
BULL. AUSTRAL. MATH. SOC. 47D25, 46L40

VOL. 53 (1996) [391-400]

TWO CHARACTERISATIONS OF ADDITIVE
•-AUTOMORPHISMS OF B{H)

LAJOS MOLNAR

Dedicated to the memory of my best friend Mazso

Let H be a complex Hilbert space and let B(H) denote the algebra of all bounded
linear operators on H. In this paper we give two necessary and sufficient conditions
for an additive bijection of B(H) to be a *-automorphism. Both of the results in
the paper are related to the so-called preserver problems.

INTRODUCTION

Linear preserver problems concern the characterisation of linear operators on ma-
trix algebras that leave certain functions, subsets or relations invariant. This subject
has attracted the attention of many mathematicians during this century (see the survey
paper [7]). In fact, it represents one of the most active areas in matrix theory. In the
last decade interest in similar questions on operator algebras over infinite dimensional
spaces has also been growing (for example, [9, 10, 11, 12] and the references therein).
This research includes the study of preserver problems for mappings which are not lin-
ear but are merely additive (for example, [9, 10]). This follows an approach that goes
back to the classical work [5] on homomorphisms.

In our paper we intend to give the solutions of two additive preserver problems
which turn out to characterise *-automorphisms. By a *-automorphism we just mean
a bijective map $ : B(H) —> B(H) which preserves the ring structure (rather than the
algebra structure) and for which $(.A*) = $(A)*. In Theorem 1 we deal with additive
mappings on B(H) which commute with the function |. |* : B(H) —> B(H) for some
fixed natural number k where |J4| = (A* A) ' denotes the absolute value of an operator
A (see [7, Problem IV]). A similar question for linear mappings on matrix algebras
was treated in [2, Theorem 1]. In Theorem 2 additive mappings satisfying a certain
operator-valued orthogonality preserving property are considered (see [7, Problem III]).
A similar linear preserver problem was studied in [12, Theorem 4].
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392 L. Molnar [2]

RESULTS

Besides giving a characterisation of additive *-automorphisms of B(H), Theorem 1
below also contains an automatic bijectivity result. Namely, for an additive mapping
# : B{H) —* B(H) with the commuting property described above we assume only the
inclusion of the smallest operator ideal !F(H) of finite rank operators in the range rng $
of $ and then we obtain that in this case $ is automatically surjective and injective.

THEOREM 1. Let H be a complex Hilbert space, $ : B(H) -+ B(H) an additive
function and k ^ 1 a natural number. Suppose that !F(H) C rng $ and

If k = 1, then there exists a positive real number c and an additive *-automorphism
$ : B(H) —> B(H) such that $ = c<&. If k > 1, then $ is a *-automorphism.

PROOF: We divide the proof into several steps.

STEP 1. $ sends the sets of all positive and all self-adjoint operators into themselves.
It is also order-preserving, real-linear and continuous.

Since every positive operator has a unique positive kth root, the first part of the
assertion is trivial. Moreover, we also have

which implies |$(.A)| — $(\A\) (A £ B(H)). Since every self-adjoint operator is the
difference of two positive ones, thus $ preserves self-adjointness. This implies that
$ is order-preserving. Let A ^ 0 and X G R be fixed for the moment and consider
arbitrary rational numbers r,a with r < X < s. Since $ is additive, it is Q-linear.
Consequently, we have

,x) = {<f>{rA)x,x) < ($(XA)x,x) < (${sA)x,x) = a($(^)z,z) (a; G H).

This gives that {$(XA)x,x) - {X$(A)x,x) holds for every x £ H, that is,

Let us turn to the continuity of $ . Let Ae B(H). By the inequality |yl| ^ |||i4||| /
11A11 / we can compute

Since the norm of a positive operator is equal to its numerical radius, we arrive at

which yields the continuity of $ .
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STEP 2. For every rank-one projection P there is a positive number c and a projection

E such that $(cE) = P.

Since T{B) C rng$ and P is positive, it follows that there exists a positive

operator A such that ${A) = P. Let

A= f XdE{X)
J[0,\\A\\)

be the spectral resolution of A and let

Nn = J XdE(X)

and

We assert that there is an n £ N such that for Bn = [1/n, ||A||] we have $(E(Bn)) ^ 0.
Indeed, in the opposite case, using the continuity and real-linearity of $ , we obtain
$(jVn) = 0 for every n e N. Since Kn —> 0, we also have $(Kn) —» 0. These
imply $(A) = 0 which is a contradiction. Now, let n 6 N be such that <&(E(Bn)) ^ 0.
Since (l/n)E(Bn) < A, we infer $((l /n)£(JBn)) < $(A) = P. The minimality of
the projection P and the positivity of $((1 /n)E(Bn)) imply that there is a positive
constant c such that $(cE(Bn)) - P.

