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1. Introduction

Let Fn = <a1,a2,...,an> denote the free group of rank n, and let 0 denote the
automorphism of Fn which permutes the generators cyclically, in other words:

a\=a2, ae
2 = a3,...,a

e
n = a1.

If w is a word in Fn, let Nn(w) denote the normal closure of

<w,w6,we\---,vvfl"~1>

in Fn, and let Gn(w) denote the factor group FJNn(w).
If w is the word a1a2...ara~+\ (where the subscripts are always reduced modulo «),

then Gn(w) is the Fibonacci group F(r,n). In [13, Theorem C], it is shown that:

If d=(r+ l,n), then F(r, n) is infinite whenever either:

(i) d>3, or:
(ii) d = 3 and n is even.

Since F{3k—1,3) is a homomorphic image of F{3k—1,3«) for M ^ I (see [11, Theorem
6]), and since F(3k — 1,3) is infinite for fe> 1 ([12, Theorem 6]), we also have:

If d=(r+ l,n), then F(r,n) is infinite whenever <i = 3 and r>2.

The purpose of this paper is to extend these results to some generalizations of the
Fibonacci groups, namely the groups

H(r,n,s) = Gn(aia2...ar(ar+1ar+2...ar+s)-
1),

where r > s ̂  1 (see [2,6]), and the groups

F(r, n, k) = G

where r^2 , fc^O (see [3,4,5,9]). Note that the groups H(r,n, 1) and F(r,n, 1) are each
isomorphic to F(r, n).

It is clear that, for any word w in Fn, 9 induces an automorphism of Gn(w), and hence
we may take a semi-direct product of Gn(w) with a cyclic group of order n with action
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induced by 6. The results in [13] were proved by considering the group:

E(r, n) = <x, 11 xf = txr, t" = 1 >,

which is the semi-direct product of F(r, ri) with Cn, the cyclic group of order n. Here we
consider the group:

l(r, n, s) = <x, 11 xY=fV, *" = 1>,

which is a semi-direct product of H(r, n, s) with Cn, and the group:

which is a semi-direct product of F{r, n, k) with Cn, and use these to determine sufficient
conditions for H(r,n,s) and F(r,n,k) to be infinite. As a necessary part of this
investigation, we also study the groups:

G(a, b, c, k, I) = <x, y \ x" = / = (x "y'Y = 1 >,

and prove the following result (see Theorem 2.5):

Theorem. The group G (a, b, c, k, I) is finite if and only if one of the following three
conditions holds:

(i) (a,k) = (b,/) = 1 and I/a + 1/b + l/c> 1.
(ii) (a, kc) = 1 and b divides I.

(iii) (b, Ic) = 1 and a divides k.

The notation used in this paper is reasonably standard; we use Cn to denote the cyclic
group of order n, A*B to denote the free product of the groups A and B, and
(ul,u2,• • •,«„) to denote the highest common factor of the integers u1,u2,...,«„.

2. The groups G(a, b, c, k, I)

In this section, we consider the groups:

G(a, b, c, M = <*> V | x"=/=(*V )c = 1 >,

where a,b,c> 1. The group G(a,b,c, 1,1) is the polyhedral group:

which is finite if and only if l/a+l/b + l/ol (see [7]).

Proposition 2.1. G(a,b,c,k,l) is isomorphic to G{b,a,c,l,k).
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Proof. This follows by a simple sequence of Tietze transformations.

Proposition 2.2.

(i) G{a, b, c, k, 1) is isomorphic to G{a, b, c, k,l) if (b, I) = 1.

(ii) G{a, b, c, k, 1} is isomorphic to G(a, b, c, 1, I) if (a, k) = 1.

Proof. We shall prove (i), (ii) then following from Proposition 2.1.

Assume that (b, 0 = 1, and let yt =y'. Then G= G(a, b, c, k, /) has presentation:

(x,y,y1\x
a=yb = (xkyly = \,yy=yly

Since yx =y' and yb = 1, we have:

<x,y, y, | x" = / = y\ = (xk
yiy = 1, y, = y>.

Now let m be such that Im = 1 (mod. b). Then we have:

<x,y,y1|xa = / = / 1 = (xk>;ir=l53; = j;T>.

The relation y6 = 1 is now redundant, so that we have:

We delete the superfluous generator y to get:

which is G(a, b, c, k, 1) as required.

Proposition 2.3.

(i) Ifb divides I, then G(a,b,c,k,l) is isomorphic to Cd* Cb, where d=(a,kc).

(ii) If a divides k, then G(a,b,c,k,l) is isomorphic to Ca*Ce, where e=(b,lc).

Proof. Again, (ii) follows from (i) and Proposition 2.1.

If b divides /, then we have:

in other words, the group:

where d=(a,kc).
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(i) Ifb = ef, where l<e = (b,l)<b, then G(a,b,c,k,[) has a normal subgroup of index e
isomorphic to the. free product of the groups

(i = 0,1, . . . , e — 1) with <z> amalgamated.
(ii) If a = ef, where \<e = {a,k)<a, then G(a,b,c,k,/) has a normal subgroup of index e

isomorphic to the free product of the groups

(i = 0,1, . . . , e — 1) with <z> amalgamated.

Proof. Yet again, we need only prove (i), and (ii) will follow from Proposition 2.1.

