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We study liquid migration in partly saturated shear bands of granular media where liquid is
transported away from the shear-band centre. Earlier studies show that the liquid migration
can be modelled as a diffusive process with a shear-rate-dependent diffusion coefficient.
Here, we apply this model in a two-dimensional Cartesian split-bottom shear cell with
one wide, steady shear band. Initially, a high liquid concentration peak develops at the
edges of the shear band, which propagates away from the shear band, splitting the shear
cell into a liquid-depleted shear-band region and an outer region not yet affected by the
liquid migration. Assuming the liquid transport in the vertical direction is negligible, we
simplify the liquid migration model to a one-dimensional form evolving over time. By
coordinate transformation, an analytically solvable drift-diffusion model is obtained for
liquid migration from the simplified model. From here, we obtain analytical solutions
for the liquid concentration as a function of space and time. The significance of the
mechanisms is studied in terms of the local Péclet number. While drift enhances drying
of the shear band and accumulates the liquid in the peak, diffusion shifts the liquid
further away from the shear band. To validate the model, we predict numerically the
trajectory of the liquid concentration peak from the continuum model and compare with
discrete particle method (DPM) simulations. Our continuum model results give a perfect
qualitative and an approximate quantitative agreement with the overall results predicted
from the DPM model.
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1. Introduction

Liquid saturation is of tremendous importance to the stability of soil structures. Granular
materials generally gain strength with increasing liquid content (Herminghaus 2005;
Radjai & Richefeu 2009; Roy et al. 2016; Liefferink et al. 2020) until the liquid
saturation reaches a small percentage of the available pore volume. A further increase
in liquid saturation in porous soil may cause a dramatic decrease in strength leading,
e.g. to landslides or soil collapses (Pailha & Pouliquen 2009; Iverson 2012; Strauch &
Herminghaus 2012; George & Iverson 2015; Tomac & Gutierrez 2020). Furthermore,
liquid transport or migration induced by shear can lead to a local increase in liquid
concentration in the soil pores. Thus, shear-driven liquid migration within soil pores
plays an important role for the overall soil properties. Liquid migration is also of great
interest in a variety of other applications, such as chemical processing (Rushton 1952),
pharmaceutical industries (Cullen et al. 2015), powder technology or in wet granulation
processes (Kwant, Prins & Van Swaaij 1995; Jarrett et al. 2016). In wet granulation, grains
are mixed with liquid and initial surface wetting is carried out by inducing liquid migration
by shearing actions of e.g. the blades inside a rotating device. Thus, understanding the
liquid transport phenomena in sheared wet granular media is of great importance for the
granular community.

Pore liquids reconfigure in different ways depending on the saturation level of the
granular materials. In fully saturated granular materials, liquid is ‘sucked’ into dilating
shear bands (Hicher, Wahyudi & Tessier 1994; Tillemans & Herrmann 1995) with
increasing porosity. In contrast, liquid transport at low liquid contents is induced by
several different processes. Firstly, it is known that, in shear flows, particles undergo a
self-diffusive motion and therefore, liquid which is carried by the menisci will diffuse in
space (Campbell 1997; Utter & Behringer 2004). This particle diffusivity has been shown
to be proportional to the local shear rate in quasi-static dense flows. Secondly, there is a
transport of liquid associated with liquid bridge rupture and formation. Reconfiguration of
liquid bridges in the shear band, induced by shear (Long et al. 2019), leads to a local liquid
bridge redistribution and liquid transport where liquid is driven out of the shear band
(Mani et al. 2012). Both self-diffusion of particles and liquid bridge rupture processes
are functions of the shear rate. Thirdly, the equilibrium distribution in the bridge plays
a fundamental role in liquid transport (Mani et al. 2015), the liquid transport potential
between two capillary bridges on the same grain being proportional to the difference in
their capillary pressure. However, we neglect the latter mode of liquid transport in our
present study. While the liquid redistribution phenomenon is limited to small shear scale,
i.e. happens at the beginning of shearing (Roy, Luding & Weinhart 2018), overall liquid
transport is rather a slow process driven by the local shear rate and is the subject matter of
this paper.

The focus of our discussion here is to understand the mechanisms of liquid transport in
partly saturated granular media at the continuum scale. Liquid migration or transport from
the shear band has been understood as a shear-rate-driven diffusion phenomenon with the
diffusivity coefficient proportional to the shear rate (Mani et al. 2012; Mani, Kadau &
Herrmann 2013). The liquid concentration profile shows remarkable features, particularly
in a split-bottom shear cell, where the spatial shear-rate profile is an error function (Ries,
Wolf & Unger 2007; Dijksman & van Hecke 2010; Henann & Kamrin 2013) and its
width increases with the height in the system (Ries et al. 2007). More precisely, in this
set-up, liquid migrates from the zone of high shear rate to the relatively slowly sheared
or non-sheared zones. While the shear band gets depleted, a liquid concentration peak
is initially observed at the edges of the shear band where the second gradient of the
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shear rate is largest (Mani et al. 2012). However, whether this liquid concentration peak
is stationary over time or behaves differently is still an open question. We address this in
the paper by investigating the dynamics of the liquid concentration peak trajectory, using a
continuum model for liquid transport. Additionally, we use discrete particle method (DPM)
simulations (Athani & Rognon 2019; Vescovi, Berzi & di Prisco 2019; Kuhn & Daouadij
2019; Xiong et al. 2019) in the open source code MercuryDPM (Thornton et al. 2013a,b;
Weinhart et al. 2016; Weinhart 2017; Weinhart et al. 2020) to obtain the shear-band width
(or velocity profile) imposed in the continuum model, and to compare and validate the
liquid transport model.

This paper is arranged as follows: the system set-up is explained in § 2 and the
continuum model, non-dimensionalisation of the length and time scales and the different
features of liquid migration are explained in § 3. The numerical scheme for solving the
continuum model is explained in § 3.2. A modification of the liquid migration model to a
simplified form is explained in § 5 and the results obtained from this model are compared
with that of the full continuum model in § 5.1. We show a suitable transformation of the
simplified diffusive liquid migration equation to a drift-diffusion form and the approaches
for analytical solutions in § 6.1. In § 6.2, we discuss about the significance of the drift and
diffusion processes for liquid migration. We validate the continuum model by comparing
the results with the DPM model in § 7. Finally, we draw our conclusions in § 8.

2. System set-up

We consider a common experimental device to study shear bands, the split-bottom shear
cell, which consists of two straight ‘L’-shapes sliding past each other, as shown in figure 1.
We use Cartesian coordinates where the x-direction is perpendicular and the y-direction
parallel to the slit, and the z-direction is perpendicular to the bottom plates (Depken, van
Saarloos & van Hecke 2006; Depken et al. 2007; Ries et al. 2007). The left and right
‘L’-shapes move along the y direction in opposite directions with speeds −V/2 and V/2,
respectively. They are separated by a slit that passes through the origin O. The gravitational
acceleration g acts in the negative z-direction. The particle bed consists of particles of
uniform diameter dp. The width of the shear cell and the height of the particle bed are
denoted L and H, respectively. The interstitial space between particles is filled with liquid
with an initial homogeneous liquid concentration Q |t=0= Q0. In steady state, the flow is
uniform in the y-direction and a shear band propagates from the split position O upwards.
We follow the observations of Singh et al. (2014) and assume that the shear band has a
Gaussian velocity profile of width

W(z) = Wtop

(
1 −

(
1 − z + 2dp

H + 2dp

)2
)α
, (2.1)

with Wtop the shear-band width at the surface of the flow, and the exponent 0 < α < 1. We
further assume that the shear in the z-direction can be neglected and thus the magnitude
of the local shear rate, γ̇ , is approximated by the gradient of the y-velocity of the particle
phase,

γ̇ = V
W

√
2
π

exp
[
−
( x

W

)2
]
. (2.2)

Since the system is symmetric around the y-axis, we study only the right half of the shear
cell.
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Figure 1. Schematic diagram of split-bottom shear cell set-up, where O represents the split position of the
shear cell, W(z) represents the width of the shear band as a function of height z, V/2 is the shear velocity
induced on the boundaries of the shear cell as indicated in the y-direction and g is the acceleration due to
gravity. The grey-shaded region indicates the location of the shear band and the red sidewalls are sliding past
each other about the split position O with velocity V/2.

3. Continuum model

The nature of the transport equation governing liquid migration is given as (Mani et al.
2012)

Q̇ = Cliq∇2(γ̇Q), (3.1)

where Q is the liquid concentration, or volume fraction of liquid, expressed in
dimensionless form as the volume of liquid per unit volume, Q̇ is the rate of change
of liquid concentration Q and γ̇ is the shear rate given by (2.2). The description of the
liquid migration model originally comes from Mani et al. (2012), where the diffusion
mechanism is explained in terms of a theoretical model. The main mode of liquid transport
in this model happens via rupture of individual capillary bridges. The bridge rupture rate
is proportional to the shear rate γ̇ and the number of contacts N. According to Mani et al.
(2012), Cliq is proportional to the number of contacts, and thus weakly depends on the
pressure, or depth z and is also proportional to a geometrical proportionality factor which
measures the average volume of liquid leaving the control volume after each rupture event.
However, for simplicity, we assume here that the prefactor Cliq (which is not the diffusion
coefficient) is constant. Thus, the physical significance of Cliq is based on the geometric
configuration as well as on the packing fraction of the granular materials.

