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A SUFFICIENT CONDITION FOR THE SECOND DERIVED
FACTOR GROUP TO BE FINITE

by J. R. HOWSE*

(Received 10th August, 1985)

1. Introduction

This paper concerns an application of an algorithm for the second derived factor
group as described by Howse and Johnson in [3]. This algorithm has as its basis the
Fox derivative (see [1]), a mapping from the free group F to the group-ring ZF, defined
as follows: let X be a set of generators of a group G, and let w = yl...yk with each
yteX±l. Then the Fox derivative of the word w with respect to any generator x e l is
defined to be

yi---yi-i, when
dw JL
—= YJ ah where a,= , -yi---y* when

0, when

Let <f>:F->G (and also <£:ZF-»ZG, etc.) and i/rG->G/G' (and also i^:ZG->Z(G/G'), etc.).
The Jacobian J = dR/dX of the presentation G = <A"|R> is the | /? |x |X| matrix whose
(i,j) entry is drjdxj. Let G/G' = {z1,...,zn} and A be a matrix over Z(G/G'). Any entry
yeZ(G/G') of A is of the form y=Yj=iaizi a n d thus defines an n-tuple (al5 . . . , a n ) . The
n-tuple corresponding to zpj{ 1 ^ j ^ n) is a rearrangement of this, and we let m(y) denote
the nxn matrix having this as its jth row. Let m(A) denote the matrix of integers
obtained by applying m to each entry of A. Then the integer matrix M=m{\j/4>{J)) is a
relation matrix for the group G'/G" ©Z®'""1 ' . The invariant factors of G'/G" can be
computed from M by diagonalisation.

The proof of this algorithm together with examples illustrating it and applications of
it can be found in [2] and [3].

This paper applies the algorithm to 2-generator groups with finite derived factor
groups. The main result obtained is that the second derived factor group is finite if the
determinant of the matrix, with the above notation, Aij = m(tl/(l)(dri/dxj)) for some r , eR
and XjeX of the group presentation G = <X|i?> (|X| = 2), is non-zero. This result is then
applied to groups with cyclic derived factor group and which have a presentation which

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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contains at least one relator having a small number of syllables; in which case much
more explicit conditions for the second derived factor group to be finite are determined.

In the application of the algorithm the integer matrix m(\p(l)(dr/dx)) can be
represented by the "polynomial" \]/(f>(dr/dx), e.g. if r = x3, then ij/<t>(dr/dx) = 1 +x + x2 and
this can represent the integer matrix

(assuming that G/G' = Z3). Moreover the integer relation matrix m{\j/<j>{J)) can be
represented by the "polynomial" matrix i//(t>(J)- Indeed row and column operations can
be performed on this "polynomial" matrix.

2. The main theorem

Consider the 2-generator group G = <x,y\r t , . ..,rq}, where 2^q<co, with finite
derived factor group and |G:G'| = w. For i=\,...,q, let ri=x<lllyi"1...x"ikyb"" where aih^0
and bihj=O for h = 1 , . . . , kh if /c,> 1.

Let X*=i a» = «i and Yj!=lbih = bi. Let G/G' = {zu...,zH}. Then the Fox derivatives of
the relator r, with respect to the generators x and y, modulo G', are of the form

^ az+--- +<xinzn (modG'),

= PZ+ — +PJ. (mod C).

L e m m a 1. an+ ••• + ain = a( and bn + • • • + bin = i f .

The proof is obvious from the definition of Fox derivatives.
The matrix (given in polynomial form)

y + • • • +alnzn ^ i i z , + • • • + Plnz „

is a relation matrix for G'/G" © Z®'"""1'. m(J) is a qn x In matrix, thus |G':G"| is equal to
the h.c.f. of the determinants of all (n+l)-rowed minors of m(J) when finite, and is
infinite when all these are zero.

Consider the 2n x 2n "submatrix" of J

\
+•••+ ainzn PnZt + \-Pinzn\ = ^

0 L J 1 z 1 + - - - + o i j n z n P z + — + P j J iiK y)'
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where i =f=j. In integer form we will write this matrix as

85

Replace row n +1 by the sum of the last n rows, and column n +1 by the sum of the
last n columns and then consider the first n + l rows and n + l columns of the resulting
matrix to get (using Lemma 1)

m(<xn,..., ain)

nbr

= Mtj (say).

