A SUFFICIENT CONDITION FOR THE SECOND DERIVED FACTOR GROUP TO BE FINITE

by J. R. HOWSE*

(Received 10th August, 1985)

1. Introduction

This paper concerns an application of an algorithm for the second derived factor group as described by Howse and Johnson in [3]. This algorithm has as its basis the Fox derivative (see [1]), a mapping from the free group F to the group-ring $\mathbb{Z}F$, defined as follows: let X be a set of generators of a group G, and let $w = y_1 \dots y_k$ with each $y_i \in X^{\pm 1}$. Then the Fox derivative of the word w with respect to any generator $x \in X$ is defined to be

$$\frac{\partial w}{\partial x} = \sum_{i=1}^{k} a_i, \text{ where } a_i = \begin{cases} y_1 \dots y_{i-1}, & \text{when } y_i = x, \\ -y_1 \dots y_i, & \text{when } y_i = x^{-1}, \\ 0, & \text{when } y_i \neq x^{\pm 1}. \end{cases}$$

Let $\phi: F \to G$ (and also $\phi: \mathbb{Z}F \to \mathbb{Z}G$, etc.) and $\psi: G \to G/G'$ (and also $\psi: \mathbb{Z}G \to \mathbb{Z}(G/G')$, etc.). The Jacobian $J = \partial R/\partial X$ of the presentation $G = \langle X | R \rangle$ is the $|R| \times |X|$ matrix whose (i, j) entry is $\partial r_i/\partial x_j$. Let $G/G' = \{z_1, \ldots, z_n\}$ and A be a matrix over $\mathbb{Z}(G/G')$. Any entry $\gamma \in \mathbb{Z}(G/G')$ of A is of the form $\gamma = \sum_{i=1}^{n} \alpha_i z_i$ and thus defines an *n*-tuple $(\alpha_1, \ldots, \alpha_n)$. The *n*-tuple corresponding to $z_j \gamma (1 \le j \le n)$ is a rearrangement of this, and we let $m(\gamma)$ denote the $n \times n$ matrix having this as its *j*th row. Let m(A) denote the matrix of integers obtained by applying *m* to each entry of A. Then the integer matrix $M = m(\psi\phi(J))$ is a relation matrix for the group $G'/G'' \oplus \mathbb{Z}^{\oplus (n-1)}$. The invariant factors of G'/G'' can be computed from M by diagonalisation.

The proof of this algorithm together with examples illustrating it and applications of it can be found in [2] and [3].

This paper applies the algorithm to 2-generator groups with finite derived factor groups. The main result obtained is that the second derived factor group is finite if the determinant of the matrix, with the above notation, $A_{ij} = m(\psi \phi(\partial r_i/\partial x_j))$ for some $r_i \in R$ and $x_j \in X$ of the group presentation $G = \langle X | R \rangle$ (|X| = 2), is non-zero. This result is then applied to groups with cyclic derived factor group and which have a presentation which

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

contains at least one relator having a small number of syllables; in which case much more explicit conditions for the second derived factor group to be finite are determined.

In the application of the algorithm the integer matrix $m(\psi\phi(\partial r/\partial x))$ can be represented by the "polynomial" $\psi\phi(\partial r/\partial x)$, e.g. if $r = x^3$, then $\psi\phi(\partial r/\partial x) = 1 + x + x^2$ and this can represent the integer matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(assuming that $G/G' \cong \mathbb{Z}_3$). Moreover the integer relation matrix $m(\psi \phi(J))$ can be represented by the "polynomial" matrix $\psi \phi(J)$. Indeed row and column operations can be performed on this "polynomial" matrix.

2. The main theorem

Consider the 2-generator group $G = \langle x, y | r_1, \dots, r_q \rangle$, where $2 \leq q < \infty$, with finite derived factor group and |G:G'| = n. For $i = 1, \dots, q$, let $r_i = x^{a_{i1}}y^{b_{i1}} \dots x^{a_{ik}}y^{b_{ik}}$ where $a_{ih} \neq 0$ and $b_{ih} \neq 0$ for $h = 1, \dots, k_i$, if $k_i > 1$.