3.1. Non-dimensionalisation
It is convenient to redefine the governing equation (3.1) in terms of dimensionless length
and time scales. Therefore, we scale the spatial x- and z-coordinates by the particle
diameter dp,

x∗ = x
dp
, z∗ = z

dp
. (3.2a,b)

We further scale the time t by the shear rate at the initial liquid concentration peak location
near the free surface, γ̇ c

s (evaluation shown in appendix A),

t∗ = tγ̇ c
s. (3.3)
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All other variables are scaled accordingly, with superscript ∗ denoting the scaled variables.
Working with the non-dimensional variables, (3.1) is re-written as

∂Q
∂t∗

= Cliq
∗
(
∂2(γ̇ ∗Q)
∂x∗2 + ∂2(γ̇ ∗Q)

∂z∗2

)
. (3.4)

All the variables henceforth are non-dimensionalised and we omit the superscript ∗
subsequently.

3.2. Numerical scheme
Numerical methods suitable for the solution of the fluid transport equations are a matter
of extensive research in computational fluid dynamics. Their application is predominant
in various research fields such as geophysical fluid dynamics (Durran & Mobbs 2001;
Baumgarten & Kamrin 2019), hydrological processes (Igboekwe & Achi 2011), reactor
flow (Hastaoglu & Abba 1996) etc. In the Eulerian solution of equations, difficulties
arise because of the dual advective–diffusive nature of the transport equation. When the
transport is advection or drift dominated, the equation behaves as a first-order hyperbolic
equation, but when the transport is diffusion dominated, the equation behaves as a
second-order parabolic equation. To accurately model the drift-diffusion transport, the
numerical scheme must be able to handle the mixed parabolic–hyperbolic character of the
systems. Eulerian models that have grids fixed in space have a number of difficulties when
transport is drift dominated. These include numerical diffusion, oscillations, instabilities
and peak clipping because of the numerical representation of advection terms in the
transport equation. To avoid instabilities, we choose the finite volume method (FVM) with
semi-implicit time stepping (Patankar 1980) to solve the liquid transport equations in this
paper. The details of the numerical methods and discretisation are described in appendix B.

The grid sizes are chosen as 400 in the x-direction and 100 in the z-direction, which
is equivalent to a grid spacing of dx = dz ≈ 0.08. The solutions are checked for different
grid sizes (the finest resolution tested is dx = dz ≈ 0.008) and the trend is maintained
both qualitatively and quantitatively. The time step is chosen as dt = 10−4. These values
meet the necessary Courant–Friedrichs–Lewy (CFL) condition for the stability of the
solutions with CFL = 0.59 < CFLmax. The details of the calculation of the CFL number is
elaborated in appendix C. It is important to emphasise that this is not a sufficient condition
for stability and other stability conditions are generally more restrictive than the CFL
condition.

4. Characteristics of liquid migration

Shearing an unsaturated granular system causes a re-distribution of the interstitial liquid.
While an initial transient behaviour shows random local re-distribution of the liquid, a
larger shear leads to transport of liquid from the shear zone (Roy et al. 2018). The resultant
liquid concentration profile in the shear cell geometry is worth describing in detail.

4.1. Liquid concentration profile
Initially, the liquid concentration Q |t=0= Q0 = 6.9 × 10−3 is homogeneous; thus, the
time derivative of the liquid concentration Q is proportional to the second spatial
derivative of γ̇ i.e. ∇2γ̇ . Thus, the liquid concentration initially decreases in the shear
band, where the second derivative of γ̇ is negative, and a liquid concentration peak is
formed at the edge of the shear band, where the second derivative of γ̇ is largest.
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Figure 2. Liquid concentration Q as a function of x at z ≈ 3.6 (W ≈ 3) by solving (3.4) after t = 3.6. The black
solid line indicates the initial location of the liquid concentration peak x0

c and the black dashed line indicates
the location of the liquid concentration peak xc after time t = 3.6. Here, φ represents the accumulated liquid
concentration after time t.

4.2. Liquid concentration peak
The location of the liquid concentration peak could be defined as the location of
the maximum of the liquid concentration profile. However, this has the following
disadvantages: as the grid resolution is finite, the liquid concentration peak can only be
located with a limited accuracy, resulting in an undesirable stepwise definition. To avoid
these effects, the location of the liquid concentration peak in the right half of the shear
cell is defined as the centroid of the liquid concentration profile above the initial value Q0.
Thus the definition of xc is given as

xc =
∫ L/2

0 xQ̃dx∫ L/2
0 Q̃dx

where Q̃ = max(Q − Q0, 0), (4.1)

where L = 60 is the width of the shear cell in non-dimensional form. The location of the
liquid concentration peak is well approximated by this definition for the continuum model.
However, if Q0 is more scattered, as in the case of data from DPM simulation, we define
Q̃ = max(Q − (1 + ε)Q0, 0), where ε � 1 is the standard deviation of Q0 in the data.

4.3. Accumulated liquid concentration
The concentration of liquid accumulated in the edge of the shear band is given as the
integral of the liquid concentration profile lying above the value Q0 as follows:

φ =
∫ L/2

0
Q̃dx. (4.2)

Ideally, there is no loss of liquid from the system (e.g. due to vaporisation). The
conservation of liquid volume requires that the volume of liquid accumulated in the edge
of the shear band equals the volume of liquid drained from the centre of the shear band.
Figure 2 shows a typical liquid concentration profile Q as a function of x at a fixed height,
z = 3.6 (W = 3) for the full liquid migration model given by solving (3.4) after t = 3.6.

We distinguish the two main features of the liquid concentration profile, namely the
peak concentration location xc and the accumulated liquid concentration φ. Further, the
dynamic characteristics of these features are the subject of our discussion as and when
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we simplify the governing equation for liquid migration in the following sections §§ 5, 6
and 7.

5. Simplified model neglecting vertical diffusion

In order to do a detailed theoretical analysis of the mechanisms of the liquid migration
process and for simplicity, we reduce (3.4) to a simplified form, neglecting the diffusion
in the z-direction. Thus, (3.4) is simplified as

∂Q
∂t

= Cliq
∂2(γ̇Q)
∂x2 . (5.1)

The original equation of liquid migration is represented by (3.4) and its simplified form
is given by (5.1) . We denote these equations as the full model and the simplified model,
respectively. Both equations are solved using the finite volume scheme described in § 3.2.
In the following subsection, we make a comparison of the results obtained from the full
model with those of the simplified model.

5.1. Comparison of the full and simplified models
Figure 3(a,b) shows contour plots of liquid concentration as a function of space x and
z after t = 14.4 solved for the full model and the simplified model, respectively. As
observed from the figures, both the models have a minimum liquid concentration at the
shear-band centre, i.e. at x = 0, corresponding to the region with dark blue colour. A
high liquid concentration is developed at the edges of the shear band for both the models,
corresponding to the narrow region with dark red colour. The region close to the boundary,
represented by the cyan colour, is not yet affected by the liquid migration and the liquid
concentration is unchanged. A height-wise gradient of the liquid concentration is observed
inside the peak location for the full model, represented in figure 3(a). This is due to the
liquid diffusion in the z-direction. Unlike the full model, the simplified model shows a
rather uniform liquid concentration inside the peak location, represented in figure 3(b).
Starting to shear from a uniform concentration of liquid Q0, the initial location of the
liquid concentration peak after a single time step t = dt, is given by x0

c . This location is
obtained analytically for the simplified model from (5.1) as x0

c = √
1.5W where ∂2γ̇ /∂x2

is maximum. Note that, for the full model, x0
c is at the location where ∇2γ̇ is maximum.

The red solid line in figure 3(b) shows the locus of x0
c at different heights for the simplified

model. The liquid concentration propagates away from the shear band with time and the
red dashed lines in figure 3(a,b) represent the location of the peak after t = 14.4 for the
two models. Note that this is an intermediate time chosen to show the liquid concentration
profile when the initial liquid redistribution phase has ended and the liquid migration
phenomenon has started.

