A CONFIGURATION OF LINES IN THREE
DIMENSIONS
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(Received 30th July 1971)

1. Introduction

In 1849, Cayley and Salmon discovered that a general cubic surface in
projective space of three dimensions over the complex numbers has twenty-
seven lines on it. They remarked that all the properties of the twenty-seven
lines would not become apparent until a better notation than they had given
was found. This notation was discovered by Schléfli in 1858 in the double-six
theorem (henceforth referred to as (2)): given five skew lines a,, ..., as with
a single transversal bg such that no four of the a; lie in a regulus, the four a;
excluding a; have a second transversal b; and the five lines by, ..., bs thus obtained
have a transversal ag;—the completing line of the double-six. The other fifteen
lines of the cubic surface are then c¢;; = a;b;na;b;, where a;b; is the plane
containing ¢; and b;.

In 1898, Grace gave the following extension of the double-six theorem:
given six skew lines cq, ..., cg With a transversal o such that no four of the c; lie
in a regulus and no five have a further transversal, then o and the set of five c;
excluding c; determine a double-six with completing line d; and the six lines
dy, ..., dg have a transversal f—the Grace line.

It is natural to ask whether Grace’s theorem may be similarly extended
and whether there is an infinite sequence of such theorems. Thus the first
question is: if, from seven skew lines 4, ..., A, with a transversal A, the set
of six A; excluding A4; determine the Grace line I';, do the seven Grace lines
I'y, ..., T'; have a transversal?

In (9), this question was answered in the negative by the following method.
If the theorem is true over the complex field, say, the lines I'y, ..., I'; can be
obtained from the lines A4,, ..., A; by solving certain sets of linear equations.
If the line coordinates of A; are A{Y, ..., A{®, then the line coordinates of
Ty, ..., T, will lie in the polynomial ring Z[{A{}], where Z is the ring of
integers. Let I'y, ..., I's lie in the linear complex W. Then I'y, ..., I'; have a
transversal if W is special and if both I'; and I'; lie in . Thus three identities
must be satisfied in the ring Z[{4{?}]. Therefore, if the theorem is true over
the complex field, the theorem is true over any field for which the lines Iy, ..., I';
exist and which is a homomorphic image of Z. In (9), the field GF(31) was
chosen and, with the aid of a computer, a set of 4,, ..., 4, found which pro-
duced the lines I'y, ..., I';. They did not have a transversal. So the question
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was negatively answered. The same result has since been found independently
by Longuet-Higgins (11), who gave two examples over the real field. In both
cases, the seven lines I'y, ..., I'; belonged to a (non-special) linear complex,
confirming in these cases a conjecture due to Babbage.

Two questions now arise. Firstly, can this result be proved without using
a computer? Secondly, what is the complete configuration obtained from A
and 4,, ..., A;7 This paper answers the second question.

Grace (6) originally proved his theorem by considering six hyperspheres
through a point in four dimensions. Every four have a second point in common.
Thus each set of five hyperspheres produces five points. These five points lie
on a hypersphere. So, from six hyperspheres, six sets of five can be formed
and from each set of five a new hypersphere is obtained. It was shown that
the six new hyperspheres have a point in common.

This result was transformed to one on lines and linear complexes in three
dimensions, and this result in turn was specialised by using special linear com-
plexes and by involving (2) to give the required result.

Brown (3) considered an extension of Grace’s theorem in four dimensions
by commencing with seven hyperplanes through a point. This transforms
into a theorem in three dimensions about seven linear complexes with a line
in common, but says nothing about seven lines with a transversal. Never-
theless, we shall show that the analogy does hold. The review by Coxeter (4)
of Brown’s paper was extremely helpful in suggesting a revised notation similar
to that below, as well as in identifying the group of the configuration as a
familiar one. .

2. Notation and preliminaries

The geometry throughout takes place in a projective space of three dimen-
sions over an arbitrary field K with the single condition that X is large enough
for the configuration to exist: it was shown in (7) and (8) that the double-six
exists for all K except GF(q) with g = 2, 3 or 5 and that, for Grace’s figure to
exist, g = 9.

Indices written on the same level will be interchangeable; e.g. I',, =T
where p g r is any permutation of j k /.

