The Centre of Gravity of a Circular Arc.

By Mr G. E. CRAWFORD, M.A.

To find the Centre of Gravity of a Circular Arc.

Let α (Fig. 12) be the radius, 2α the angle at the centre, AB the arc, of total mass *m*, G its centre of gravity symmetrically situated.

Imagine the arc to be part of a *circle of string* rotating uniformly with velocity u round C and of linear density ρ

Then if T be the Tension at either extremity

Resolving
$$2T\sin a = Force$$
 to centre
 $= mdw^2 = 2\rho aadw^2$
 $\therefore T = a\rho w^2 \frac{ad}{\sin a}$

But T being constant, this formula must be constant, and \therefore true for all values of a

$$\therefore \frac{ad}{\sin a}$$
 is constant.

But when a = 0 its value is a

$$\therefore \quad d = a \frac{\sin a}{a}.$$

A Demonstration of the Apparatus used in Practical Skiagraphy by the Rontgen Rays.

By Dr HARRY RAINY.