Next, we do a quantitative analysis of the liquid concentration peak xc and the
accumulated liquid concentration φ as a function of time at different heights picked
from figure 3(a,b). The results of xc and φ at z = 3.6 (W = 3) (blue lines) and z = 5.4
(W = 3.5) (red lines) are shown in figure 4(a,b), respectively. The key parameters xc and
φ both increase with time, indicating that the process has not reached a steady state.
The solutions of the full and the simplified models are represented by the solid and the
dash-dotted lines, respectively. While there is only a difference of less than 5 % in xc
between the full and the simplified models, φ is significantly affected by the diffusion
in the z-direction. The accumulated liquid concentration increases by 33 % more for the
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Figure 3. Contour plot of liquid concentration in Cartesian shear cell after time t = 14.4 for (a) full model
and (b) simplified model. The red solid line in (b) indicates the initial locus of the liquid concentration peak
x0

c at different heights. The red dashed lines in (a,b) denote the liquid concentration peak locus xc obtained at
different heights from (4.1).
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Figure 4. (a) Location of the liquid concentration peak xc and (b) accumulated liquid concentration φ as a
function of t as obtained from (3.4) for full model and (5.1) for simplified model, respectively, at two different
heights z = 5.4 and z = 3.6.

simplified model as compared to the full model after t = 72, closer to the base of the
shear cell (blue lines), where the vertical shear gradient is stronger. The location of the
liquid peak position xc is insignificantly affected by diffusion in the z-direction as only
the horizontal diffusion shifts the liquid peak away from the shear band. Thus, xc is
captured with up to more than 95 % accuracy through the simplified model and is the
key parameter that we want to focus on by further analysis in this paper. Thus, an approach
towards a simplified model solution is likely to deviate quantitatively from the full model
in the first place, especially close to the bottom of the shear cell. However, the location
of liquid concentration peak xc can be readily captured, which in itself is an important
feature of the liquid concentration profile. The location of the liquid concentration peak
deviates for the simplified model as compared with the full model by less than 5 %.
Although the horizontal x-diffusion is primarily shifting the liquid concentration peak,
the component of the z-diffusion that is perpendicular to the liquid concentration profile
is also contributing to the process. Hence, a difference is observed between the location of
the liquid concentration peak between the full and the simplified models.

Next, we investigate the velocity of propagation of the liquid concentration peak vc as
a function of the peak location xc. Figure 5 shows the dependence of vc on xc at three
different heights for the full model (solid lines) and simplified model (dashed lines).
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Figure 5. Liquid concentration peak propagation velocity vc as a function of the liquid concentration peak
location xc for different heights z = 2.7, 3.6 and 5.4, denoted by different colours for the full model (solid
lines) and simplified model (dash-dotted lines).

The propagation velocity of the peak position decreases with increasing xc as the peak
moves away from the shear band. Note that the initial peak locations x0

c are different for the
full and the simplified models and hence the xc ranges are also different for the two models.
Initially, the liquid peak is not well developed (for small xc), resulting in a subtle peak
whose location is difficult to analyse. These data for the initial time steps are eliminated
from our analysis. The velocity of the simplified model (dashed lines) at a lower height,
close to the split position, deviates from the behaviour of the full model (solid lines) by
up to 20 % at z = 2.7. This is due to the absence of diffusion in the z-direction, which
is more prominent at a lower height, close to the split position. The effect of diffusion in
the z-direction is weak near the surface and thus the velocity profiles for the full and the
simplified models almost collapse close to the free surface at z = 5.4.

It is observed that the trajectory of the location of the liquid concentration peak xc can be
predicted from the simplified model with an accuracy of 95 % as compared with that of the
full model. The change of velocity of propagation of the liquid concentration peak location
vc as a function of the local shear rate is closely predicted by both the full and the simplified
models near the free surface, but deviates significantly near the bottom of the shear cell.
The variation of the accumulated liquid concentration for the full and the simplified models
as a function of time is closer near the free surface, but deviates by approximately 20 %
near the bottom where the shear rate is higher. To summarise, the deviation of predictions
of accumulated liquid concentration given by the simplified model from the full model is
higher where the local shear rate is higher. Also, the liquid peak propagation velocity is
proportional to the local shear rate, with a zero velocity corresponding to zero shear rate,
indicating that the liquid migration is a dynamic process which is solely shear driven.

The simplification of the model allows further analysis and the development of
analytical solutions. We propose to show analytical solutions for the simplified model
with suitable transformations of the equation in § 6.1. We choose an intermediate height
z = 3.6, where the effect of the local shear rate is moderate and thus the results of
analytical predictions are closer to the results of the full continuum model.

6. Transformation of equation

The fundamental challenge is to understand and predict the transport of interstitial liquid
in sheared, partly saturated granular materials. While the simplest picture of diffusive
transport with a constant diffusivity cannot explain the dynamics of liquid transport,
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a model with a variable, shear-rate-dependent coefficient of diffusion can. However,
multiple effects happening at the same time, some of which lead to drift-like rather than
diffusive transport features (rapid build up and narrowing of the liquid front), make the
basic understanding difficult. Therefore, by transforming the variables one can enforce a
diffusion term with constant diffusivity Dc, which yields a drift term with a variable drift
coefficient. This split allows us to study the two terms separately and (with some further
simplifications) solve them analytically. Furthermore, the mechanisms of liquid transport
can then be separated and understood one by one, where diffusion is a randomising driving
term, but the drift, i.e. drift-like transport, is generated by the shear rate due to the shear
banding and flow profile.

The details of the transformation of one-dimensional (5.1) and the resulting analytical
solutions are explained in this section. We choose an intermediate height z = 3.6 for
transforming the simplified model (5.1) and at this height the width of the shear band
is W ≈ 3.

6.1. Transformation of the equation: drift and diffusion
Next, we aim to transform (5.1) into a form that is analytically more treatable. We follow
the approach of Risken (1989) and apply a coordinate transformation,

ξ(x) =
∫ x

0

1√
Cliqγ̇ (x′)

dx′. (6.1)

The liquid distribution in the transformed coordinate, Q′(t, ξ), is thus given by

Q′ = dx
dξ

Q = √
Cliqγ̇Q. (6.2)

Applying this change of variables to (5.1) yields a diffusion and a drift term,

∂Q′

∂t
= − ∂D′Q′

∂ξ︸ ︷︷ ︸
Drift

+ ∂2Q′

∂ξ2︸ ︷︷ ︸
Diffusion

. (6.3)

This equation has a constant diffusion coefficient (equal to 1) and a variable drift
coefficient,

D′ = d2ξ

dx2 Cliqγ̇ . (6.4)

Applying the coordinate transformation used in the paper has the advantage of a constant
diffusion coefficient, which in our opinion results in a split that is better to analyse and
understand. Moreover, this form of decomposition adopted by us to analyse the liquid
migration phenomenon is rather a novel approach compared with the conventional chain
rule decomposition. In order to see the individual contributions of the drift and diffusion
terms on the overall liquid transfer, we separate the drift and diffusion processes and show
analytical solutions for each in §§ 6.1.1 and 6.1.2, respectively.
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6.1.1. Drift
In order to measure the contribution of the drift term to the liquid transport, we neglect
the diffusion term in (6.3), obtaining the simpler equation

∂Qdrift
′

∂t
= −∂D′Qdrift

′

∂ξ
. (6.5)

Using (6.2) and introducing E(x) = D′√Cliqγ̇ (x), we write (6.5) in terms of the original
x-coordinate

∂Qdrift

∂t
= −∂EQdrift

∂x
. (6.6)

Next, we define a new variable R(t, x) = E(x)Qdrift(t, x), which yields

∂R
∂t

= −E
∂R
∂x
. (6.7)

The general solution of (6.7) is given by

R(t, x) = R0 (A(x)− t) , (6.8)

where A is an anti-derivative,

A(x) =
∫

1
E(x)

dx, (6.9)

and R0 is defined such the initial condition, R(0, x) = E(x)Q0, is satisfied,

R0(x) = E(A−1(x))Q0. (6.10)

Transforming back to the original variable Qdrift, we obtain the analytic solution

Qdrift(t, x) = R(t, x)
E(x)

= E(x0)

E(x)
Q0 with x0 = A−1(A(x)− t). (6.11)

Note, this analytic solution is valid for any shear-rate profile γ̇ (x). Substituting γ̇ from
(2.2) into the definitions of A and E, (6.9) and (6.12a,b), we obtain

E(x) = C
2

x exp
(

− x2

W2

)
, A(x) = Ei(x2/W2)

C
, (6.12a,b)

where C = 2CliqVW−3√2/π, and Ei is the exponential integral (Chiccoli, Lorenzutta &
Maino 1988), a special function satisfying d Ei(x)/dx = exp(x)/x. Thus,

Qdrift(t, x) = x0 exp(−(x0/W)2)

x exp (−(x/W)2) Q0 with x0 = W
√

Ei−1
(
Ei(x2/W2)− Ct

)
. (6.13)

The plots of Q′
drift(t, ξ) in the transformed coordinate and Qdrift(t, x) in the original

coordinate are shown in figures 6(a) and 6(b), respectively. The initial condition, Q′
drift =