STEP 3. For every self-adjoint operator 5 £ B(B) we have

* = 0

) / ( ) ( ) / ( ) ( ) = 0.

Observe that ettS is a unitary operator for every t 6 K. Hence

Now, using the continuity and real-hnearity of $ as well as the power series expansion
eltS = I + xiS + (i*S) /2 + ... and the uniqueness theorem on holomorphic functions,
we infer from the equality above that

* * = 0

( 2 ) = 0.

Since *(I),$(S),$(S2) are self-adjoint and $(i5)*$(i5) = |$(iS)|2 - $(|i5|)2

$(|S|)2 = |*(5)|* = $(S)*$(S), thus we obtain the result.
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STEP 4. $ ( / ) is a positive scalar multiple of the identity. If k > 1, then $ ( / ) = / .

Let x £ H be a unit vector and let P — x ® x be the corresponding rank-one
projection. If c > 0 and E is a projection with P = $(c.E) (see Step 2), then by Step
3 we have

P = P2 = $ ( c £ ) 2 = l/2($(c2 E)$(I) + ${I)<f>(c2E))

= c/2(P$(J)

Evaluating the operators on both sides at x we arrive at

x = c/2((*(I)x,x)x + *(/)*)•

This gives that for every x £. H there is a scalar Ax € C such that $(7)x = Aza;. One
can check rather easily that Xx can be chosen to be independent of x and hence there
is a non-negative real number A such that $( / ) = XI. Let us show that A ^ 0. Indeed,
if $ ( / ) = 0, then for every unitary operator U 6 B(H) we have

and thus $(fiU) = 0 (/i £ C) . Since every element of B(H) is a finite linear combination

of unitary operators, it follows that $ = 0 which is a contradiction. Therefore, A > 0

and we may and do assume that in the case k = 1 the relation $( / ) = I holds.

If k > 1, then $ ( / ) is a projection. Indeed, we have $( / ) — $(/*) = $( / ) and

using, for example, the continuous function calculus we get a($(I)) C {0,1}. This

gives that $ ( / ) is a projection and we infer $( / ) = / .

STEP 5. For every self-adjoint operator 5 we have $(iS) = $( i / )$(5) and $(i'J) 6
{il, —il} • Consequently, $ is either linear or conjugate-linear.

We first show that W = 4>(i/) is unitary. From Step 3 we know that the set
of all skew-symmetric elements of B{H) is invariant under $ . It follows that W is
skew-symmetric. Since W*W = |$(i /) | 2 = $(7)2 = / , thus W*W = I and W2 = -I.
These imply that W is a surjective isometry, that is, W is unitary. Let 5 be an
arbitrary self-adjoint operator. From the proof of Step 3 we obtain that |$(iS)| =
|$(5) | . Since the partial isometry in the polar decomposition of a normal operator can
be chosen to be unitary, we infer that for an arbitrary projection P there are unitary
operators U, V such that

$(iP) = U |$( iP) | = U${P) and $(i(J + P)) = V$(I + P).

Consequently, we obtain the equality

V + F$(P) = W + U$(P).
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From Step 3 it follows that $(P) is idempotent. If x £ rng $(P) is a unit vector, then
we have

2Vx = Vx + Vx = Wx + Ux.

Since Vx, Wx, Ux are unit vectors and the sum of two unit vectors has norm 2 if and
only if they coincide, we infer Wx = Ux. Consequently, we have W$(P) = U$(P)

and this gives us that $ ( iP ) = $(t J ) $ ( P ) . Moreover, we compute

Since the projection P was arbitrary, by the spectral theorem and the continuity of
$ we have $(iS) = $(i/)$(S) = $(S)$(iJ) for every self-adjoint S 6 B(H). This
further implies

and hence we infer that $(iJ) commutes with the range of $ . In particular $(i/)
commutes with every finite rank operator. It is an elementary computation to show
that in this case $(iJ) is of the form XI. Now, one can see that A € {»,— i} • Having
this in mind, the final assertion is easy to get.

STEP 6. $ is an additive *-homomorphism or *-antihomomorphism.
The *-preserving property of $ is trivial to check. From Step 3 we have

for every self-adjoint 5 £ B(H). Linearising this latter equality, that is, replacing S
by 5 + T, we obtain that

TS) =

holds for every self-adjoint S,T € B{H). Hence, we can compute

$(5 + iTf =

= $(S2) - $(r2) + #(t/)$(ST + TS) - *(52 - T2 + i(ST + TS)) = *((S + iT)2).

