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EXTENSION OF LOCALISED APPROXIMATION BY
NEURAL NETWORKS

NAHMWOO HAHM AND BUM I I HONG

We prove generalised results for localised approximation by generalised translation
networks. We also show the relationship between the minimum number of neu-
rons in the generalised translation networks with one hidden layer and the desired
accuracy where the target functions are in a subset VllP([—1,1]") of the Sobolev
space W1>p([-l,l]*).

1. INTRODUCTION

In recent years, there has been a great deal of research in the theory of approxima-
tion of real valued functions using artificial neural networks with one hidden layers [1,
2, 5, 6, 7, 8]. An interesting question in the theory of neural networks is to determine
the minimum number of neurons in the hidden layer of a feedforward network required
to provide a preassigned accuracy in approximating each target function in a known
class of functions. Mhaskar [7] showed that if the target function belongs to Sobolev
classes, we need O(e~s) neurons in the hidden layer of the neural network to achieve the
approximation order e. In this case, the number of neurons in the hidden layer increases
exponentially along with the dimension. This causes a serious problem in applications
where it is necessary to approximate functions depending on many variables.

Chui, Li and Mhaskar [3] suggested a localised approximation to cure this problem.
An intuitive idea of a localised approximation is the following. Assuming that the target
function is defined on [—1, l ] s , we divide the cube into ns small portions and construct
a neural network with a small number of neurons on each small portion. To motivate
a localised approximation, we consider a Lebesgue measurable function / denned on
[-1,1]2 which is zero almost everywhere outside a compact set K c [-1,1]2 and we
divide [—1,1]2 into n2 subsquares. If die is the diameter of K, then / is mainly nonzero
over (dx/2) wn2 subsquares. But, dx is not an integer and hence we consider c\ many
subsquares around the boundary of K and this leads us to infer that / is nonzero over
at most (d/f/2)27rn2 + ct subsquares. Note that (dx/2)27rn2 + Ci ^ c{cPK + l /n 2 )n 2
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where c := max{7r/4, c\}. Thus / is nonzero over at most c(d2
K + l /n 2 )n 2 subsquares.

Then we construct a subnetwork P with c(d?K + l/n2)n2L neurons that has the same
approximation order as the network which approximates / over [—1,1]2, where L is
the number of neurons that are needed to approximate / over a subsquare in which /
is nonzero. This method has an advantage when the target function changes on a small
part of the square since we only need to retrain neurons related to that part.

Chui, Li and Mhaskar [4] derived the degree of localised approximations by a neural
network with the univariate squashing activation function. In this paper, we establish
the degree of localised approximation by a generalised translation network.

2. PRELIMINARIES

We adopt the following notation. In this paper, the symbol s will denote a fixed
positive integer, s ^ 1. If A c Ks is a (Lebesgue) measurable set, and / : A —¥ R is a
measurable function, we write

{
ess supI/(t) I

t€A

The space L"(A) is defined to be the class of all functions / : A ->• R for which
LP(A) < OO. AS usual, we consider two functions to be equal if they are equal almost

everywhere in the measure theoretic sense.

Let W p ([ - l , l ]*) := W1'P([-1,1]S) denote the Sobolev class of degree 1. Alter-
natively, the class Wp([—1,1]*) consists of functions which have, at almost all points
of [—1,1]*, all partial derivatives up to order 1 and all of these derivatives are in
L p ( [ - l , l ] * ) . For / e Wp{[-l,l]s), we write

where, for the multi-integer k = (ki,k2, • •• ,k3) € Z s , 0 ^ k ^ 1 means that each
s

component of k is nonnegative and does not exceed 1, |k| = J ] \ki\ and

Dkf =
dx? • • • dxks

Let Vp([—1,1]*) be the set of all Lebesgue measurable functions / such that

I]») ^ 1- T h e n ifc i s c l e a r t h a t
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d
For positive integers d, s with d ^ s, the class L\fc consists of all functions g :

-» K such that JK\g(x)\pdx < oo for every compact subset K C Rd and MdXs
denotes the set of all real valued dxs matrices. Let N be a positive integer, 1 $C p $C oo
and 4> : Rd —>• R. A generalised translation network rp on Rs with N neurons means
a function of the form

N
(2.1) V(x) = 53a*<^fcx + b*)

fc=i

where Ak e Mdxs, bfc € Rd and afc € R. The set of all such functions with a fixed N
will be denoted by VP̂ yv.s •

The degree of approximation of a function / € £ ^ ( [ - 1 , l]s) by such networks is
defined by

If a ^ 1 is not an integer, we define

E<t>;a,p,s{f) •= E4>;[a],p,s(f)>

where [•] is the Gauss function.