Q0
√

Cliqγ̇ (x) is simply a Gaussian function of x. The initial peak location of Q′
drift at ξ = 0

is as shown in figure 6(a). One can see from the inset of figure 6(b) that, initially, x0 = x,
hence Q = Q0. For large values of t, x0 ≈ 0 for small x (hence Q ≈ 0) and x0 ≈ x for large
x (hence Q ≈ Q0); in between, the facts that x0 < x and E(x) has a maximum ensures there
is a peak value. As observed from figure 6(b), drift induces the liquid concentration peak
xc to move further away from the shear-band centre, leading to complete rapid drying of

915 A30-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.30


S. Roy and others

0

0.02

0.04

Q
′ dr

ift

Q
dr

ift

0.06

0.08

0

0.02

0.04

0.06

0.08

2.0

12
10
8
6
4
2

0 2 4 6
x

x

x0

8 1012

1.5

1.0

0.5

0 2 4 6
x

E
(x

)

8 10 12

100 2 4 6 8 10 12101 102

Q′(0,ξ)

ξ

Q (0,x)
Q (10,x)
Q (100,x)
Q (1000,x)

Q′(10,ξ)
Q′(100,ξ)
Q′(1000,ξ)

(b)(a)

Figure 6. (a) Solutions Q′
drift(t, ξ), inset: E(x) and (b) solutions Qdrift(t, x), inset: x0(x) to the drift equation,

given by (6.13).

the shear band and surroundings by pushing the liquid to the peak region. As a result,
we observe the liquid concentration profile forming a dry shear band that is surrounded
by a wet region, with a sharp liquid concentration peak between the dry and wet regions,
as shown in figure 6(b). We have verified that the analytical solution Qdrift(t, x) given by
(6.13) agrees with the numerical solutions of (6.7) (results not shown here). Note that
(6.1)–(6.5) are valid for any shear-rate profile γ̇ (x). We only apply the specific value of
γ̇ (x) in (6.6)–(6.12a,b) to obtain an analytical solutions.

Based on this analysis, we can derive an estimate, xe(t), of the peak position. First,
we define we define x0

e as the peak location of E(x), thus E′(x0
e) = 0, with ′ denoting

the derivative with respect to the variable x. Next, we define xe(t) for t > 0 such that
x0(t, xe) = x0

e . Note that xe > x0
e , since x0 is monotonically increasing in x, see the inset of

figure 6(b). Further, note that E′(x0
e) < 0, since E is monotonically decreasing for x > x0

e ,
see the inset of figure 6(a). We will now show that x0

c < xe < xc: substituting x = xe into
(6.13) we get

Qdrift(t, xe) = E(x0
e)

E(xe)
Q0. (6.14)

Since E(x0
e) is the maximum value of E, we get Qdrift(t, xe) > Q0, and thus xe > xc

0. Next,
we show xe < xc: Differentiating (6.13) and substituting x = xe, we get

∂Qdrift

∂x
(t, xe) = E′(x0

e)x
′
0(t, xe)E(xe)− E(x0

e)E
′(xe)

E(xe)2
. (6.15)

The first term in the numerator is zero, since E0(x0
e) = 0. The second term in the numerator

is positive, since E0(xe) < 0 and E(x) > 0 for all x ∈ R. Thus, Q′
drift(t, xe) > 0, which

implies xe < xc. Therefore, xe ∈ [x0
c, xc]. Thus, xe yields a (lower) estimate of the peak

location, in particular for large times, as we observe that the peak narrows over time. Note
that x0

e = x0(t, xe) = A−1(A(xe)− t), thus we get the analytic expression xe = A−1(t +
A(x0

e)). Thus, xe(t) has the shape of the inverted exponential integral, shifted to the right
by a constant. A plot of xe is given in figure 7. As observed in the figure, the peak xe moves
away from the shear band with increasing time, leading to drying of the shear band. Thus,
the final behaviour of the solution for the drift operator is to push the dry front to infinity,
resulting in a completely dry domain everywhere, however, this is a very slow process, as
apparent from the figure.
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Figure 7. Plot of the peak estimate xe.

6.1.2. Diffusion
In order to measure the contribution of the diffusion term to the liquid transport, we neglect
the drift term in (6.3)

∂Q′
diffusion

∂t
=
∂2Q′

diffusion

∂ξ2 . (6.16)

An analytical solution of (6.16) is given by the convolution of the initial condition, Q′
0 =

Q0
√

Cliqγ̇ , with a kernel function l,

Q′
diffusion = l ⊗ Q′

0 =
∫ ∞

0
l(t, ξ − y)Q′

0( y) dy, (6.17)

where l is defined as

l(t, ξ) = 1√
4πt

exp
(

−ξ
2

4t

)
. (6.18)

To prove that (6.17) satisfies (6.16), it is sufficient to show that

∂l
∂t

= ξ2 − 2t
8πt5/2

exp
(

−ξ
2

4t

)
= ∂2l
∂ξ2 . (6.19)

Thus,
∂Q′

diffusion

∂t
= ∂l
∂t

⊗ Q′
0 = ∂2l

∂ξ2 ⊗ Q′
0 =

∂2Q′
diffusion

∂ξ2 . (6.20)

We solve (6.17) numerically in Matlab to get the final solution. The plots of Q′
diffusion(t, ξ)

in the transformed coordinate and Qdiffusion(t, x) in the original coordinate are shown in
figures 8(a) and 8(b), respectively. Figure 8(a) shows a typical solution of the diffusion
equation in the transformed coordinate, where the peak of the Gaussian solution decreases
and broadens with increasing time. The corresponding solution in the original coordinate
is shown in figure 8(b). Unlike drift, figure 8(b) shows that diffusion induces a smooth
liquid concentration peak xc instead of a sharp interface and slowly leads to the drying of
the shear band and its surroundings. As a result, we observe a smooth liquid concentration
profile with a nearly dry shear band and its periphery and a subtle liquid concentration
peak that moves away from the shear band, shown in figure 8(b). We have verified that
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Figure 8. (a) Solutions Q′
diffusion(t, ξ) to the diffusion equation, given by (6.17). (b) Solutions Qdiffusion(t, x)

in the transformed coordinate system.

the analytical solution Qdiff (t, x) given by (6.17) agrees with the numerical solutions of
(6.16) (results not shown here). So far, we have simplified the full model for the liquid
migration process and obtained analytical solutions for the simplified forms. In § 6.2, we
use the analytical solutions for the drift and diffusion terms and find their significance,
individually, in the overall liquid transfer process.

6.2. Significance of drift and diffusion
In this section, we explore the significance of the transformed drift and diffusion
processes, respectively, as a part of the overall liquid transport process as given by
the one-dimensional simplified model equation. The results of the drift and diffusion
contributions are obtained from (6.13) and (6.17), respectively, by analytical solutions
which are considered as new mathematical tools of great significance. While both drift and
diffusion contributions change over time, they behave qualitatively the same, i.e. having
a minimum at the centre x = 0 in the original coordinate system, a propagating liquid
concentration peak at the edges of the shear band xc and a constant liquid concentration
near the boundary region. Furthermore, the liquid concentration peak location as well
as the accumulated liquid concentration changes over time for the solutions of all the
aforementioned models. The new mathematical tools are used to investigate further the
relative significance of drift and diffusion in the liquid migration process. In the following
subsections, we explore the contribution of drift and diffusion processes, individually, to
the velocity of propagation of the liquid concentration peak vc and to the accumulated
liquid concentration φ at a given height of the shear cell z = 3.6 (W = 3).

6.2.1. Local Péclet number and velocity of propagation of liquid concentration peak
Among the associated dimensionless numbers, we identify the Péclet number for the study
of liquid transport in granular media. The Péclet number is a class of dimensionless
numbers which measures the rate of advection of a physical quantity by the flow to
the rate of diffusion of the same. This dimensionless number is relevant for the study
of transport phenomena in fluid flows, signifying the transport by drift and diffusion
processes. We define the local Péclet number Pe for liquid transport, obtained from (6.3)
in the transformed coordinate, as Pe = D′(ξ)ξ , where D′(ξ) is the drift coefficient, the
diffusion coefficient is constant (equal to 1) and ξ is the characteristic length in the
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Figure 9. (a) Contour plot of local Péclet number Pe = D′(ξ)ξ/Dc, where Dc = 1. Note: here, the local Péclet
number is calculated in the transformed coordinate ξ and is plotted against the original coordinate system. (b)
Liquid concentration peak velocity vc as a function of xc for the simplified model (red line), drift (blue line)
and diffusion (green line) by solving (5.1), (6.13) and (6.17), respectively, at z ≈ 3.6 (W ≈ 3). The cyan line
represents the sum of the drift and the diffusion velocities. The relative significance of the drift and diffusion
velocities in (b) is comparable with the corresponding local Péclet number in (a) at a given height z = 3.6.

transformed coordinate system. Physically, this dimensionless number signifies the ratio
of mass transfer by drift to that by diffusion processes in the ξ -direction. Note that,
although the Péclet number is defined here in the transformed coordinate, we analyse the
corresponding results in the original coordinate system. Figure 9(a) shows the variation
of the local Péclet number in the domain. The local Pe is independent of time since it
is only varying with the shear rate γ̇ and space x, which are independent of time. There
is an inner region in the vicinity of the shear band centre where Pe � 1, thus diffusion
dominates liquid transport and drift is insignificant. Simultaneously, there is an adjoining
outer region where the effects of drift and diffusion become comparable (Pe ≈ 1).

