The Centre of Gravity of a Circular Arc.

By Mr G. E. Crawford, M.A.

To find the Centre of Gravity of a Ciroular Arc.
Let a (Fig. 12) be the radius, $2 a$ the angle at the centre, AB the arc, of total mass m, G its centre of gravity symmetrically situated.

Imagine the arc to be part of a circle of string rotating uniformly with velocity u round C and of linear density ρ

Then if T be the Tension at either extremity
Resolving $2 T \sin \alpha=$ Force to centre

$$
=m d w^{2}=2 \rho a a d w^{2}
$$

$$
\therefore \mathrm{T}=a \rho w^{2} \frac{a d}{\sin \alpha}
$$

But T being constant, this formula must be constant, and \therefore true for all values of α

$$
\therefore \frac{a d}{\sin \alpha} \text { is constant. }
$$

But when $\alpha=0$ its value is a

$$
\therefore \quad d=a \frac{\sin \alpha}{\alpha} .
$$

A Demonstration of the Apparatus used in Practical Skiagraphy by the Röntgen Rays.

By Dr Harry Rainy.

