The following curious example illustrates this fact.

Suppose we have a regular heptagon, a regular hexagon, a regular pentagon and four equilateral triangles, all the sides being of equal length, and we wish to make a polyhedron from them, each solid angle being a trihedral angle.

The number of faces F=7; the number of edges

$$E = \frac{1}{2}(7+6+5+4.3) = \frac{1}{2} \quad 30 = 15$$
,

the number of vertices $V = \frac{1}{3} \cdot 30 = 10$.

Hence F + V = 17 = E + 2, and Euler's condition is fulfilled.

But it is obviously impossible to construct such a surface, as there are only 6 other faces to fit to the 7 sides of the heptagon.

H. V. MALLISON.

1074. Note on approximations.

This note provides an alternative to a section of Mr Inman's article, "What is Wrong with the Teaching of Approximations ?" (Gazette, XVI, December 1932, p. 306).

In the case of products, say $(A \pm h)(B \pm k)$, I suggest the following straightforward method.

Maximum limit	AB+Ak+Bh+hk
Minimum limit	AB - Ak - Bh + hk
Difference	2Ak+2Bh

If all the measurements were precisely accurate the true product would be $AB \pm hk \pm Ak \pm Bh.$

Now as h and k are fractional, hk is less than either h or k, so hk must be omitted, and we are left with $AB \pm Ak \pm Bh$.

If h = k, the product is $AB \pm h(A + B)$.

In example (1), p. 309, A = 2.68 and B = 4.12,

h = .005, and so h(A + B) = .005(6.8) = .034.

As only two places of decimals are here allowable, the correct answer is $11.04 \pm .03$ sq in.

Subtraction requires a little thought. Take for example

$$\frac{41 \cdot 3 \pm 05}{11 \cdot 2 \pm 05} \\ \frac{11 \cdot 2 \pm 05}{30 \cdot 1 \pm 1}$$

If the variations are taken of the same sign, the result will be 30.1, but if of contrary sign the result will be either 30 or 30.2.

A. S. PERCIVAL.

ERNEST WILLIAM HOBSON

October 27, 1856 - April 18, 1933