#(1,1,...1)) indicates that the lines /,, /,, ..., /, lie in a regulus.

To establish the configuration, two theorems will be required—(2) and
Kubota’s theorem (henceforth referred to as (2¢°)). Grace’s theorem was proved
by Wren (14) in the following way: beginning with the lines c,, ..., ¢ With
transversal «, the four c¢; excluding ¢; and ¢, have a further transversal o,
and the five lines a;; with j = 1, ..., 6, j # i, have a transversal d; by (2). It
was then shown that the six lines ¢y, ¢,, d;, d,, ds, dg have a transversal f,.
By constructing double-sixes from the lines d; and B;; similar to those with the
lines ¢; and a;;, it was shown that the six lines d; have a transversal . The
existence of the lines f;; was shown differently by Kubota (10) as follows. In

https://doi.org/10.1017/50013091500009780 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500009780

A CONFIGURATION OF LINES IN THREE DIMENSIONS 107

the above situation, the four reguli (o,00,3014), (%;2023%24), (0013033034),
(0445 %24, A34) have a common line fs¢: this theorem is (). By mapping the
lines on to the Klein quadric in five dimensions and projecting on to a plane,
it is equivalent to the result that the four circumcircles of the four triangles
obtained by omitting in turn each of four lines in the plane have a common
point (8).

The configuration to be constructed consists of two types of lines, which
will be called Greek (g-lines) and Latin (I-lines) and denoted accordingly.
The first table below gives in stages the list of results either assumed or to be
proved in § 3. The second table gives the intersections between the g-lines and
the I-lines as they are obtained. Here, the right-hand column lists the number
of l-lines that the given g-line meets. The third table lists the numbers of
I-lines and g-lines. In all, the g-lines and l-lines form a tactical configuration
(576, 7; 56, 72), in which each of the 576 g-lines meets seven l-lines and each
of the 56 l-lines meets 72 g-lines.

Stages of the Configuration
8. Ay, A,, A5, Ay, As, Ag, A, have the transversal A
S,: Ay, A, A5, A, also have the transversal Agq,
S3: As3, Aags Aras, Aqag, Ar27 have the transversal 4, ,
Sy Ay, Ays, Ayg, Ays, Ag, A7 have the transversal I'},
Ss: Ay, Ays, Agg, Ags, Arg, A7 have the transversal T’y
S¢: Ay, Asg, Asy, Ag7 have the transversals Asq; and Alg,
870 Al A3 (V i, j, k # 1, 2) have the transversal By,
Sg:  Ayy, Ays, Ayg, Bse, Bsy, Bgy have the transversal Ik,
So: Ay, Bya, Bya, By, Bys, Byg, By; have the transversal A,
Si0: Azs, Bia, Bis, Big, By have the transversal Al,
Sy1: T (V i, j, k #1) has the transversal B,
S,,: By meets Iy
Si1: By, B,, Bs, B,, Bsg, Bs;, Bg; have the transversal I'sg
S.4: By, By, Bs, B,, Bs, Bg, B, have the transversal T’
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Intersections of the Configuration

S A meets  A4; 7
85,831 Ay meets A, A 7
S,: e meets A, Ay, 6
S5 I; meets  A;; 6
Ss: Al meets A, A, 4
S, ‘e meets By 1
S;: Ay meets B, 3
Sg: Ty meets A, B, 6
Sy A meets  A4;, B;; 7
Sio: i meets A, B, 5
St I meets B; 1
AP i meets B; 2
AP I meets B 1
AP I'ijy meets B, B; 7
St T meets B, 7
Lines of the Configuration
Latin Greek
A 1
7 A;

A 35

21 A .
“x 105
I 7
” 140

21 B;; _
Kt 140
A; 7
b 105

7 B;

| P 35
_ ro 1
56 576
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To set the picture, there follow some elementary results on line geometry.

(1) Four skew lines lie in a regulus if and only if they are linearly dependent.

(2) Four skew lines have only one transversal if and only if the four skew
lines are linearly independent and the five lines are linearly dependent.

(3) Five skew lines, four of which have just two transversals, have two
transversals if and only if they are linearly dependent.

(4) Six skew lines lie in a linear complex if and only if they are linearly
dependent.