Let $\sum_{h=1}^{k_i} a_{ih} = a_i$ and $\sum_{h=1}^{k_i} b_{ih} = b_i$. Let $G/G' = \{z_1, \dots, z_n\}$. Then the Fox derivatives of the relator r_i with respect to the generators x and y, modulo G', are of the form

$$\frac{\partial r_i}{\partial x} \equiv \alpha_{i1} z_1 + \dots + \alpha_{in} z_n \pmod{G'},$$
$$\frac{\partial r_i}{\partial y} \equiv \beta_{i1} z_1 + \dots + \beta_{in} z_n \pmod{G'}.$$

Lemma 1. $\alpha_{i1} + \cdots + \alpha_{in} = a_i$ and $b_{i1} + \cdots + b_{in} = b_i$.

The proof is obvious from the definition of Fox derivatives. The matrix (given in polynomial form)

$$J = \begin{pmatrix} \alpha_{11}z_1 + \dots + \alpha_{1n}z_n & \beta_{11}z_1 + \dots + \beta_{1n}z_n \\ \vdots & \vdots \\ \alpha_{q1}z_1 + \dots + \alpha_{qn}z_n & \beta_{q1}z_1 + \dots + \beta_{qn}z_n \end{pmatrix}$$

is a relation matrix for $G'/G'' \oplus \mathbb{Z}^{\oplus (n-1)}$. m(J) is a $qn \times 2n$ matrix, thus |G':G''| is equal to the h.c.f. of the determinants of all (n+1)-rowed minors of m(J) when finite, and is infinite when all these are zero.

Consider the $2n \times 2n$ "submatrix" of J

$$\begin{pmatrix} \alpha_{i1}z_1 + \cdots + \alpha_{in}z_n & \beta_{i1}z_1 + \cdots + \beta_{in}z_n \\ \alpha_{j1}z_1 + \cdots + \alpha_{jn}z_n & \beta_{j1}z_1 + \cdots + \beta_{jn}z_n \end{pmatrix} = K_{ij} \text{ (say),}$$

where $i \neq j$. In integer form we will write this matrix as

$$m(K_{ij}) = \begin{pmatrix} m(\alpha_{i1}, \ldots, \alpha_{in} & m(\beta_{i1}, \ldots, \beta_{in}) \\ m(\alpha_{j1}, \ldots, \alpha_{jn} & m(\beta_{j1}, \ldots, \beta_{jn}) \end{pmatrix}.$$

Replace row n+1 by the sum of the last n rows, and column n+1 by the sum of the last n columns and then consider the first n+1 rows and n+1 columns of the resulting matrix to get (using Lemma 1)

$$\begin{pmatrix} m(\alpha_{i1},\ldots,\alpha_{in}) & b_i \\ \vdots \\ b_i \\ a_j & \ldots & a_j & nb_j \end{pmatrix} = M_{ij} \text{ (say).}$$

Now M_{ij} is an $(n+1) \times (n+1)$ matrix (while not an (n+1)-rowed minor of J, M_{ij} was produced from J by matrix operation), thus we have

$$|G':G''|||\det M_{ij}|. \tag{1}$$

Lemma 2. If $a_i \neq 0$, then

$$\left|\det M_{ij}\right| = n \left|a_i b_j - a_j b_i\right| \left|\det A_i\right| / \left|a_i\right|,$$

where $A_i = m(\alpha_{i1}, \ldots, \alpha_{in})$.

Proof.

$$\left|\det M_{ij}\right| = \left|\det \begin{pmatrix} A_i & b_i \\ \vdots \\ b_i \\ a_j & \dots & a_j & nb_{ji} \end{pmatrix}\right|$$

$$\overrightarrow{c_{n+1} - \frac{b_i}{a_i} \sum_{k=1}^n c_k} = \left|\det \begin{pmatrix} A_i & 0 \\ \vdots \\ 0 \\ a_j & \dots & a_j & nb_j - \frac{na_jb_i}{a_i} \\ a_j & \dots & a_j & nb_j - \frac{na_jb_i}{a_i} \end{pmatrix}\right|$$

$$= n \left|\frac{a_i b_j - a_j b_i}{a_i}\right| \left|\det A_i\right|, \text{ as required.}$$

