? 

M . J. SEATON : The nebulae that look the most 

irregular are the ones for which we obtain the most 

striking condensation effects. An observational difficulty 

is that when you look at the main body of a nebula, 

you see superimposed in the line of sight many regions 
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of different density and different emissivity, and then 
it is difficult to see the structure. It is only when you 
look at the rim of the nebula, where the over-all 
amount of matter is thinning out, that the structure can 
be seen most clearly. 

H . ZANSTRA : One remark occurs to me for finding 
an observational criterion for condensations in which 
the forbidden lines would occur. If one assumes pressure 
equality (although this may not be true because of 
magnetic fields, etc.), one should not forget that the 

electron temperature can be determined from relative 
intensities of forbidden lines. This would apply to the 
region where the forbidden lines are formed. Now, if 
we had another electron temperature determination, 
say, from hydrogen Balmer continuum or something, 
and we got an electron temperature a good deal higher, 
I think one would have a measure of condensation 
directly (under the assumed pressure equality). 

M. J. SEATON : I think there are some exciting 
possibilities in what Zanstra suggests. 
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