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Abstract

In contrast to mono-constrained flows with N degrees of freedom, binary constrained flows
of soliton equations, admitting 2 x 2 Lax matrices, have 2N degrees of freedom. Currently
existing methods only enable Lax matrices to yield the first N pairs of canonical separated
variables. An approach for constructing the second N pairs of canonical separated variables
with N additional separated equations is introduced. The Jacobi inversion problems for
binary constrained flows are then established. Finally, the separability of binary constrained
flows together with the factorization of soliton equations by the spatial and temporal binary
constrained flows leads to the Jacobi inversion problems for soliton equations.

1. Introduction

Separation of variables is one of the most universal methods for solving completely
integrable models, both classical and quantum. If a finite-dimensional integrable
Hamiltonian system (FDIHS) with m degrees of freedom has m functionally indepen-
dent and involutive integrals of motion Ph 1 < / < m, separation of variables [7,14]
leads to the construction of m pairs of canonical variables

{Mit M/} = [vk, v,} = 0 , [ v k , u , } = Skl, \ < k , l < m , (1.1)

and m separated equations

/*(«*, u * , P , , . . . , P.,) = 0, \<k<m. (1.2)

Such pairs are called canonical separated variables.
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For a FDIHS admitting a 2 x 2 Lax matrix, there exists a general method for
constructing canonical separated variables based on the Lax matrix (for example,
see [4-7,14-16]). The corresponding separated equations enable us to express the
generating function of canonical transformation in a completely separated form as an
Abelian integral on the associated invariant spectral curve. The resulting linearizing
map is essentially the Abel map to the Jacobi variety of the spectral curve, thereby
providing a link with the algebra-geometric linearization method [3]. An important
feature of the separation of variables for a FDIHS is that the number of pairs of
canonical separated variables must be equal to the number of degrees of freedom.
However, in some cases, it is found that the existing method may not yield enough
pairs of canonical separated variables. It is a challenging problem [14] to construct the
additional canonical separated variables which are required for separation of variables.

Binary constrained flows of soliton hierarchies, which have recently attracted a
great deal of attention (for example, see [9,11-13]), are cases of this type, and need
to be handled by a different approach. Binary constrained flows admitting 2 x 2 Lax
matrices have IN degrees of freedom. By using existing methods [7,14], the Lax
matrices allow us to directly construct the first N pairs of canonical separated variables
«! , . . . ,uN and v\,... , vN. In this paper, we show an approach for determining the
second N pairs of canonical separated variables and N additional separated equations
for binary constrained flows. The crucial point is to construct a new set of generating
functions B(k) and A (A.) defining uN+i,..., uw by the set of zeros of B(\) and
vN+k = A(uN+k), I < k < N. To keep the canonical conditions (1.1) and obtain
the separated equations (1.2), it is found that certain commutator relations need to be
imposed on 5 (A.) and A (A.), and that A (A.) has some link with the common generating
function of integrals of motion of binary constrained flows, which also provides a
clue for constructing B(X) and A (A.). Having analyzed the separation of variables, the
Jacobi inversion problems can be naturally presented for binary constrained flows.

Separation of variables for soliton equations consists of two steps [16]. The first
step is to factorize 1+1 -dimensional soliton equations into two commuting spatial and
temporal FDIHSs resulting from the spatial and temporal binary constrained flows.
The second step is to analyze the separation of variables for these flows to produce their
Jacobi inversion problems. Finally, combining the factorization of soliton equations
with the Jacobi inversion problems for the spatial and temporal binary constrained
flows enables us to establish the Jacobi inversion problems for soliton equations. We
will use the AKNS equations [1] to illustrate the whole process. Of course, the
approach adopted can be applied to the whole AKNS hierarchy and other soliton
hierarchies.
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2. Separation of variables for binary constrained flows

Let us first describe binary constrained flows admitting 2 x 2 Lax matrices and then
show an approach for constructing 2N pairs of canonical separated variables.

Assume that a soliton hierarchy

^, u = (uu...,uq)
T, n > 0 , (2.1)

Uln Kn(u) J

where J is a Hamiltonian operator, is determined by a spectral problem

<f>x=U<j> = U(U, k)4>, U = (Uyhxl, 0 = (01, <t>2)\ (2.2)

and the associated spectral problems

The compatibility conditions of the adjoint spectral problem

T f = (rlru^2)
T (2.3)

and the adjoint associated spectral problems rf/,n = — V(n)T\lr= — V(n)r(w, ux,... ;
still give rise to the same soliton hierarchy (2.1).