Lemma 3. If $a_i \neq 0$, then $a_i b_j - a_j b_i \neq 0$ for some j.

https://doi.org/10.1017/S0013091500017995 Published online by Cambridge University Press

J. R. HOWSE

Proof. From the original definition of G, we have

$$|G:G'| = \text{h.c.f.}(a_i b_i - a_j b_i; i = 1, \dots, q, j = 1, \dots, q).$$
(2)

We will assume throughout this proof that $a_i \neq 0$. If $b_i = 0$, then there exists j such that $b_j \neq 0$ from (2), because G/G' is finite. So if $b_i = 0$, then $a_i b_j - a_j b_i \neq 0$ for some j. Now consider the case $b_i \neq 0$. Assume, for a contradiction, that $a_i b_j - a_j b_i = 0$ for all j. Thus $a_i = a_i b_j / b_i$ for all j. So for all j, k we have

$$a_k b_j - a_j b_k = \frac{a_i b_k}{b_i} b_j - \frac{a_i b_j}{b_i} b_k = 0$$

contradicting (2), because G/G' is finite. Thus $a_i b_j - a_j b_i \neq 0$ for some j.

We can now state a sufficient condition for |G':G''| to be finite.

Theorem 1. Let G be a 2-generator group with G/G' finite. Let $A_i = m(\psi \phi(\partial r_i/\partial x_j))$ for a given generator x_i . If det $A_i \neq 0$ for some i, then G'/G'' is finite.

Proof. If $a_i = 0$, then det $A_i = 0$, because each row-sum $= a_i = 0$, by Lemma 1; however, there exists *i* so that $a_i \neq 0$, by the hypothesis that det $A_i \neq 0$. Assume that $a_i \neq 0$. By Lemma 3, $a_i b_j - a_j b_i \neq 0$ for some *j*; so if det $A_i \neq 0$, then det $M_{ij} \neq 0$ by Lemma 2. Thus by (1), G'/G'' is finite.

3. Groups with cyclic derived factor group

When the derived factor group is cyclic, the matrix A_i of Theorem 1 is circulant. A formula for the determinant of a circulant matrix is given in Lemma 4 below. From this formula conditions can be found such that the determinant is not zero, giving further conditions for the second derived factor group to be finite.

Lemma 4. Let $C = C(\alpha_1, \alpha_2, ..., \alpha_n)$ be a circulant matrix, and ω be a primitive nth root of unity. Then

$$\det C = \prod_{i=1}^n \sum_{j=1}^n \alpha_j \omega^{i(j-1)}.$$

The proof of this lemma can be found in [4].

The following theorems are concerned with groups with cyclic derived factor group. We will consider groups having a presentation which contains at least one relator having a small number of syllables, i.e. a relator of the form $r = x^a y^b$, or of the form $r = x^{a_1} y^{b_1} x^{a_2} y^{b_2}$.

Let $G = \langle x, y | R \rangle$, where R is a finite set of relators, with $G/G' = \langle z | z^n \rangle$, where $x = z^{m_1} \pmod{G'}$ and $y \equiv z^{m_2} \pmod{G'}$, where $0 < m_1 \le n-1$ and $0 < m_2 \le n-1$. (It should

be noted that $0 < m_1, m_2$ is an extra assumption, but the case $x \equiv 1 \pmod{G'}$, i.e. $m_1 = 0$, is considered in [2]. Moreover, either m_1 or m_2 is not zero, unless G = G' = G''.) Let $M_i = \{s; s | m_i\}$ (j = 1, 2) the set of all divisors of m_i .

Theorem 2. Let G be as just stated. Let $r = x^a y^b$, where $a \neq 0$, $r \in R$. If $(am_1, n) \in M_1$, then G'/G'' is finite.