(5) Five skew lines have exactly one transversal if and only if the six lines
are linearly dependent but the five are not.

(6) Five skew lines have exactly one transversal and are part of a double-
six if and only if the six are linearly dependent but no five of the six are.

(7) A necessary condition that six skew lines with a transversal lead to
Grace’s theorem is that every five of the seven lines are linearly independent
(this condition is not quite sufficient (8), p. 357).

(8) A necessary condition that seven skew lines with a transversal lead to
Brown’s configuration is that every five of the eight lines are linearly independent.

3. Construction of the configuration
S;. Letus begin with the seven lines 4; with transversal Asatisfying condition
(8) above.
S,. 4, A,, A5, A, have the further transversal Asg;.
S3. By (2), Aj23, Ajzs, Ayss, Ajges Aqz7 have a transversal 4;,. Thus
there are 21 double-sixes like
Ay, A Ay As Ag A,
A Ajps Ay Apps Aszs Agage
S,. Apply (o) to the case ¢, = Ay, ¢, = A3, €3 = Ay, ¢4 = As, €5 = Ag,
co = A7. Thenoy, = Ajy3, 003 = Ajga, 014 = Agzs, @33 = Ag3s, 054 = Ag3s,

035 = Ay4s. So the reguli in the left-hand column below have a common
line: their complementary reguli are written on the right.

A123 A124, A125 A6 A7 A12
A132 A134 A135 A6 A7 A13
A142 A143 A145 A6 A7 A14
A152 A153 A154 A6 A7 AlS

Let this common line be T'},; it therefore meets A;,, Ay3, 414, A5, Ag, A5-

Ss. Theorem. All fifteen lines T'}; are distinct.
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. Proof. IfT;, =TL,, it meets 4,,, Ay, As, Ag, A4, which, by (2), have only
the one transversal A,,5; so I't; = A;,5. Then, by (), we have
%(A123A142A143A145)

which implies %(A4,44545A4;), contradicting the existence of a double-six such
as the above. So I'§; #I'}s.

If T}, =T, it meets As, Ag, A5, A12, A13, Ay4. But the three sets of four
{ds, Ag, A4, Ay2}, {As, Ag, A7, A3}, {45, Ag, A7, A14} have just the respective
pairs of transversals {A;;3, A;z4}, {A123, Ayss}s {Arass Agza). As all Ay
are distinct, the six lines have no transversal. So I'l, #T'},. So all fifteen
lines I';; are distinct.

At this stage, in order that the figure does not degenerate, it must be assumed
that any set of six lines like 4,5, A3, A4, A5, A6, Ay, are skew: in fact,
the six lines are all skew or all concurrent, (8), p. 354.

It was previously shown that the four lines 45, 4g, A5, A,, do not lie in a
regulus.

Theorem. No four of the lines Ag, A7, Ay,, Ay, A1a, A, lie in a regulus.
Proof. #(Ag, A7, A1, A1s) = R(Té2, Ar2zs Arzar Ar3s)
= R(A4s, Ag, A7, A13)-
R(A7; Arzy Ays, Ara) = R(Té7, Agas, Agzy, Agza)-
R(Ay2, Arzs Args A1s) =R (6, Ui g, To7)
= R(Ae, A7, A1z, Ay3)-
So, in all cases, there is a contradiction.

g) = 140 double-sixes of the type

There are 7 x (

AZ A3 A4 AlS A16 Al7
Fé‘4 ré4 r;S A167 A157 A156
and double-sixes such as
A2 A13 A14 AIS A16 A17

Iy, T Ty Tis T Ty
and
A3 AIZ AI4 AIS A16 A17

I Iys T3 T35 I3e Do
Theorem. TI'f =T,.

Proof. As A,,, A;s, Ay, A,, lie in one half of a double-six and meet
I3, they have just one further transversal. So I'f =T,.
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There are then 42 double-sixes of the above type.

The lines I';, i = 1, ..., 7, are the Grace lines.