In figure 9(b), we compare the liquid concentration peak velocity for the simplified
model, drift and diffusion, respectively, at a given height z = 3.6 (W = 3). The red line
corresponds to the velocity of the simplified model, vcsimplified model. The blue and the
green lines correspond to the propagation velocity of liquid concentration peak for the
drift and diffusion models, vcdrift and vcdiffusion, respectively. The cyan line represents
the sum of the velocities of propagation for the drift and diffusion models, individually,
i.e. vcdrift + vcdiffusion. It is observed from figure 9(b) that the red line collapses with the
cyan line. This indicates that net contribution to the velocity of propagation of the liquid
concentration peak from drift and diffusion is approximately equal to the velocity given
by the simplified model throughout the range of xc and therefore

vcsimplified model = vcdrift + vcdiffusion. (6.21)

Thus, we observe that the combination of drift and diffusion processes has an additive
effect on the velocity of propagation of the liquid concentration peak for the simplified
model. This also shows the validity of the simplified liquid migration model.

We also investigate the relative contribution of drift and diffusion to the overall liquid
transfer and make a comparison with the local Péclet number. Focusing on the local Péclet
number at a given height z = 3.6 in figure 9(a), one observes an inner dark blue region
where Pe < 1. Simultaneously, there exists an outer dark red region in the vicinity where
Pe > 1. This profile of the Péclet number can be related to the velocity profile described in
figure 9(b). The contribution by diffusion is approximately 80 % of the total contribution
by drift and diffusion at xc = 4.5. This corresponds to the dark blue region in figure 9(a)
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where Pe ≈ 0.5. The contribution by diffusion decreases with increasing xc and thus
the Péclet number increases. The contributions by drift and diffusion are approximately
equal at xc = 6, corresponding to Pe ≈ 1. On further increasing xc, diffusion becomes
less dominant and its contribution is only 33 % of the total contribution at xc = 8. This
corresponds to the dark red region in figure 9(a) where Pe ≈ 1.3. The mass transfer is
dominated by diffusion and is restricted to the inner region where the velocity of liquid
concentration peak propagation vc is two orders of magnitude higher than that in the outer
region. This is in similar philosophy with the steady-state mass transfer at low Pe (Pe � 1)
(Jones 1973; Neale & Nader 1974; Srivastava & Srivastava 2006; Bell et al. 2014), a typical
example of Brinkman and Darcy flow. Under conditions of low Reynolds number, for
transport of liquid past granular materials, in the quasistatic state, the transverse diffusion
flow is more important than the drift flow. Thus, we understand the significance of the
Péclet number with respect to the propagation velocity of the liquid concentration peak.
This shows how the simplified model is used to understand the essence of the liquid
migration process.

In this subsection, we investigated the relative significance of drift and diffusion in
the velocity of propagation of the liquid concentration peak. Thereby, we validated the
simplified model, which is an important mathematical tool for studying the physics
of the liquid migration process. The accumulated liquid concentration associated with
the increment of the liquid concentration peak is also an important feature of the
liquid concentration profile. Thus, in the following § 6.2.2, we investigate the relative
contributions of drift and diffusion to the accumulated liquid concentration required for
increase of the peak of the liquid concentration.

6.2.2. Accumulated liquid concentrations
The differential equation for the transport of liquid from the shear band is composed
of two terms in the transformed coordinate, namely, diffusion and drift. While the drift
is the directed flow of liquid by the bulk motion, diffusion leads to random spreading
of liquid under the influence of shear from higher to lower shear rate. However, in
spite of different significance of drift and diffusion on the process, the accumulated
liquid concentrations contributed by the two are additive. It is expected that, if the
two accumulated liquid concentrations are separately integrated over time, the resulting
accumulated liquid concentrations should be comparable with those of the simplified
model, at least for a small incremental time scale, when other effects, such as coupling,
are negligible. We verify this from our results.

In this section, we analyse the incremental accumulated liquid concentrations Δφtot
Δt

from the two contributions by drift and diffusion separately. The objective is to see if
the resultant accumulated liquid concentrations from the two components of the drift
and diffusive terms, together, contribute to the same incremental accumulated liquid
concentrations as obtained by integrating (5.1). Moreover, we check the validity of
this assumption for different initial conditions. We start running the drift and diffusion
models from different initial conditions, such that they have an initial accumulated liquid
concentration equal to that of the simplified model φsimplified model at time t. The net
accumulated liquid concentration φtot

Δt in time Δt contributed by the drift and diffusion
processes is given by

φtot
Δt = φdrift

Δt + φdiffusion
Δt, (6.22)
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Figure 10. (a) The accumulated liquid concentration from the simplified model φsimplified model (red
dash-dotted line) as a function of time t and the net contribution by the drift and diffusion processes φtot

Δt

(cyan lines) starting from different initial conditions plotted over time interval Δt = 0.72 at z = 3.6 (W = 3)
and (b) zoom into the simulation set as in (a) for a later initial condition at t = 288, Δt = 72. The black dots
represent the initial condition for drift and diffusion models.

where φdrift
Δt and φdiffusion

Δt are the contributions to the incremental accumulated liquid
concentration by drift and diffusion, respectively. All the aforementioned accumulated
liquid concentrations are obtained as described in (4.2).

Figure 10(a) shows the comparison of the sum of the accumulated liquid concentrations
contributed by drift and diffusion, indicated as φtot

Δt, with the accumulated liquid
concentration for the simplified model, φsimplified model. We observe that, within a very
small time interval Δt = 0.72, φtot

Δt ≈ φsimplified model
Δt, signifying that the effects of

drift and diffusion are additive within a very short duration of time. However, with
further progress in time, the net contribution from the two effects φtot

Δt over-predicts
the accumulated liquid concentration φsimplified model

Δt. The deviation of the accumulated
liquid concentrations decreases at longer time (or shear) when the incremental drift and
diffusion fluxes become weaker. This is shown in figure 10(b) where the simulations
are run, starting at t = 288 and for Δt = 72. The trends show that the two accumulated
liquid concentrations φtot

Δt and φsimplified model
Δt coincide, indicating that the incremental

accumulated liquid concentrations are equal even after a long time. The contributions by
drift and diffusion to the accumulated liquid concentrations are shown by the blue and
the green lines respectively. While drift leads to a positive (increasing) contribution to
accumulated liquid concentration, diffusion leads to a negative (decreasing) contribution
and the net accumulated liquid concentration is constant relative to the simplified model.
This shows another method of validating the simplified model and the mathematical tools
used for predicting the drift and diffusion behaviour of liquid migration.

In this subsection, we have seen that the liquid volume required for the increment of
the liquid concentration peak from any initial condition is contributed from the sum of the
liquid volumes from the drift and diffusion processes. This observation is valid for a small
time interval and the sum deviates from the liquid volume of the simplified model for a
longer time interval. Further, the deviation slows down as the local shear rate is weaker
when the peak moves away from the shear-band centre. Depending on the initial condition,
the contribution by diffusion to the accumulated liquid concentration might be incremental
or decremental. In § 6.2.3, we analyse in detail the sign of the incremental accumulated
liquid concentrations for drift and diffusion processes, which determines whether the shear
band wets or dries.
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One of the major results found in this subsection is that after reducing to a
quasi-one-dimensional system and transforming variables, one can separately solve
the equation without a diffusion term or without a drift term. The two solutions,
when added together, agree with solutions of the unseparated equation when proper initial
conditions are used. The fundamental approximation of this additive splitting can be shown
mathematically for an incremental time step and this is described in appendix D.

6.2.3. Drift vs diffusion: drying and wetting
In this section we analyse the increase in accumulated liquid concentration by drift and
diffusion individually, relative to the accumulated liquid concentration at any time t.
We start simulations corresponding to drift and diffusion with an initial condition of
an accumulated liquid concentration φsimplified model corresponding to time t. The relative
increase in accumulated liquid concentration by drift in time Δt with respect to the initial
condition is given by

ηdrift = φdrift
Δt

φsimplified model
, (6.23)

and we express the relative increase in accumulated liquid concentration by diffusion
in a similar way. Since the total liquid is conserved in the system, an increment in
accumulated liquid concentration at the peak location indicates a decrement of equal
amount of accumulated liquid concentration in the shear band. Thus, a positive value of
η (Δφ > 0) signifies drying of the shear band with respect to the initial condition and a
negative value of η (Δφ < 0) signifies wetting of the shear band.