Upon introducing iV distinct eigenvalues ku ... ,kN,we have the spatial system

<#» = U(u, kj)<f>U), # » = -UT(u, kj)i,u\ (2.4)

where (/>0) = (<f>ij, 02;) r . ^ 0 ) = (i^ij» foj)T, 1 5 7 < N, and the temporal system

00) _ y(")(Mi x;)(/>
0), t/r,01 = - VMT(u, kj)fu\ (2.5)

where 1 <j < N. Let us take the Bargmann symmetry constraint

x > ^ M * o \ (2.6)
where Ej are normalized constants, and suppose that (2.6) has an inverse function

Replacing u with f in N replicas of (2.4) and (2.5), we obtain the so-called spatial
constrained flow

#» = U(f, kj)4>u\ W = -UT(f, kjW«\ (2.7)
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and the so-called temporal constrained flow

0O) = vM(f,fx,... ;kj)4>u\ W = -VMT(f,fx,... ;Xj)if^, (2.8)

where 1 < j < N. Now if <f>y and fy solve two constrained flows, then u =
f (f i , . . . , £,) gives rise to a solution to the soliton equation u,n = Kn(u). The above
manipulation is called binary nonlinearization [10,13].

It is known that constrained flows (CFs) have natural Lax matrices generated from a
solution M(k) = (££> _*%) to Mx = [U, M] and M,n = [ VM, M] (for example, see
[2,17]). To determine 2N pairs of canonical separated variables for binary CFs, based
on Lax matrices M (A.), we search for two sets of generating functions A (A.), B (A.) and
A (A.), fi(A.) such that

(B(k), B(ji)} = [B(k), BQi)} = (A(k), A(ji)} = [A(k), AQi)) = 0,
( ( = 0,

- B(k) ~ ~ B(n) - B(k)
, [A(k),B(n)} =

under the standard Poisson bracket

2 N

( 2 1 0 >

Two such sets of generating functions can be constructed from Lax matrices M (A.)
and a common generating function of integrals of motion for binary CFs. We expect
each pair of generating functions to yield N pairs of canonical separated variables,
through defining u\,... , uN by the set of zeros of B (X), uN+i,... , U2N by the set of
zeros of B(A.), and

vk = A ( u k ) , v N + k = A ( u N + k ) , l < k < N , (2.11)

which will also give us all 2N separated equations. Therefore the separation of
variables for binary CFs becomes the problem of finding two sets of generating
functions satisfying the above commutator relations (2.9). The whole process will be
illustrated by the AKNS equations.

3. Binary constrained flows of the AKNS equations

Let us start from the AKNS spectral problem
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and take the associated spectral problems

4>, = VM<j> = VM(u, k)<j>, V(n) = Y (a> b> \ r " , (3.2)

with a-,, bj, c, being defined by Oo = — 1 , b0 — c0 = 0, at = 0, b\ = q, C\ — r,
a2 = qr/2, ..., (£ ' , ) = L(c

b\), ak+l = 3-l(qck+l - rbk+l), k > 1, where L is

given by L = \ (aI™d~-lq
q _a+^g-.r)- The compatibility conditions of (3.1) and (3.2)

give the AKNS hierarchy

J j // y ^ ' n - 1 ' (33)

which contains the AKNS equations

qh = -qxx/2 + q2r, rh = rxx/2 - r2q. (3.4)

Introducing Â  distinct eigenvalues Xjtl <j < N, we have

+ q<t>2, <&2x =r<f>x+ A<t>2,

= -q^i ~ AvI/2,

and the Bargmann symmetry constraint reads as

UJ (3-6)
where (-, •) denotes the standard inner product of RN and <£, = (0,i. • • • . (PIN)7,

*, = (i/fn,... ,iriN)T, i = 1,2, A = diag(X,,... .A.^). Therefore the spatial
constrained flow (2.7) is the following *-FDIHS [13]

3F, ^ 3F, T 3F, , 3F,
^ ^ ^ ^ a 7 )

with the Hamiltonian Fx = (A*2, ^2) - (A*!, <t>,) + (*2, * i ) (* i , $2)- Under the
symmetry constraint (3.6) and the *-FDIHS (3.7), the binary f2-constrained flow (2.8)
can be transformed into the following f2-FDIHS

3F2 3F2 3F2

* * • ^ •

with the Hamiltonian

F2 = (A2vl>2, <t>2) - (A2*,, <&,) + (*2, (D.XA*,, 4>2>

+ (A*2,
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The Lax matrix M = (££> _*$,) for the FDIHSs (3.7) and (3.8) is given by [8]

7 = 1 > 7 = 1

A straightforward calculation yields

P2 1
P(X) := A2(k) + B(k)C(k) =

N [ P

where the P, and PN+j are 2N involutive integrals of motion for (3.7) and (3.8),

1 < ^ 1

2

It is easy to verify that

+ 4^i7 4>2j fzk<t>u], 1 < j < N,

PN+j = r (

N IN p V
JPJ + pZ+j> - E f ) •

\y=i /

/ N
 P\

 N

) ^ + * > ^ + P - E f
With respect to the standard Poisson bracket (2.10), it is found [8] that

= 0,

k — i
1 (3.11)