Sg. Ay, Asg, As,, Ag; have the transversal Asq,. The four lines do not
lie in a regulus, since

R(A1AseAs1467) = %(Ffzl"f3FfszT?aT?JZzTIJLAse7)
= R(A,42456A57),

contradicting a theorem in S5. So A4,, A5, A5, Ag; have a second transversal
Alg;. (It is here assumed that the degeneracy I'$, = I'], has not occurred:
if I'§, = I'],, then this line meets 4,, 4,, A35, A3, and is '3, or Asgq. If
I'$, = Asg;, then A4, meets A,q, Which is impossible as they are polar in a

double-six. Hence I'$, =T, and all T}, are the same. In general, as will
be shown below, the five lines T, lie in a regulus.)

S,;. Now consider Asy; meeting the five lines 4,, 4,, Asq, Asq, Ags-
Every four have a unique second transversal. So, by (2), we have the double-six

12
Bsg, Ay Ay As; As; Ase
2 1 5 6 7
A567 A567 A567 rlZ r12 rlZ'
Theorem. The ten lines B} are identical.

Proof. Apply (o) to the case o = Agqy, ¢y = Ay, ¢; = A3, €3 = Asg,
C4 = A57, Cs = Az, 06 = A67‘ Then

_ A2 T __T6 _T7 _ 16 —
01 = ASgq, 13 =T33, 014 =123, 33 =T[5, 034 =T73, 34 = Ays.

Thus we have

A§67 rZS rg3 A2 A67 B§g7
A§67 FIZ rfz AZ A67 B;§7
rz3 FIZ A467 AZ A67 A47

rg&) er A4-67 AZ A67 A46'

The left-hand reguli have a common line. The other transversal to 4,, 444,

A4, Aye apart from Aug, is AZg,: this is then the required line. So A2, meets

B3Z,; similarly A}¢, meets BL2,. So B2, meets Alg,, Agq, TSy, T,
Consider now the double-six

Bié? Al A2 A67 A47 A46
A467 A1%67 A;»67 ri‘z rfz r‘llz'

Therefore Alg,, AZg;, I'S,, T'], have the three transversals BLZ,, BiZ,, A¢-,
where Ag, # B3Z, and Ag, # BiZ,. As the above four lines do not belong to
a regulus, BjZ, = BiZ,. Thus all ten lines B} are identical.
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5
3

BlZ Al A2 A45 A35 A34
A345 A§45 A;45 r:l;Z I“l‘Z rfz

?,nd 'all twenty lines Al,, A%, (i, j, k # 1, 2) meet B,,. Further %(4,4,B,,)
implies #(T'3,1'3,T1,03,112).

Ss. Now consider 45 meeting Aj;,, Af,4, Alz3, T'ig, I't;. No four lie in
a regulus since #(A},3A5,,T'LTE,) = #(45A,,4,34,,) and

%(AfzaAquf.ur:lss) = A(AsA12413414)

Write By, for B}Z. There are (;) x ( ) = 210 double-sixes of the form

also.
Therefore, by (2), we have the double-sixes

AlZ A13 A14 B56 BS7 AS

AfB‘t AfZ4 Af23 F§7 r;G r§67
and
A12 A13 A14 B56 B67 A6

6 6 6 1 1 1%
A134 A124» A123 Iq67 l—‘56 1—.567'

Theorem. T'if, =g

Proof. As A,,, A3, A4, Bsg lie in one half of a double-six and meet 'L,
they have just one further transversal. So I'i¥, = I',,.

Tis; meets Ay,, Aya, Ay4, Bse, Bs;, Bs; and there are 7 x (g) x3 =420
double-sixes of the above type.

Sy. Consider the six lines A, 4,3, B4, Bys, Bis, By;- It will ultimately
be shown that they form one half of a double-six.

Theorem. No four of Ay, A,3, B4, Bys, Byg, By lie in a regulus.

Proof, Similarly to the one above, the following six lines form one-half
of a double-six and so no four lie in a regulus: 4,5, 456, A2, B1a, Bis, 4;.

R(A,3B14B,5B,) implies that T'Z55 meets B, ,.
Hence R(T1asT1560337) =>R(A23427B14B1s).
R(B14B;35B16B17) = A(A334433503360337)
=>R(A1A423B,4By5).
9(A1B14B15B16) = R(A334A335A2360337)-

In each case, there is a contradiction. So no four of the given six lines lie in a
regulus.
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Als, meets Ay, Ays, Azs, Aag, Bys, Byg, By;. Let the second transversal
of A4,, B,s, Bys, B;; be A,.