We consider networks where each neuron may evaluate a different activation func-

tion. If <7i,... , <7JV are functions in Lf^c , we define

;{gi,... ,gw},p,s)
N II 1

/(x) - J]cfcfffc(>lfcx) : cfc 6 R, Ak 6 M d x s and x £ l J

fc=i HLP([-I,I] ') J
and

The quantity ^ ( / ; {51,... , <7JV},P, s) measures the degree of approximation of / when
the neurons evaluate the functions { ĵt}, but only on an inner product with the input
variables without any thresholds bk as in (2.1). When one considers gk(x) •= $(x + bfc)

JV
for k with 1 ^ k ^ N, one may think of ^Z cfe5fc(-̂ fex) as a generalisation of the gen-

fc=i

eralised translation networks. The quantity £N,P,S (/) measures the degree of approxi-
mation when the neurons may evaluate any activation functions, even if the activation
functions are dependent on the target function / . We define eQ,p,s(f) '•— £[a],p,s(f) f°r

any real number a ^ 1.
For a Lebesgue measurable function / on Rs, we denote by A(/) the diameter of

the essential support of / . For / g Vp([—1, l]s), and positive numbers r and t, we
write

A(/,r ,0 : = ( ( * ( / ) ) ' + r - ) i .
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3. MAIN RESULTS

In this section, we state two theorems that are main results of this paper.
Let 1 ̂  p ^ oo, and let d,s,n be integers with 1 ̂  d ^ s and n ^ 1. For

<f> 6 Lf£, we define

E+.,nj,,.(V*([-lt I}3)) := infjt > 0 : sup E*iA(/,n,t),p,.(/) ^ 1/nj.
1 /evp([-i,i]«) J

The quantity i?^;n)j,iS(Vp([—1, l]s)) gives the minimum number of neurons in a network
with one hidden layer, each evaluating the activation function cj>, that are necessary to
guarantee localised approximation of every function in Vp([—1,1]5) up to order 1/n.

THEOREM 3 . 1 . Let d,s be integers such that 1 ^ d ̂  s, and let 1 ^ p ̂  oo.
Let 4> : Rd —> R be infinitely many times continuously differentiable in some open
sphere in Rd. Assume that for some b in this open sphere,

(3-1) £>k<£(b) ? 0

for any k e Zd and k > 0. Then, for J > 0, we have

l, l] s)) ^ cn*+*, n > 1,

where c is a positive number depending on S, p and s but is independent of n.

This theorem shows that locahsation provides a near optimal order of approxima-
tion.

REMARK. Some examples where (3.1) is satisfied are the following, where for x € Rd,

(d V/2

we write |x| = I J2 x? J :

The squashing function 4>{x) = (l + e~x) , d — 1,

Generalised multiquadrics <KX) = (l + lxl2) ! a ^ Z, d ^ 1,

The Gaussian function 0(x) = exp(- |x |2) , d ^ 1,

f |x|29-dlog|x| if d is even
Thin plate splines <£(x) = <

\ |x|2<f-rf if d is odd

for d ^ 1 and q el, with g > d/2.

For 1 sj p ̂  oo, we define

en,P, s(Vp([-l , I]3)) := infjt > 0 : sup eA(/,n,t),P,.(/) ^ ! / « } •
1 /evp([-i,i]») J

This quantity shows the minimum number of neurons in a network with one hid-
den layer, each evaluating {#*}, that are necessary to approximate every function in

locally up to order 1/n.
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THEOREM 3 . 2 . For 1 ̂  p < oo and 1 ̂  d < s, we have

[ - l , 1]*)) ^ cn° logn, n ^ 1,

where c is a positive number depending on p and s, but independent of n.

This theorem shows that the number of neurons in a network with one hidden
layer is at least cns log n and implies that the optimal order ns cannot be reached by
localisation.