{A(A), C{n)} = [C(k) - CQi)],
k - /I

? - A (A.)].
k — fx

Then {A2(k)+B(k)C(k), A2(ix)+B(fx)C(ix)} = 0 implies that the integrals of motion
Pj and P/v+y, 1 < j < N, are in involution in pairs. The AKNS equations (3.4) are
factorized by the *-FDIHS (3.7) and the f2-FDIHS (3.8). Namely, if $, , 4>2, * , and
* 2 solve the x-FDIHS (3.7) and the f2-FDIHS (3.8) simultaneously, then (q, r) given
by (3.6) solves the AKNS equations (3.4).

https://doi.org/10.1017/S1446181100007987 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100007987


[7] Binary constrained flows of soliton equations 135

4. Separation of variables for the AKNS equations

The commutator relations (3.11) and a common generating function of integrals of
motion

J=l

enable us to construct two- sets of generating functions which lead to 2N pairs of
canonical separated variables. The required two sets of generating functions for the
AKNS equations (3.4) are the following:

A(X) = B(X) - A(X) -

N

B(X) = B(X) - 2A(X) - C(X) = 2 +
j=\ " "'

AW = 1 ^ ^ ^ + ^ ^ . B(X) = l+l-jri<Pli+4>2j)\ (4.2)

Let us now introduce uk, uN+k, 1 < k < N, by

SW = 2 ^ , «W = S (4.3)

where /?(A.), R(X) and /iT(A.) read as

N N N

X-kk). (4.4)
*=1 *=1 k=\

A direct computation shows the following result.

THEOREM 4.1. Assume that Xjt 4>ijt r/nj, i = 1, 2, 1 < j < N, are all real, and
« i , . . . , uN are single zeros of B(X). Then the variables u\,... , U2N defined by (4.3)
and (4.4), and the variables Ui,... , V2N defined by the corresponding formula (2.11)
are canonically conjugated, that is, they satisfy the commutator relations (1.1) with
m = 2N.

It follows from (4.3) and (4.4) that

j
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which leads to
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<t>v) = 1 < j < N.

By substituting uk into A (A.) of (4.1), uN+k into A (A.) of (4.2) and noting

(A(A.) - B{k)f - B(k)B(k) = A\k) + B(k)C(k) = P(k),

one gets the separated equations (1 < k < N)

vk = B(uk) - A(uk) - A(uk) = y/P(uk) - A(uk)

\

vN+k = A(uN+k) =

p P2 i N p
J i +J Y^ J

-kj (uk-kjy] jr[uk-k/
"N+j2

*-^ UN+k - kj

Replacing vk by the partial derivative dS/duk of the generating function 5 of canon-
ical transformation and interpreting Pj and PN+j as integration constants, the above
separated equations give rise to the Hamilton-Jacobi equations which are completely
separated and can be integrated to give the completely separated solution for S

, . . . , u2N) =
k=lN r /•"*

- J2 PN+j In
uk - kj

(4.5)

The linearizing coordinates are then

dpJ 2ttJ (*-*;
dk,

QN+J =
N+j

N r /•"» P
_ V^ / rN+j

uN+k -kj

(4.6)

where 1 < j < N. These coordinates Qj and QN+j constitute the action-angle
variables together with P} and PN+J, 1 < j < N. By using (3.9) and (3.10), the
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linear flows induced by the x-FDIHS (3.7) and the f2-FDIHS (3.8) lead to the Jacobi
inversion problem for the .x-FDIHS (3.7)

(4.7)
QN+J — YN+J + 2PN+JX,

and the Jacobi inversion problem for the f2-FDIHS (3.8)

N

2Qj=Yj
J t = l u= i

h,

(4.8)

QN+j = + P
N+J

j ~ J2 ft ) h,
k=i

where 1 < j < N, Qj and QN+J are defined by (4.6), and Yj and yj, 1 < j < 27V,
are arbitrary constants.

Since the AKNS equations (3.4) are factorized by the J : - F D I H S (3.7) and the t2-
FD1HS (3.8), combining the Jacobi inversion problems (4.7) and (4.8) gives rise to
the following theorem.

THEOREM 4.2. The AKNS equations (3.4) lead to the Jacobi inversion problem
determined by

:dX

k=\

2k) - kj Pk P2
N+k •) + 7 h,

2P
N+j

PN+j j - J^ Pk) t2,
k=l

where 1 < j < N, and Yj and yN+j, 1 < j < N, are arbitrary constants.

We remark that the above Jacobi inversion problem for the AKNS equations (3.4) is
different to that in [18], which was generated from another class of canonical separated
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variables for the binary constrained flows (3.7) and (3.8). The above manipulation
may also be similarly applied to the whole AKNS hierarchy, and the approach depicted
in Section 2 can be applied to other soliton hierarchies such as the KdV hierarchy and
the Kaup-Newell hierarchy.
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