Proof. Without loss of generality we can assume that a>0 (if a<0, then the relator $r=x^ay^b$ can be rewritten as $y^{-b}x^{-a}$ and then as $x^{-a}y^{-b}$). Now

$$\frac{\partial r}{\partial x} = \frac{\partial x^a}{\partial x} = 1 + x + \dots + x^{a-1}$$
$$\equiv 1 + z^{m_1} + z^{2m_1} + \dots + z^{(a-1)m_1} \pmod{G'}.$$

Let $f(z) = 1 + z^{m_1} + z^{2m_1} + \dots + z^{(a-1)m_1}$. (Recall that $z^n = 1$). Then, by Lemma 4, det $A = \prod_{z^n=1} f(z)$ (where A represents, in this case, the matrix A_i of Theorem 1).

If det A=0, then f(w)=0 for some *n*th root w of unity, and if det $A \neq 0$, then G'/G'' is finite by Theorem 1. Let $(am_1, n) \in M_1$, and, for a contradiction, assume that f(w)=0 where w is an *n*th root of unity. Then

$$(1 - w^{m_1}) f(w) = 0 \Rightarrow 1 - z^{am_1} = 0 \Rightarrow z^{am_1} = 1.$$

Thus $w^{(am_1,n)} = 1$ and hence $w^{m_1} = 1$, because $(am_1, n) \in M_1$ and so (am_1, n) divides m_1 . So

$$f(w) = 1 + w^{m_1} + \cdots + w^{(a-1)m_1} = a \neq 0$$

the required contradiction. So det $A \neq 0$ and G'/G'' is finite by Theorem 1.

Theorem 3. Let G be as defined above. Let $r = x^{a_1}y^{b_1}x^{a_2}y^{b_2}$, where $r \in R$ and $a_1 + a_2 \neq 0$.

- (i) Let n be odd. If $(a_1m_1, a_2m_1, n) \in M_1$ and $(b_1m_2, b_2m_2, n) \in M_1$, then G'/G'' is finite.
- (ii) Let n be even. If $(a_1m_1, a_2m_1, n) \in M_1$, $(b_1m_2, b_2m_2, n) \in M_1$, and $((a_1 a_2)m_1, n) \in M_1$, then G'/G'' is finite.

Proof. The proof proceeds along similar lines to that of Theorem 2. We have

$$\frac{\partial r}{\partial x} = \frac{\partial x^{a_1}}{\partial x} + x^{a_1} y^{b_1} \frac{\partial x^{a_2}}{\partial x}$$
$$\equiv \alpha_1 + \alpha_2 z + \dots + \alpha_n z^{n-1} \pmod{G'}.$$

Let $f(z) = \alpha_1 + \alpha_2 z + \cdots + \alpha_n z^{n-1}$.

There are four cases to consider depending on the signs of a_1 and a_2 . However in

J. R. HOWSE

each case we obtain

$$(1-z^{m_1})f(z) = 1 - z^{a_1m_1} + z^{a_1m_1+b_1m_2} - z^{a_1m_1+b_1m_2+a_2m_1}.$$
(3)

Now, by Lemma 4, det $A = \prod_{z^n=1} f(z)$ (where A is the matrix equivalent to the matrix A_i of Theorem 1). If det A = 0, then f(w) = 0 for some *n*th root w of unity, and if det $A \neq 0$, then G'/G'' is finite by Theorem 1. Assume, for a contradiction, that det A = 0, so there exists w such that f(w) = 0, where $w^n = 1$. Then $(1 - w^{m_1})f(w) = 0$ and so, by (3),

$$1 - w^{a_1m_1} + w^{a_1m_1 + b_1m_2} - w^{a_1m_1 + b_1m_2 + a_2m_1} = 0.$$
⁽⁴⁾

Let $w^{a_1m_1} = p_1 + iq_1$, $w^{a_1m_1 + b_1m_2} = p_2 + iq_2$, and $w^{a_1m_1 + b_1m_2 + a_2m_1} = p_3 + iq_3$, where $p_j^2 + q_j^2 = 1$ (j = 1, 2, 3), (where $i^2 = -1$).

From (4) we have

$$1 - p_1 + p_2 - p_3 = 0 \Rightarrow p_1 = 1 + p_2 - p_3 \tag{5}$$

and $-q_1 + q_2 - q_3 = 0 \Rightarrow q_1 = q_2 - q_3$.