4. P R O O F S

To prove Theorem 3.1, we use the B-spline functions. The B-spline of order 0 is
defined to be the characteristic function of the interval [0,1] and is denoted by No. For
any integer m ^ 1, Nm is defined recursively by

f1

Nm(x) := / Nm.i(x - t) dt, x G R.
Jo

Then Nm has a compact support [0,m] and Nm is (TO — 1) times continuously differ-
entiable. In addition, ||JVm||Li([Oim]) = ||iVm||Loo([0)m]) = 1 and \\Nm\\LP{[0}m]) sj 1 for
1 < p < oo.

The tensor product B -splines are defined by

JV£(x) := [[Nm(xk), x=(xi , . . . ,xs)eRs.
fc=i

We prepare with two lemmas to prove Theorem 3.1.

LEMMA 4 . 1 . Let <j> satisfy the conditions of Theorem 3.1, and let m be an
integer larger than (s2 + s + <5)/5. For any integer n ^ 1 and multi-integer k , tiere
exists a ip e n^ . r n i ] s such that

l l jV8 — (p\\T.<x>(t_i I I J \ ^ cn~s~1

where c is a positive constant depending on S, m and s.

P R O O F : The result is immediate from [7, Theorem 2.1] when we replace m— 1 by
D

According to [9], there exists a bounded linear operator T : Wp([—l,l]') ->
Wp([-2,2]s) such that T(f) = f almost everywhere on [-1,1]". Since T is a bounded
linear operator, there exists a constant c such that

\\T(f)\\wP([-2,2]>) ^
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for every / 6 Wp([—1, l]s). Let ip be an infinitely many times continuously differen-
tiable function that takes the value 1 on [-1,1]" and 0 outside of [-3/2,3/2]". Then
the function T(f)ip equals / on [—1,1]* almost everywhere and is identically 0 out-
side [-3/2,3/2]" and ||^(/)V)||M,p(t_2i2]») ^ C||/IIIVP([-I,I]«)- We denote the extension
T(f)tp of / by the symbol / .

Now we have the following lemma.

LEMMA 4 . 2 . Let /k,n be the cube with centre (2k + l)/(2n) and side \/n for
any integer n ^ 1 and multi-integer k € Zs, where (2k + l)/(2ra) = ((2ki + l)/2n, • • • ,
(2fcs + l)/2n). Define

(4.1) Sn,m(/)(x) = n« (f /(t)dt/(t)dtW(nx-k),

where —m — l ^ k ^ n — 1 means that -m —
any / € V ( [ - l , l ] ' ) and n ̂  1,

n — 1 f o r l ^ z ^ s . Then, for

D
where c is a positive constant depending only on s.

PROOF: See Mhaskar [4].

Lemma 4.1 and Lemma 4.2 can be used to prove Theorem 3.1.

PROOF OF THEOREM 3.1: We choose an integer m larger than (s2 + s -f S)/5
and M such that the summand in (4.1) does not exceed MA(f,n,n3). We construct a
neural network

P(x)=n* {[
Then P is a network having at most AfA(/, n, ns+<5) neurons by Lemma 4.1. In
addition, we have, by Lemma 4.1 and Lemma 4.2,

11/ -

C C

- + -
n n
c
n
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This completes the proof. 0

Since Holder's inequality says that ||yr||i,i([_iii]j) ^ | | / | |LP( [ - I , I ]» ) holds for a
Lebesgue integrable function / and 1 ^ p , it is enough to show that Theorem 3.2
holds for p = 1. For this purpose we prove the following two lemmas.

LEMMA 4 . 3 . Let m, s ^ 1 be integers and 0 < a < 2 ~ m s " 1 / 2 . Define

B(a) := {x e K s : \xi\ < a } .

If F is a function from Rs into [0, oo), and is zero outside B(a), then

PROOF: Let Ai,... , Am be d x s matrices and let u i , . . . , um be unit vectors in
Rs such that AiUi = 0, 1 ^ i < m. Let

( 1 i f x e B(a),
Xa(x) := I

I 0 otherwise.