Now My is an (n+l)x(n + l) matrix (while not an (n+l)-rowed minor of J, My was
produced from J by matrix operation), thus we have

|G':G"|||detMy|.

Lemma 2. / / ax =/= 0, then

where Ai = m((xn,...,<xin).

Proof.

|det Mu\ = n\aj>j-ajb,\ |dct i4,|/|a,|,

|detMy| =

= n Idet /4,-|, as required. D

Lemma 3. / / a, =f= 0, then afij—flj-bf ^ 0 /or some j .
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Proof. From the original definition of G, we have

\G:G'\=h.c.f.(aibJ-aJbi;i=l,...,q,j=l,...,q). (2)

We will assume throughout this proof that a, =/= 0. If bt = 0, then there exists j such that
bj^O from (2), because G/G' is finite. So if b, = 0, then a^j — ap^O for some ;'. Now
consider the case 6,̂ =0. Assume, for a contradiction, that a^>i — ap{ = 0 for all j . Thus
dj = ciibj/bj for all j . So for all j , k we have

contradicting (2), because G/G' is finite. Thus a,bj — a,b; =/= 0 for somej. •

We can now state a sufficient condition for |G':G"| to be finite.

Theorem 1. Let G be a 2-generator group with G/G' finite. Let Ai = m(\jj(f){drildx^) for
a given generator Xj. / /det /4,^0 for some i, then G'/G" is finite.

Proof. If a, = 0, then det.4i = 0, because each row-sum = a,=0, by Lemma 1; however,
there exists i so that a,=/=0, by the hypothesis that det/1,^0. Assume that at^0. By
Lemma 3, afij—ajbt=/=0 for some j ; so if det/4,^0, then detA^^O by Lemma 2. Thus
by (1), G'/G" is finite. •

3. Groups with cyclic derived factor group

When the derived factor group is cyclic, the matrix Ax of Theorem 1 is circulant. A
formula for the determinant of a circulant matrix is given in Lemma 4 below. From this
formula conditions can be found such that the determinant is not zero, giving further
conditions for the second derived factor group to be finite.

Lemma 4. Let C = C(ai, <x2,..., an) be a circulant matrix, and a> be a primitive nth root
of unity. Then

detC=fl £ a}a
i{j-l\

The proof of this lemma can be found in [4].

The following theorems are concerned with groups with cyclic derived factor group.
We will consider groups having a presentation which contains at least one relator
having a small number of syllables, i.e. a relator of the form r = xayb, or of the form
r = xaiyhlx"2yb2.

Let G = (x,y\R}, where R is a finite set of relators, with G/G' = <z|z">, where
x = z""(modG') and _y = zm2(modG'), where 0<ml^n— 1 and 0<m2gw—1. (It should
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be noted that 0<m 1 ) m 2 is an extra assumption, but the case x s l ( m o d C ' ) , i.e. m1 = 0,
is considered in [2]. Moreover, either wij or m2 is not zero, unless G = G' = G".)

Let Mj={s;s\mj} (j = 1,2) the set of all divisors of my

Theorem 2. Let G be as just stated. Let r = xayb, where a^=0, reR. If (amuri)eMu

then G'/G" is finite.

Proof. Without loss of generality we can assume that a > 0 (if a < 0 , then the relator
r = x

ayb can be rewritten as y~bx~" and then as x~"y~b). Now

dr dxa

— = - ^
ox ox + xa~l

= 1+ zmi + z2mi + • • • + z(fl"1)mi (mod C).

Let /(z) = H-z m '+z 2 m i + --- + zo-i)-"i . (Recall that z"=l) . Then, by Lemma 4, detA =
Ilz"=i / ( z ) ( w n e r e A represents, in this case, the matrix At of Theorem 1).

If det A = 0, then /(w) = 0 for some nth root w of unity, and if det A 4= 0, then G'/G" is
finite by Theorem 1. Let (amun)eMu and, for a contradiction, assume that /(w) = 0
where w is an nth root of unity. Then

(1 - wmi)/(w) =0=> 1 - z a m ' =0=>zami = 1.