Figure 11 shows the relative increment in the accumulated liquid concentration for the
drift and diffusion processes as a function of the initial accumulated liquid concentration
φsimplified model. Here, η decreases for both drift and diffusion processes with increasing
φsimplified model until it reaches a condition such that the change in accumulated liquid
concentration ratio η becomes very small. As the liquid concentration peak propagates
away from the shear band with increasing time, the local shear rate becomes smaller. With
decreasing shear rate, the driving forces for liquid transport by both drift and diffusion
mechanisms become slow enough, such that it requires very long time to transport liquid.
Diffusion leads to wetting of the shear band under certain initial conditions when liquid
is transported back to the shear band such that η becomes negative. However, drift always
leads to drying of the shear band only. This is yet another aspect of the physics of liquid
migration which we are able to understand by disintegrating the simplified model into drift
and diffusion components.

Thus, the mechanism of liquid transport can now be separated and understood one by
one, under varied initial conditions. While drift always leads to drying of the shear band
(with rapid build up and narrowing of the liquid front), diffusion can sometimes lead to
wetting of the shear band, depending on the initial condition. We studied in details the role
of drift and diffusion in the liquid migration process in § 6.2. The origin of this theoretical
studies begins with the model given by (3.4) which was originally proposed and validated
by Mani et al. (2012). We compare this model once again with the DPM simulations as
described in § 7.

7. Validation with discrete particle simulations

Continuum models and experimental results are often benchmarked by alternative
simulations methods such as molecular dynamic simulations (van der Vaart et al. 2018;
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Figure 11. The relative increase in accumulated liquid concentration η for drift (blue line) and diffusion (green
line) as a function of the initial accumulated liquid concentration corresponding to that of the simplified model
φsimplified model. We use the convention that a positive η signifies drying and negative η signifies wetting of the
shear band.

Parameters Values

Particle density (ρp) 2000 kgm−3

Particle diameter (dp) 0.0022 m

Particle mass (mp)
π

6
ρpdp

3

Table 1. Dimensional parameters and values used for discrete particle simulations.

Denissen et al. 2019; Rojas Parra & Kamrin 2019) or the discrete element method (Mani
et al. 2012). To validate the proposed model given by (3.4), we simulate a simple linear
split-bottom shear cell as described in § 2 using DPM. The so-called DPM is used for
modelling of particulate materials as an approach towards the macroscopic understanding
of microscopic behaviour. Contact models are at the physical basis of DPM simulations.
We perform DPM simulations using the open source code MercuryDPM (Thornton et al.
2013a,b; Weinhart et al. 2016; Weinhart 2017; Weinhart et al. 2020). To model the
Cartesian split-bottom shear cell (see figure 12), small particles are glued to the sidewalls
and bottom to make the surface rough and the shear cell is filled in with particles.
A periodic boundary condition is applied in the y-direction. All the parameters for particles
and the contact model for the DPM simulations, which are used in their dimensional form,
are given in table 1. All the other dimensions of the shear cell geometry and parameters
of the particle and contact model are scaled by the particle diameter dp, gravity g and
particle mass mp. Note that, although we use dp and γ̇ c

s as original scaling parameters
in this paper, we scale the input parameters for our DPM simulations by dp, g and mp.
Therefore, the mentioned scaling of all the parameters for DPM simulations are shown in
table 2. The non-dimensional value of gravity g in terms of the original scaling parameters
dp and γ̇ c

s is equal to 3.5 × 104 (equivalent to g = 10 ms−2 in dimensional form). All the
non-dimensional values of other parameters in table 2 in terms of the original scaling
parameters dp and γ̇ c

s can be obtained by substituting g = 3.5 × 104, dp = 1 and mp = 1.
The details of the contact model are given in Roy et al. (2016) and we describe the
mechanism of liquid bridge formation and rupture in appendices 1 and 2, respectively.

915 A30-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.30


S. Roy and others

Parameters Values Parameters Values

Gravity (g) 3.5 × 104 Depth (Y) 8dp

Particle diameter (dp) 1 Height (H) 8dp

Particle mass (mp) 1 Shear Velocity (V) 0.125
√

dpg

Contact angle (θ ) 20◦ Particle stiffness (k) 2367
mpg
dp

Number of particles (Np) 8220 Surface tension (σ ) 0.20
mpg
dp

Width (L) 60dp Dissipation (γd) 0.66mp

√ g
dp

Maximum Bridge Volume (Vmax) 0.007dp
3 — —

Table 2. Scaled dimensional parameters and values and other non-dimensional parameters and values used
for discrete particle simulations.

0.051 0.1

Liquid bridge radius Velocity Y
0.15 0.20 –0.420

z

y x

–0.22 –0.026 0.169 0.36

Figure 12. A snapshot from the DPM simulation after t = 72, showing liquid migration from the shear band
in a Cartesian shear cell set-up. The left colour bar represents the magnitude of the liquid bridge radius and the
right colour bar represents particle velocity vy in the y-direction. Note that the colours and scales of the liquid
bridge radius and the particle velocity vy are adjusted to a suitable range for better visualisation.

Figure 12 shows a snapshot from the DPM simulation showing the liquid migration
from the shear band. The particles are coloured according to decreasing particle velocity
vy from red to blue. The liquid bridges are shown in the form of cylinders with their length
signifying the radius equivalent to liquid bridge volume at the contact. The liquid bridges
are coloured according to decreasing liquid bridge radius from red to blue. Note that the
colours and scales are adjusted to a suitable range for better visualisation. It is evident from
the figure that the liquid bridge concentration is lowest inside the shear band, highest near
the edges of the shear band and has an intermediate concentration near the walls.

7.1. Discrete to continuum
We use the coarse-graining post-processing tool MercuryCG (Thornton et al. 2012;
Weinhart et al. 2012a,b, 2013; Tunuguntla, Thornton & Weinhart 2016; Tunuguntla,
Weinhart & Thornton 2017a,b) to translate DPM data from discrete to continuum scale,
averaged over time and over the y-direction, at x and z positions on a 400 × 100 grid
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Figure 13. (a) Velocity of particles vy as a function of centre distance x for different heights z = 3.6 and
z = 5.4. The solid and the dashed lines are the corresponding fits obtained from Fenistein et al. (2004) and (b)
width of the shear band as a function of height as obtained from the DPM (◦) after t = 72. The corresponding
line is the fit given by (2.1).

over the whole shear cell. We use a Gaussian spatial coarse-graining function with a
coarse-graining width (standard deviation) of one particle diameter. Since the liquid
concentration profile is dynamic in nature, we temporally averaged over a short period of
time of Δt = 0.25 (5 snapshots) in order to get the dynamic behaviour of liquid transport.
Thus, we obtained average values for the liquid concentration Q present in the liquid
bridges and liquid films of the DPM simulation. The details of the coarse-graining
formulation are given in appendix E.3. Likewise, we obtained other continuum fields,
such as the local pressure, concentration, velocity and the shear rate, in order to draw the
shear-band profile. The velocity of particles vy in this geometry is typically fitted by an
error function of the spatial length x at a given height (Fenistein, van de Meent & van
Hecke 2004; Ries et al. 2007). Figure 13(a) shows the particle velocity vy as a function
of x at z = 3.6 and z = 5.4. The red solid and the dashed lines represent the fitting of the
velocity profile at the two heights, respectively. We obtain the width of the shear band
W by fitting the particle velocity vy as a function of x at different heights z. Thereby,
we obtain the shear-band width W as a function of z, as shown in figure 13(b). The red
solid line in this figure corresponds to the fitting of the data by (2.1) with the fitting
parameters Wtop ≈ 4 as the width of the shear band near the free surface, H = 8 as the
filling height and α = 0.88 as the power obtained by fitting DPM data as detailed by Singh
et al. (2014). Substituting (2.1) in (2.2), we obtain the shear-rate profile in the continuum
models.

7.2. Comparison of liquid concentration profile
Figure 14(a,b) shows a comparison of the results from the continuum full model with those
from the coarse-grained DPM simulations. The location of the peak liquid concentration
of the continuum model is well aligned with the peak liquid concentration of the DPM
model, as observed in figure 14(b). Liquid gets depleted from the region near the shear
band and a liquid concentration peak appears in the neighbouring region. The liquid
concentrations close to the right boundary remain unchanged for both the DPM and
continuum models. The location of the peak liquid density for the continuum model,
denoted by the magenta-coloured � markers in figure 14(b) is well aligned with the liquid
density peak for the DPM model. The peak liquid concentration is decreasing with height
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Figure 14. Contour plot of liquid concentration Q from (a) continuum full model, (b) DPM simulations after
t = 72 with coarse-graining width of dp. The magenta-coloured � markers represent the locus of the liquid
concentration peak location xc obtained from the continuum full model at different heights.
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Figure 15. Comparison of (a) liquid concentration as a function of x after t = 68 from DPM (scattered points)
and continuum models (solid lines) and (b) trajectory of liquid concentration peak xc as a function of t from the
DPM (marked limes) and continuum models (solid lines) at different heights in a Cartesian shear cell geometry.

for both the continuum and DPM models. However, certain differences still exist in the
liquid concentration profiles of the two models: the curvature of the liquid concentration
peak locus is nearly linear in the DPM simulations, but convex in the continuum model
results, as observed in figure 14(a,b). Also, the width of the liquid concentration peak
for the DPM model is slightly larger than that of the continuum model, as observed in
figure 14(a,b).