This means that $ : B(J?) —> B(H) is a so-called Jordan homomorphism. By a well-
known algebraic argument of Herstein [4] (see [8, 6.3.2 Lemma, 6.3.6 Lemma and
6.3.7 Theorem]), if <j> is an additive function from a ring 1Z into B(H) such that
F{H) Crng<£ and

<t>(a)2 = 4>(a2) (a £ ft),

then ^ is either a homomorphism or an antihomomorphism. Using this, we have the
result.
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STEP 7. $ is injective.

The kernel of $ is an ideal. Let P be a rank-one projection. Suppose that
E e B(H) is a projection with * ( £ ) = P (see Step 2). We assert that E is finite
dimensional. Indeed, if E is infinite dimensional, then it is the sum of two mutu-
ally orthogonal infinite dimensional projections E' — UE, E" = VE where U, V are
isometries. Since P = $ ( £ ' ) + $ ( £ " ) , by the minimality of P it follows that either
$(£?') = 0 or $ ( £ " ) = 0. However, in both cases we have $(E) = 0 because of the
relations U*E' — E, V*E" = E. So, E is finite dimensional. Since every non-zero
ideal of B(H) contains F(H), thus we have the injectivity of $ .

STEP 8. $ is a homomorphism.

Suppose that dim H > 1 and $ is an antihomomorphism. If A E B(H), then we
have

= MA)\2 = $(|A|)2 = *(\A\2) =

By the injectivity of $ it follows that A A* — A* A. Since this obviously does not hold
for every A 6 B{H), the proof is complete. (If dim H = 1, then every antihomomor-
phism $ is also a homomorphism.)

STEP 9. $ is surjective.
Without loss of generality we may suppose that $ is conjugate-linear. Let xo,y,z G

H be vectors such that $(xo ® y)z ^ 0. Then for the function U : H —» H defined by
Ux = <&(z ® y)z (x & H) we have

UAx = $(Ax <g> y)z = *(A)$(a; <g> y)z = $(A)Ux (x 6 H)

for every A G B(.ff). Plainly, U is a conjugate-linear operator. To see that it is injective,
let x ^ 0 be such that Ux = 0. The equality above implies that UAx = 0 for every
A G B(H) which gives U = 0. Since UXQ ̂  0, we arrive at a contradiction. Using that
equality as well as the fact that the range of $ contains T{H), one can readily verify
that U is surjective. Hence we get that U is an invertible bounded conjugate-linear
operator. In fact, it is a positive scalar multiple of an antiunitary operator. This follows
from the computation

\\Ux\\2 - ($(x <8» y)z, $(z <g> y)z) - ($(x ®y)*$(x®y)z,z) - {$(y ® x • x ®y)z,z)

= ($(\\x\\2y®y)z,z) = ||x||2($(y®y)z,z> (x 6 H).

Since $(A) = UAU'1 (A G B{H)), we have the surjectivity of $ .
This completes the proof the theorem. U
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REMARK. It is well-known that every additive *-automorphism of B(H) is of the form

where U is a fixed unitary or antiunitary operator. In fact, this is a part -of the proof
above.

In contrast with our Theorem 1, the argument given in the proof of the next result
works only in the infinite dimensional case.

THEOREM 2 . Let H be a complex infinite dimensioned separable Hilbert space
and let $ : B(H) -> B(H) be an additive bijection such that $(/) = / . Suppose that

(i) A*B = 0 if and only if $(Ay$(B) = 0 and
(ii) AB* = 0 if and only if $(A)$(B)* = 0.

Then $ is a *-automorphism.

PROOF: Just as above, we divide the proof into steps.

STEP 1. $ maps projections into projections and rank-one projections into rank-one
projections. If (Pa)a is a maximal family of pairwise orthogonal rank-one projections,
then so is ($ (P Q ) ) a -

If P is a projection, then P*(I - P) - 0. This implies $(P)*(I - $ (P) ) = 0, that
is, $(P)* = $(P)*3>(P). Consequently, 3>(P) is self-adjoint and idempotent. Suppose
that P is rank-one while $ ( P ) is not rank-one. Then $ ( P ) can be written as a sum of
two nonzero projections. Since $ - 1 satisfies the same hypotheses as $ , what we have
just proved shows that P can also be written as a sum of two nonzero projections. This
is a contradiction. The remaining part is very easy to see.

STEP 2. Let x,y £ H. There exists an additive function r : C —> C such that

x ® y) = T ( A ) $ ( Z ® y) (A G C).

Let x,y ^ 0 and let x',y' denote the corresponding unit vectors. Suppose that
u,v are arbitrary unit vectors such that (u,x) = {v,y) = 0. Then by (i) and (ii) we
have

<g> v) - 0.