Let x±=yxy~l, x2=y2xy~2,...,xe-1=ye~ixy1~e, z = ye in the group:

where eg=l, and let:

It is clear that N has index e in G(a,b,c,k,l) with coset representatives
I,y,y2,...,ye~1. From the relation x" = l, we get as relations for the subgroup JV:

From the relation yef = l, we get the single relation zf=i for JV, and, from the relation
( x V T = 1> w e get the relations:

So N has presentation:

\X,X1,X2,. !=X2= " * =Xe_j

= zr = (x*z9)c = (x^ z9)c = (xk
2z

g)c

We see that iV is a free product of the groups:

https://doi.org/10.1017/S0013091500017600 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017600


ON INFINITE GROUPS OF FIBONACCI TYPE 229

(i = 0,l,...,e— 1) with <z> amalgamated. Since (f,g) = l, we may replace z by z9 as in
Proposition 2.2 to get that N is the free product of the groups:

(i=0, l,...,e— 1) with <z> amalgamated as required.

As a consequence of Propositions 2.2, 2.3 and 2.4, we have:

Theorem 2.5. The group G{a, b, c, k, I) is finite if and only if one of the following three
conditions holds:

(i) (a,k)=(b,[) = l and I/a + \/b + l/c> 1.
(ii) (a, fee) = 1 and b divides I.

(iii) (b, Ic) = 1 and a divides k.

3. The groups H(r,n,s)

In this section, we consider the groups H(r,n,s) = Gtt(w), where w =
ala2.-.ar(ar+1ar+2...ar+s)~

1 and r > s ^ l . In Lemmas 3 and 4 of [6], it is shown
that H(r, n, s) is infinite if any of the following three conditions holds:

(3.1)

(i) (r,n,s)>l.
(ii) r + s = 0(mod.«),n^5.
(iii) r + s = 0(mod.8),n = 4.

We generalize these results by proving:

Theorem 3.2. H(r,n,s) is infinite if any of the following three conditions holds:

(i) {r + s,n)>3.
(ii) (r + s,n) = 3 withr + s>3.

(iii) (r + s, n) > 1 with (r, s) > 1.

We let d denote (r + s,ri). Note that, if r + s = 3, then we have r = 2, s = l, and so we
have the group H(2,n, 1), which is the Fibonacci group F(2,n). In the case where
3 divides n, so that d=3, F(2,3) is isomorphic to the quaternion group Q8, F{2,6) is
infinite, F(2,9) is unknown, and F(2,3u) is infinite for u ^ 4 (see [8,10,11] for example).

Putting s= 1, we get:

Corollary 3.3. F(r,n) is infinite if(r+l,n)>3,orif(r+l,n) = 3 with r>2.

Note that this is a slightly stronger result than in [13].
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If we consider 0 acting on al,a2,-..,an, we may rewrite the relation:

as:

(a16r1)'0'=0~r(a10-1)s0r+s.

If we write atQ~l a sx" 1 and 8 as t, this becomes:

xsf=fxr.

So, if we take the semi-direct product of H(r,n,s) by a cyclic group of order n with
action induced by 6, we get the group:

I(r, n, s) = <x, 11 xsf = fxr, f = 1 >.

If (d,r)>l, then H(r,n,s) is infinite by (3.1)(i); so, in proving Theorem 3.2, we may
assume that (d,r) = 1. We add the relation td= 1 to the presentation for I(r,n,s) to get:

in other words:

and hence:

Replacing t by f"1, we have:

which has as a homomorphic image:

which is a presentation for the group G(r+s,d,2,r,r). So, if the group G(r+s,d,2,r,r) is
infinite, then H(r, n, s) is infinite.

Assume that d>\. Then, since r+s and d do not divide r, Theorem 2.5 gives that
G = G(r + s, d, 2, r, r) is finite if and only if:

,r) = (d,r) = l and +^+x>l-
r + s d 2
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So H(r,n,s) is infinite if (r,s)> 1. On the other hand, if r + s = dv, then G is infinite unless:

1 1 1
dv d 2

in other words:

d<2+-.
v

If v>l, then we must have d<3 for H(r,n,s) to be finite. If v = l, we have that r + s = d.
In this case, for H(r,n,s) to be finite, we must have that d<4, and hence that r + s = 3.

This completes the proof of Theorem 3.2.

4. The groups F{r, n, k)

In this section, we consider the groups F(r,n,k) = Gn(w), where w = ala2...ara~+k, and
r ^ 2 , fc^O. In [9], it is shown that F(r,n,k) is infinite if either of the following two
conditions holds:

(4.1)

(i) ( r - l ,n , fc )> l ,
(ii) v2(r+l)>v2(fc-l)<v2(/i) ,

where v2(m) = a if m = 2xq with q odd, v2(0) = oo.
We shall prove:

Theorem 4.2. F(r,n,k) is infinite if(r+l,n,k-l)>3,orif(r+l,n,k—l) = 3 with r>2.

Theorem 4.2 follows immediately from Corollary 3.3 and the following result:

Theorem 4.3. If d = (n,k — Y), and ifF(r,d) is infinite, then F{r,n,k) is infinite.

If we consider 0 acting on al,a2,...,an, we may rewrite the relation:

as:

If we write a ^ " 1 as x" 1 and 6 as t, this becomes:

So, if we take the semi-direct product of F(r,n,k) by a cyclic group of order n with
action induced by 6, we get the group:

£(r, n, k) = <x, tl xf+k~l = tkxr, f = 1>.
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Let d = (n,k — 1), and add the relation t4 = 1 to get the group:

i.e. the group E(r, d). So E(r, n, k), and hence F(r, n, k), is infinite if E(r, d) is infinite, i.e. if
F(r, d) is infinite.

Note. If r = 2, then we know that F(2,d) is infinite unless d<6,d = 7, or (possibly)
d=9 (see [1,8,10,11]). Theorem 4.3 now gives that F(2, n, k) is infinite if (k — l,n) = 6 or
8, or if(/c-l,n)^10.
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