Thus w<am|'') = l and hence w"" = l, because {am^^eM^ and so (am,,?!) divides m,. So

the required contradiction. So det/4=/=0 and G'/G" is finite by Theorem 1. •

Theorem 3. Let G be as defined above. Let r = xaiyblxa2yb2, where r e R and al +a2j=0.

(i) Let n be odd. If (alml,a2ml,n)eMl and (i»iffi2, b2m2, n)eMt, then G'/G" is finite.

(ii) Let n be even. If ( a ^ , a2mx, n) e Mu (b,/n2, b2m2, n) e Mu and ((ai — a2)mx, n) e M\,
then G'/G" is finite.

Proof. The proof proceeds along similar lines to that of Theorem 2. We have

dr dx"1 . dx°2

^ ' 1= h ^ i r
dx dx dx

= « 1 + a 2 z + - - •+a n z"" 1 (modC).

Let/(z) = a , + a 2 z + - - - +anz
n'1.

There are four cases to consider depending on the signs of a, and a2. However in
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each case we obtain

I J z m i ) f(z) = 1 Z° | m i -I-701"" + ' > i m 2 z"imi +*l""2+'"2mi / j \

Now, by Lemma 4, det /4 = J~[zn = t /(z) (where /4 is the matrix equivalent to the matrix
At of Theorem 1). If det/l = 0, then /(w)=0 for some nth root w of unity, and if
det/4^0, then G'/G" is finite by Theorem 1. Assume, for a contradiction, that det/4 = 0,
so there exists w such that /(w) = 0, where W— 1. Then (1 — w"")/(w) = 0 and so, by (3),

Let w a " n i =p 1 +^ 1 , waimi+l"
0 = 1,2,3), (where i2 = - 1 ) .

From (4) we have

_Q M \

, and ig3, where

(5)

and -
Now p2 + g2 = l, so (1 +p2 —

squaring, we have
~el3)2 — 1- Multiplying out, factorising, and

( l+p 2 ) 2 ( l -p 3 ) 2 =( l -p f ) ( l -p 2 ) .

There are three cases to consider

(a) p 3 = l , so „,"'""+("m2+fl2mi = l, hence, by (4), w"""1 = w
fl""1+l"m2=>wl"m2 = 1. Hence

w(ai +«i»i = i Mso w«.i+<.2)«i+(*i+»2)m2 = 1 (because r=z < a i + f l 2 ) m i + ( l " + l ' 2 ) ' n 2 (modG' ) ) ,
so w()2m2 = l.

(b) p2 = - 1 , so w0""'+6""2 = - 1.

(c) ( l+p2)( l -p3)=(l-P2)( l+P3)i-e . 1+P2-P3-P2P3 = 1 -P2 + P3-P2P3. hence p2 =
p3. Thus, from (5), p, = l, so ^"" ' = 1. By (4), w'"m2 = wl>im2+fl2mi, so w"2"1^ 1.

Assume that n is odd. In case (b) vv°""1+*im2= — 1, so this case has no solution
(because n is odd), so we need only consider cases (a) and (c). In case (a) wi |m2=l and
W62">2=1> while in case (c) waimi = l and W2m* = l. So if (aimua2mi,n)eMi and
{blm2fb2m2tn)eM1, then ^" ' = 1. Hence /(w) = a,+a2wfl"ni+l>im2. Now w"=l, where n is
odd, and a , + a 2 ^ 0 , so /(w)=f 0 contradicting det/t=O. So det/l^O and G'/G" is finite
by Theorem 1, proving (i).

Assume that n is even. In case (b) w
a>m>+b>mi= - l , so, by (4), wfc"n2+<12mi = - 1 and

thus w(oi-a2)"" = l. In case (a) w*im2=l and w*2m2=l. In case (c) ^"" ' = 1 and W2mi = \.
So if {alml,a2ml,n)eMu {blm2,b2m2,n)eMu and ((aj —a2)m1,n)EM1, then wmi = l.
Thus /(w) = a, + a2w

aimi+l>1'n2. / (w)^0, because a ! + a 2 ^ 0 and a!=fa2 (because
((a, -a2)m!, n) 6 Af t) contradicting det /I=0. So det A =f=0 and G'/G" is finite by Theorem 1,
proving (ii). •
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