Figure 15(a) shows a comparison of the liquid concentration profile as a function of
space x at two different heights z = 3.6 (W = 3) and z = 5.4 (W = 3.5) for the DPM
(scattered points) and continuum models (solid lines) after time t = 72. The comparison
shows that the liquid concentration profiles are in good qualitative agreement for the
two models, although the liquid concentration peak is slightly lower for the continuum
model at z = 5.4. This is also evident from the contour plots of the two models in
figure 14(a,b). The peak location xc is well aligned for the two models at both heights.
As observed in figure 15(b), the trajectories of the peak location xc for the two models
are in good agreement. There are various possible explanations for some quantitative
differences between the two models: firstly, we fitted the continuum model with the
DPM data by using a constant value of Cliq. However, our soft particles in the DPM
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simulation are subjected to a confining pressure under gravity. The particles near the base
are therefore more compressed than the particles at the free surface. Thus, the number of
contacts per particle near the bottom is slightly higher than at the free surface (not shown).
Secondly, in the continuum theory, we assume a steady-state shear-rate profile at the
beginning of the simulation. However, the DPM simulations show an evolving shear rate
inside the shear band, until it reaches a steady state. Thirdly, the liquid concentration
profile in the DPM is not developed during the transient and is more reliable after a longer
simulation time. So there is a subtle difference in the liquid concentration profile between
the two during the initial transient phases.

8. Discussion and conclusion

We have studied wide, partly saturated shear bands in a split-bottom shear cell geometry
using continuum theory and discrete particle simulations. Just as in experiments, the liquid
content decreases in the shear band, and a peak of liquid concentration, located initially
on the inflection point of the shear-rate profile, propagates away from the shear band,
making the fluid-depleted region wider and drier with time. A simple diffusion-driven
model for liquid transport explains this phenomenon with a variable, shear-rate-dependent
diffusivity. Being diffusion driven, the peak velocity decreases exponentially with distance
from the shear band, and thus no stationary state is reached in the tails of the shear band
(figure 9b). We tracked the trajectory of the liquid concentration peak location from DPM
and continuum theory and showed that the two numerical solutions are in good agreement.

By transforming the spatial coordinate, the continuum model is transformed from
a shear-rate-dependent diffusion model to a model with constant diffusion and
shear-rate-dependent drift. This approach is better to analyse since one-dimensional
analytical solutions can be obtained for the liquid concentration profile, individually, for
both drift and diffusion driven liquid migration. For short time intervals, the accumulated
liquid concentration can be obtained from the superposition of the accumulated liquid
concentrations of the drift and diffusion processes. Further, the velocities of propagation
of the liquid concentration peak for the simplified model can be predicted as the sum of the
velocities of propagation of liquid concentration peak of the drift and diffusion processes.

The relative dominance of the drift and diffusion related liquid transport can be
understood via the local Péclet number. It is observed that diffusion dominates in the centre
of the shear band, but both drift and diffusion are significant for the depletion of the shear
band and the overall liquid transport in the tails. There is an inner region in the vicinity of
the shear-band region where Pe � 1 and diffusion dominates drift. Simultaneously, there
is an adjoining outer region of Pe ≈ 1 where the effects of drift and diffusion become
comparable (Pe ≈ 1). While drift enhances the drying of the shear band and accumulates
the liquid in the peak, diffusion enhances the shift or transport of the liquid away from
the shear band. In this way, both processes are important in determining the overall liquid
migration features.

We calibrated the diffusivity and velocity profiles in the continuum model using
DPM simulations. The results of the continuum model are comparable with the DPM
simulations. The simulation time is as less as 30 minutes for the continuum model
compared to 6 to 7 days for the corresponding DPM simulations of same system size,
showing the effectiveness of a continuum approach. The comparison of the continuum
model with the DPM shows that gravity plays a significant role in the liquid transport
process too. However, this is not taken into account in the continuum model.
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Liquid migration in unsaturated granular media is a known phenomenon which is
validated experimentally and numerically by other authors. Our contribution has been to
simplify the continuum model and obtain analytical solutions for the simplified liquid
migration model. The new tool is able to capture certain features such as the liquid
concentration peak and the velocity of propagation of the peak within accuracies of
95 % and 80 %, respectively. Moreover, one can analyse the effects of drift and diffusion
separately using the new tools for liquid migration. This gives us a clear understanding
of the physics of the liquid migration process. Certain other features of the liquid
concentration profile, e.g. the accumulated liquid concentration in the peak region, are
also obtained by the new tool to within 60 % accuracy, but this prediction works for short
time intervals. In the long term, the new tool over-predicts accumulated concentration due
to the cumulative error in the prediction. The prediction time for the new tool is less than
4 minutes as compared to 30 minutes for the numerical simulations for the continuum
models and 5 to 6 days for the expensive DPM simulations. Thus, the new mathematical
tool is advantageous and useful for a quick prediction and understanding of the liquid
migration process. Certain features of the liquid migration process are predicted well by
this mathematical tool, e.g. the peak liquid concentration position is predicted to within
95 % accuracy and the velocity of liquid migration is predicted with up to 80 % accuracy.
Other features, e.g. the accumulated liquid concentration, are well predicted for short time
intervals at up to 60 % accuracy. However, one needs to use the full continuum model to
predict the long-term behaviour of this feature.

Nevertheless, there are certain scopes for improvement of our approach in simulating
the original continuum model. Firstly, our results on tracking the liquid concentration peak
location showed no effect of grid size resolution. However, a high minimum resolution is
necessary to have a smooth velocity profile. Thus, a numerical algorithm with adaptive
spatial resolution would be able to solve the continuum model more accurately. Secondly,
an effective contribution term due to gravity in the overall liquid transport flux is worth
adding to the continuum model for better agreement with the DPM results. These will be
taken into consideration in our future work.
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Appendix A. Shear rate at initial peak location near the free surface

Theoretically, the location of the initial liquid concentration peak location is given as x0
c =√

1.5W. The width of the shear band near the free surface is given by Wtop = 0.0089 m
and the shear velocity V = 0.018 ms−1. Substituting these values in (2.2), the shear rate at
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the peak locations is given as

γ̇ c
s = V

Wtop

√
2
π

exp

⎡
⎣−

(√
1.5Wtop

Wtop

)2
⎤
⎦ . (A1)

The above equation is evaluated to find γ̇ c
s ≈ 0.36 s−1.

Appendix B. Discretisation by FVM

The governing equation of diffusion can easily be derived from the general transport
equation for property Q, the liquid concentration. Considering a transient state diffusion
process in the x and z-directions in the full model, the equation is given by

dQ
dt

= Cliq

(
d2(γ̇Q)

dx2 + d2(γ̇Q)
dz2

)
= d

dx

(
Cliq

d(γ̇Q)
dx

)
+ d

dz

(
Cliq

d(γ̇Q)
dz

)
. (B1)

The key step of the FVM is the integration of the governing equation over the control
volume. Thus, the above equation is integrated as

∫
V

dQ
dt

dV =
∫
∂V

[
d
dx

(
Cliq

d(γ̇Q)
dx

)
+ d

dz

(
Cliq

d(γ̇Q)
dz

)]
· n̂ dS, (B2)

and thus,

V
Qt+dt − Qt

dt
=
(

CliqAx
d(γ̇Q)

dx

)
E

−
(

CliqAx
d(γ̇Q)

dx

)
W

+
(

CliqAz
d(γ̇Q)

dz

)
N

−
(

Cliq ∗ Az
d(γ̇Q)

dz

)
S
, (B3)

where CliqAx(d(γ̇Q)/dx) and CliqAz(d(γ̇Q)/dz) are the diffusion fluxes and the subscripts
E, W, N and S correspond to fluxes from the east, west, north and south directions,
respectively, as illustrated in figure 16. Here, V denotes the volume of the domain, n̂
denotes the normal to the surface, dV and dS denote the volume and surface area of
the control volume, respectively; Ax and Az represent the area across the east/west and
north/south faces of the control volume, respectively. In case of diffusion in the simplified
model, we have fluxes in the x-direction only and (B3) reduces to

V
Qt+dt − Qt

dt
=
(

CliqAx
d(γ̇Q)

dx

)
E

−
(

CliqAx
d(γ̇Q)

dx

)
W
. (B4)
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Figure 16. Control volume showing fluxes in Cartesian coordinate system.