Now $p_1^2 + q_1^2 = 1$, so $(1 + p_2 - p_3)^2 + (q_2 - q_3)^2 = 1$. Multiplying out, factorising, and squaring, we have

$$(1+p_2)^2(1-p_3)^2 = (1-p_2^2)(1-p_3^2).$$

There are three cases to consider

- (a) $p_3 = 1$, so $w^{a_1m_1 + b_1m_2 + a_2m_1} = 1$, hence, by (4), $w^{a_1m_1} = w^{a_1m_1 + b_1m_2} \Rightarrow w^{b_1m_2} = 1$. Hence $w^{(a_1 + a_2)m_1} = 1$. Also $w^{(a_1 + a_2)m_1 + (b_1 + b_2)m_2} = 1$ (because $r = z^{(a_1 + a_2)m_1 + (b_1 + b_2)m_2} \pmod{G'}$), so $w^{b_2m_2} = 1$.
- (b) $p_2 = -1$, so $w^{a_1m_1 + b_1m_2} = -1$.
- (c) $(1+p_2)(1-p_3) = (1-p_2)(1+p_3)$ i.e. $1+p_2-p_3-p_2p_3 = 1-p_2+p_3-p_2p_3$, hence $p_2 = p_3$. Thus, from (5), $p_1 = 1$, so $w^{a_1m_1} = 1$. By (4), $w^{b_1m_2} = w^{b_1m_2+a_2m_1}$, so $w^{a_2m_1} = 1$.

Assume that *n* is odd. In case (b) $w^{a_1m_1+b_1m_2} = -1$, so this case has no solution (because *n* is odd), so we need only consider cases (a) and (c). In case (a) $w^{b_1m_2} = 1$ and $w^{b_2m_2} = 1$, while in case (c) $w^{a_1m_1} = 1$ and $w^{a_2m_1} = 1$. So if $(a_1m_1, a_2m_1, n) \in M_1$ and $(b_1m_2, b_2m_2, n) \in M_1$, then $w^{m_1} = 1$. Hence $f(w) = a_1 + a_2w^{a_1m_1+b_1m_2}$. Now $w^n = 1$, where *n* is odd, and $a_1 + a_2 \neq 0$, so $f(w) \neq 0$ contradicting det A = 0. So det $A \neq 0$ and G'/G'' is finite by Theorem 1, proving (i).

Assume that *n* is even. In case (b) $w^{a_1m_1+b_1m_2} = -1$, so, by (4), $w^{b_1m_2+a_2m_1} = -1$ and thus $w^{(a_1-a_2)m_1} = 1$. In case (a) $w^{b_1m_2} = 1$ and $w^{b_2m_2} = 1$. In case (c) $w^{a_1m_1} = 1$ and $w^{a_2m_1} = 1$. So if $(a_1m_1, a_2m_1, n) \in M_1$, $(b_1m_2, b_2m_2, n) \in M_1$, and $((a_1-a_2)m_1, n) \in M_1$, then $w^{m_1} = 1$. Thus $f(w) = a_1 + a_2w^{a_1m_1+b_1m_2}$. $f(w) \neq 0$, because $a_1 + a_2 \neq 0$ and $a_1 \neq a_2$ (because $((a_1-a_2)m_1, n) \in M_1$) contradicting det A = 0. So det $A \neq 0$ and G'/G'' is finite by Theorem 1, proving (ii).

REFERENCES

1. R. H. Fox, Free differential calculus 1, Ann. of Math. 57 (1953), 547-560.

2. J. R. HOWSE, An algorithm for the second derived factor group (Ph.D. thesis, University of Nottingham, 1984).

3. J. R. HOWSE and D. L. JOHNSON, An algorithm for the second derived factor group, in: Groups—St Andrews 1981, London Math. Soc. Lecture Note Series 71 (1982), 237-243.

4. T. MUIR, A treatise on the theory of determinants (Dover Publications, New York, 1960).

MID-KENT COLLEGE CHATHAM, ME5 9UQ England