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The following curious example illustrates this fact. 
Suppose we have a regular heptagon, a regular hexagon, a regular 

pentagon and four equilateral triangles, all the sides being of equal 
length, and we wish to make a polyhedron from them, each solid 
angle being a trihedral angle. 

The number of faces F= 7 ; the number of edges 
E = + ( 7 + 6 + 5 + 4 . 3 ) = &  30=15,  

the number of vertices V =  + .30= 10. 
Hence F+ V = 17 = E + 2,  and Euler's condition is fulfilled. 
But i t  is obviously impossible to construct such a surface, as there 

are only 6 other faces to fit to the 7 sides of the heptagon. 
H. V. MALLISON. 

1074. Note on approximations. 
This note provides an  alternative to a section of Mr Inman's 

article, " What is Wrong with the Teaching of Approximations ? " 
(Gazette, XVI, December 1932, p. 306). 

I n  the case of products, say ( A  & h )  ( B  5 k ) ,  I suggest the following 
straightforward method. 

Maximum limit A B + A k + B h + h k  
Minimum limit A B - A k - B h + h k  

Difference 2Ak+2Bh 

If all the measurements were precisely accurate the true product 
would be A B h h k k A k h B h .  

Now as h and k are fractional, hk is less than either h or k ,  so hk 
must be omitted, and we are left with A B  = A k  I Bh. 

If h=E, the product is A B  i- h ( A  + B ) .  
In  example (I),  p. 309, A=2.68 and B=4.12, 

h = +005, and so h ( A  $ B )  = .005 (6.8) = .034. 

As only two places of decimals are here allowable, the correct 
answer is 11.04 i .03 sq in. 

Subtraction requires a little thought. Take for example 

41.3 5 .05 
11.2 z .03  
-- 

30.1 z . 1  

If the variations are taken of the same sign, the result will be 30.1, 
but if of contrary sign the result will be either 30 or 30.2. 

A. S. PERCIVAL. 
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