We approximate the diffusion fluxes with a simple first-order central difference scheme
as

(
CliqAx

d(γ̇Q)
dx

)
E

= CliqAx
(γ̇Q)E − (γ̇Q)P

dx
, (B5)(

CliqAx
d(γ̇Q)

dx

)
W

= CliqAx
(γ̇Q)P − (γ̇Q)W

dx
, (B6)(

CliqAz
d(γ̇Q)

dz

)
N

= CliqAz
(γ̇Q)N − (γ̇Q)P

dz
, (B7)(

CliqAz
d(γ̇Q)

dz

)
S

= CliqAz
(γ̇Q)P − (γ̇Q)S

dz
, (B8)

where the subscript P corresponds to the amount of the quantity in each control volume.
The discretised equation for each control volume is solved by semi-implicit method and is
given by

− aEQE
t+dt + aPQP

t+dt − aWQW
t+dt = SP

t, (B9)

where,

aP = V
dt

+ 2CliqAx

dx
γ̇ P, (B10)

aE = CliqAx

dx
γ̇E, aW = CliqAx

dx
γ̇W , aN = CliqAz

dx
γ̇N, aS = CliqAz

dx
γ̇S, (B11a–d)

and

SP
t = V

dt
QP

t + aNQN
t − aSQS

t. (B12)

Equation (B9) is solved semi-implicitly by using tridiagonal solution method in Matlab to
obtain Q. We use a no-flux boundary condition in both the x and z-directions.
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Appendix C. CFL number

Referring to (3.4), the necessary condition for stability of the numerical scheme is

CFL = Cliqγ̇max dt

dx2 ≤ CFLmax, (C1)

where CFLmax is a constant. The necessary condition for the stability of the numerical
scheme is CFLmax = 1. The values Cliq = 3.099, dt = 10−4, dx = 0.08 are given. We
get the maximum shear rate γ̇max = 12.089 from (2.2) corresponding to the shear-band
centre x = 0 and near the split position where W = 1.5. Calculating the CFL number
corresponding to the mentioned values gives CFL = 0.59. This is the maximum value of
CFL number that is locally reached in the system.

Appendix D. Additive splitting

Assume Q(t, x) is the solution to the drift-diffusion equation (5.1) at time t. The peak
position xc(t) is an extremum and thus satisfies the equation

∂Q
∂x
(t, xc(t)) = 0. (D1)

Differentiating with respect to time yields

∂2Q
∂x∂t

(t, xc(t))+ ∂2Q
∂x2 (t, xc(t))

dxc(t)
dt

= 0. (D2)

The peak velocity vtot
c = dxc/dt thus satisfies

vtot
c = −

∂Q̇
∂x
(t, xc)

∂2Q
∂x2 (t, xc)

. (D3)

Now, assume that we solve the separate drift and diffusion equations, (6.5) and (6.16),
starting with Q(t, x) as the initial condition. The respective peak velocities then satisfy

vdrift
c = −

∂Q̇drift

∂x
(t, xc)

∂2Q
∂x2 (t, xc)

, vdiffusion
c = −

∂Q̇diffusion

∂x
(t, xc)

∂2Q
∂x2 (t, xc)

. (D4a,b)

Note that the time derivatives for the total drift-diffusion equation satisfy

Q̇ = Q̇drift + Q̇diffusion. (D5)

Substituting (D5) and (D4a,b) into (D3), we obtain

vtot
c = vdrift

c + vdiffusion
c . (D6)

Next, we look at the velocity vtot
0 = dx0(t)/dt. The value of x0 satisfies

Q(t, x0(t)) = Q0. (D7)
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Integrating with respect to time yields

∂Q
∂t
(t, x0(t))+ ∂Q

∂x
(t, x0(t))

dx0(t)
dt

= 0. (D8)

The velocity v0 = dx0/dt thus satisfies

vtot
0 = −

∂Q
∂t
(t, x0)

∂Q
∂x
(t, x0)

. (D9)

Similarly, we can show

v
drift
0 = − Q̇drift(t, x0)

∂Q
∂x
(t, x0)

, v
diffusion
0 = − Q̇diffusion(t, x0)

∂Q
∂x
(t, x0)

. (D10a,b)

Substituting (D5) and (D10a,b) into (D11), we obtain

vtot
0 = v

drift
0 + v

diffusion
0 . (D11)

This will now help us solving for the time derivative of φ(t), which satisfies

φ(t) =
∫ L/2

0
Q̃(t, x)dx =

∫ L/2

x0(t)
(Q(t, x)− Q0)dx. (D12)

Differentiating with respect to time, using Leibniz’s rule, yields

dφ
dt

=
∫ L/2

x0

∂Q
∂t

dx − (Q|x=x0 − Q0)v0. (D13)

Substituting (D5) into ∂Q/∂t and (D11) into v0, we obtain

dφtot

dt
= dφdrift

dt
+ dφdiffusion

dt
. (D14)

Thus, we have shown that, for an incremental time step, vc and φ̇ are additive. The fact
that it works for longer time intervals is not guaranteed, but is observed, and this is a result
of the paper.

Appendix E. Liquid migration model for DPM

In our present study, we use a liquid migration model as proposed by Mani et al. (2012,
2013). The methodology is quite straightforward according to the given reference: liquid
is transferred locally whenever contacts are formed or broken. The particles and the liquid
are considered as two different entities in the system. Liquid is either associated with a
particle as a thin liquid film of volume Vf

i, or with a contact as a liquid bridge of volume
Vb

ij. We describe the liquid migration model in the following subsections.
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Figure 17. Liquid bridge formation (for the case Vb
12 < Vmax).
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Figure 18. Liquid bridge rupture (for the case Vb
ij,new < Vmax where i ∈ 1, 2 and j ∈ 3, 4, 5).

E.1. Liquid bridge formation
When two particles come into contact (i.e. overlap), a new liquid bridge is formed from
the liquid contained in the particles’ film. Since there can be some liquid of volume Vmin
trapped in the roughness of the grains (Herminghaus 2005; Scheel et al. 2008), Vf

i must be
larger or equal to Vmin. Therefore, the available liquid for bridge formation is Vf

i − Vmin.
Usually, the length scale of roughness is small compared to the particle size and film
volume Vf

i, so Vmin is often very small. Moreover, Vmin is fixed and trapped in the particles;
thus, without loss of generality, we assume Vmin = 0 for our simulations. Thus, the bridge
volume Vb

ij,new is given as

Vb
ij,new = min(Vf

i + Vf
j,Vmax), (E1)

where, Vmax is the maximum liquid bridge volume which is imposed in our simulations.
We denote here the film volumes available on the interacting particles i and j as Vf

i and
V j

f , respectively, and liquid bridge volume as Vb
ij. The available liquid volume for bridge

formation is the sum of the film volumes available on the individual particles Vf
i + Vf

j.
This model is designed for small liquid contents and large contact angles with fast and
easy transport of fluid on the surface. Figure 17 shows a schematic figure of liquid bridge
formation.
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To avoid clustering of liquid by coalescence, the maximum bridge volume is restricted to
Vb

ij < Vmax with the maximal Vmax = βrp
3. The excess volume Vmax − Vb

ij remains as the
film volume in the interacting particles. Our liquid bridge model is valid for small enough
liquid contents only. Therefore, as a model simplification, we do not allow the formation
of liquid clusters via coalescence by using the maximal Vmax of the bridge volume, which
must not be exceeded. We use the capillary force model from Willett et al. (2000), which
is limited to the maximal liquid bridge volume of Vmax = β. The appropriate value for the
maximal liquid bridge volume β can be estimated by considering that for monodisperse
spheres from Scheel et al. (2008) as β = 0.007.

E.2. Liquid bridge rupture
Bridge volumes are bound to contacts until they rupture. When the distance between two
particles with a liquid bridge in between exceeds the rupture distance of the liquid bridge,
the liquid bridge ruptures and the bridge volume is distributed to the neighbouring contacts

Vb
pn,new = min(Vb

pn,old + Vb
ij/(2Nc),Vmax), (E2)

where, p ∈ i, j and n ∈ neighbouring particles in contact and Nc is the number of
neighbouring contacts associated with the particles i and j. Figure 18 shows a schematic
representation of liquid bridge rupture. The total liquid volume conservation is ensured in
the system.

E.3. Coarse graining of the liquid distribution
We denote by Vb

ij the volume of the liquid bridge between particles i and j. The
volume of the liquid film on particle i is denoted by Vf

i . We denote the Gaussian
coarse-graining function with a width of one particle diameter by Φ(x, z)i, centred
around the position of particle i. We denote the normalised integral of the Gaussian
coarse-graining function along the branch vector between particles i and j by ψ(x, z)ij,
see Weinhart et al. (2012a). Then the liquid concentration at position (x, z) is given by
Q = ∑

i Vf
iΦ(x, z)i +∑

i,j Vb
ijψ(x, z)ij. See Weinhart et al. (2012b) for more details and

the notation.
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