Hence, we obtain

(8) y) = $(z ' ® z')$(Az ® y)${y' ® y') = r'(X)x" <g> y",

where x",y" are unit vectors such that x"®x" = <£(a:' ® x') and y"®y" = $(y' ® y').
Considering the equations above for A = 1 as well, one can get the result.
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STEP 3 . The function T in Step 2 can be chosen to be independent of x,y.

We show that r does not depend on x. The remaining part can be proved in

the same way. Let x,x',y be non-zero vectors and suppose that (x,x') = 0. Let

T, r',fi : C —> C be additive functions such that

#(Ax ® y) = r (A)$(x <g> y), $(Az' ®y) = T'(\)$(X' ® y)

${\{x + x') <g> y) = /i(A)$((z + x') ® y)

for every A G C Then we have

n{X)${x <g> y) + Ai(A)$(z' ® y) = fi(\)$((x + x') <g> y) = $(A(x + a;') <g> y) =

*(Ax <g> y) + $(Aa;' ® y) = r(A)$(a; <g) y) + r'(A)$(a;' <g> y).

If we multiply the equality above by $ (z ® s)* from the left, we arrive at

/x(A)$(x ® z )**(z ® y) = T ( A ) $ ( Z ® x)*$(x ® y).

Similarly, multiplying it by $ ( z ' ® «')* we have

/t(A)$(z' ® x ' ) ' * ( x ' ® y) = r '(A)$(x' (g) a;')**(x' <g> y).

Consequently, we obtain T = T ' . If x' is a non-zero vector which is not orthogonal to
x, then one can consider a third non-zero vector x" which is orthogonal to x as well
as to x'. This completes the proof of this step.

STEP 4. T is either the identity or the conjugation on C.

We first show that T is a ring homomorphism. Indeed, we compute

r(A)T(/i)$(x <g> y) = r(A)$(/tx ® y) = $(A/xa; ® y) = T(A/X)$(Z <g> y)

and this implies that r is multiplicative. We assert that r is continuous. If T is not
continuous, then by an elementary result from the theory of functional equations, r is
unbounded on some bounded subset of C. Let (An) be a bounded sequence such that
|r(A,i)| —> oo. Let (Pn) be a sequence of mutually orthogonal rank-one projections.

Consider the operator A = $ | ^2 XnPn I. For an arbitrary no G N let i £ r n g $ ( P n o )

be a unit vector. Then we have

ABPB = KAn o) | .

This implies that the operator A is not bounded, which is a contradiction. Therefore,
T is continuous. Since every nontrivial continuous ring endomorphism of C is either
the identity or the conjugation [6, Lemma 1, p.356] (see [1, Chapter 5]) we have the
assertion.
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STEP 5. There exists a unitary or antiunitary operator U on H such that

= UAU* (A 6

Let \P = $ \?(H) • Then ^ is an either linear or conjugate-linear bijection onto
This follows from the fact that every finite rank-operator is the finite linear

combination of rank-one projections. It is also easy to verify that VP is *-preserving.
We now show that \& is a Jordan homomorphism. Let S £ ^F{H) be self-adjoint. Then

S = 52 ^kPk with some Ajt € K and pairwise orthogonal rank-one projections Pk • We
k-l

have

Using the linearity-antilinearity of * and the argument in Step 6 of Theorem 1, it
is easy to check that $ is a Jordan automorphism of F{H). By Herstein's result
again, $ is either an automorphism or an antiautomorphism. We claim that \P is an
automorphism. If it is an antiautomorphism, then for arbitrary A,B 6 3~{H) we have

A*B = 0<* *(A)**(J5) = 0 & <2{A*)<f>{B) = 0& V(BA*) = 0 ̂  BA* = 0

which obviously does not hold in general. Applying the same argument as in Step 9 of
Theorem 1, one can obtain the result.

STEP 6. $ is a *-automorphism.
We first show that $(P) — UPU* holds for every projection P. Indeed, from

Step 1 we infer $(P) = X)$(-Pn), where (Pn)n is a pairwise orthogonal sequence of
n

rank-one projections and P = £ Pn. It is also obvious that UPU* = £ UPnU*. Let
n n

us show that $(AP) = T ( A ) $ ( P ) holds for every A 6 C. If a; £ rng$(Pno) is arbitrary,
then we have

$(\P)X = # ( APno + A

and similarly
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Now, one can readily verify that $(AP) = T ( A ) $ ( P ) . As a consequence, we obtain

= T(\)UPU* = UXPU*.

Since by [3, Theorem 2] every element of B(H) is a finite linear combination of projec-
tions, this yields

$(A) = UAU* {A 6 B(H)),

which completes the proof of the theorem. U
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