We define

and inductively, for 2 ^ n ^ m,

/n(x) = /n_X(x) - /n_l(x + 2"-1

Then, directly from the construction of /„ for 1 ̂  n ^ m we have

| / n ( x ) | < l , fo rxeR 8 and /n(x) = 0, for x ^ 5 (

In addition, by mathematical induction,

(4.2) I 1 1 1 /n(x)F(x) dx =

and

(4.3) f fn(x)g(Ajx)dx = 0, l ^ j ^ n , g € L]?c.
•n-i.i]'

For n — 1, we have

h(x)F(x)dx= f
- i , i ) 3 •'[-l.i]* [-1,1]*

= f Xa(x)F(x)dx
•/[-l.l]'

- \\F\\LH[-I,IV)
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and

/ fi(x)g(Aix) dx. = / g(Aix)dx- / 5(^1 (x - y/saui)) dx
J[-l,l]' JB(a) JB(a)

= I g(Axx)dx- / g(Axx)dx
JB(a) JB^a)

= 0.

If we assume that (4.2) and (4.3) hold for n = k with k < m, we have, for
n = fc + 1,

/ / fc(x)F(x)dx-

/fc+1(x)F(x)dx
[-1,11s

since x + 2fc^/saufc+i ^ 5(a) for x € -B(a), and

/ fk+i(x)g(Ajx)dx.

= fk{x)g(Ajx)dx- fk(x + 2ky/sauk+i)g(Ajx)dx
J l-i,i]' Jl-i,i]'

= / fk(x)g{Ajx) dx- I fk{x)g(Aj (x - 2fcv/sauk+i)) dx
•/[-i,i]s •/[-1,11s

= 0,

since g(Aj(x - 2 f cv^a uk+i)) G ̂ c for 1 ̂  j ^ A; and Afc+iufc+i = 0 for j — k + 1.

By the definition of em, i , s (F) , it is clear that em,i>s(.F) ^ ||-^*1||i,i([_i,i]a) - On the

other hand, if we take g\, • • • , gm € L{oc and f\,... , fm as above, then we have

F(x)fm(x)-J2ck9k(Akx)fm(x)

| F (x ) / m (x ) |dx
[-1,11s

This completes the proof.

LEMMA 4 . 4 . Let 0 < a < 1 and define, for x 6 Ks,
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where ||x||2 = J2 xi • Then there exist constants a and 0 depending only on s such

that

ll-Fllna-1,1]*) = oca3 and ||-F||wi([_i,i]») ^ 0a3'1.

PROOF: We observe that F is supported on B(a) and is continuously differen-
tiate. Therefore

JB(a) V

= / dx 2 52 / x2

JB(a) 8a2i^JB(a)

sas--^V— 2s-V
sa2 *-" 3

t=i

i...dxs

:=aa°.

Since /[_11]3 — dx = / B ( o ) | (2x</sa2) | dx = (2sas-1)/s, we have

= aas 28os-1

— 0a3-1.

This completes the proof. U

Now we prove Theorem 3.2 using Lemma 4.3 and Lemma 4.4.

PROOF OF THEOREM 3.2: Let N := en,i)S(ViiS), and a := (20)/(an), where a,0
are the constants in Lemma 4.4. Let m be the largest integer less than
n~3)N. This implies that

(4.4) m
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Assume that 0 < a < 2~ m s~ 1 / 2 as in Lemma 4.3. We define

Note that the diameter of the essential support of iV||ir||wi([-i,i]») *s ^

^/ll-P'llw1([-i,i]») belongs to Vp([-1, l]s). In addition, (4.4) implies that m is the

largest integer less than A(ir/||F||H/ri([_1|1]S),n,AT). According to the definition of

en,i,s{Vp([-l,l]s)), we have

il]Myntff),i,.{\\F\\wHl_ltiy))
 = £m'hs{\\F\\WH[_1AV)

By Lemma 4.4,

n n

On the other hand, we have, by Lemma 4.3 and Lemma 4.4,

(4-6) £m,i , s (F) = | | .F | |LP([-I ,I]«) = aa8.

Therefore, (4.5) and (4.6) show that

aa3 ^ , that is, — = aa ^ —.
n n n

This is a contradiction to the assumption and hence

(4.7) a > 2"ms-1 / 2 .

Let ci := (20y/s)/a. Then (4.7) implies that

log n ^ m log 2 + log ex ^ c^m

for some constant C2 € K. Therefore, Iogn/c2 ^ m and

N>mns

:= cns logn

where c = as I (c2{{2^fsj3)3 + as)\ . This completes the proof.
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