Theorem. A, meets B;,, By3, By,.

Proof. Apply () to the case o = Al;,, ¢, = Az4, €3 = A4, ¢3 = Bys,
¢y = B4, ¢s = By;, ¢ = A;. Then
=A = Al = Al =Al =Al =T
Ayy = Dy, 033 = Nags, Xyg = Diges K23 = D345, K24 = D346 X34 =117

Thus we have

Al A;A»S A;46 Al Bl 7 X
A1 A;45 A;46 Al Bl 7 Y
A;45 A;45 let7 Al B17 A45
A;46 A;46 r‘;7 Al B17 A46'

The reguli on the left all have a line Z in common, which meets all the lines
on the right. But the only transversal of A4,, B,,, Ass, A4 other than I'{,
is Alss. So Zis Alss. Hence #(A;AL,5AY,6ALs6). Hence B,,, which meets
the last three lines meets A;. Also #(A;A},sA}46AAse); Bs meets the last
three lines and therefore A,. Similarly, by putting ¢, = 4,; above, it may be
shown that B,, meets A,.

Therefore it has been shown that 4,, B,,, B3, By,4, B;s, B1s, B1; have the
transversal A,.

S,0- Now consider A, meeting A, B4, B;s, By, B;;- No four of the
five lines lie in a regulus. So, by (2), the double-six may be completed:

A23 Al B14 B15 B16 Bl7

A1 A;3 Aé34 A535 A;36 A;37'
There are 7 x (g) = 105 double-sixes of this type and 105 lines A%;.

1. Consider the construction of Grace’s figure on A, and B,,, B3, Bia,
B,s, Bys, By;. This gives double-sixes like

B% B13 B14 B15 B16 B17
Al A;3 A;4 A%s AéG A;7’
Theorem. A/l six lines B] (i # 7) are the same.

Proof. Apply (o#7) to the case a = A,, ¢; = 4, ¢, = By,, ¢3 = B3,
€4 = By4, ¢s = Bys, ¢ = Byg. Then

_ Al Al Al _ Al Al _ Al
Uy =Azq, 013 = A3q, @14 = A4y, 033 = A339, 0pq = D347, 03, = Az,s.
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Then we have

A;7 A§7 Ai? BlS Bl6 Bi,

Aé7 A;37 A;47 BlS B16 A27
A;7 A;37 A:1347 BIS B16 A37
A17 A;47 A:})4»7 Bl 5 Blé A47'

The line common to the four reguli on the left is the second transversal other
than Al,, of B,s, B,g, A3;, A4, and is therefore T']s,. So I'js¢ meets B]
and similarly BI, BJ. In the same way, B] and B] both meet I, ,6, I'y36, I'146-
If B] # B], then

-%(BZBgBm) = @(FZZ6FZ3GFZ46FZSG) = R(A27437447457),

which is a contradiction. So B] = B] and similarly all six lines B] are the

same.
Write B, for B]. Thus there are seven lines B; and each B; meets the twenty
lines Iy, Further, A}, meets B;. There are 42 double-sixes like

BZ BIS B14 B15 BIG B17
Ay A3 A Al Ak Al

S;,. Now, constructing the double-six onT'}; and B,3, 44, Ays, 416, 417,
we obtain
B23 Al4 AIS Alé A17 Bl

1 1 1 1 1
1—‘1 1-‘234» r235 r236 I“237 r23'

So B, meets I', giving the seventh line apart from the six lines 4,; ({ = 2,..., 7)
to meet T',.

S,3. Continuing the construction of Grace’s figure on A, from §,,, apply
() to the case a = A,, ¢; = Byy, ¢; = By3, ¢3 = By4, ¢4 = Bys, ¢5s = By,
¢s = B;,. Then

1 At Al _ Al _ Al _ Al
02 = A2s, 33 = Adg, ®yg = Ags, a3 = Ajy, try = Ajs, 34 = Ays.

Therefore, we have

A;S A;4 A;S BIS B17 B2
Aé3 A:§4 A:}SS Bl6 B17 B3
A}y ALy Al Bis By; B!
Als A5 Als Bis By; Bs.

The reguli on the left have a common line y},, which meets B ¢, B,;, B,, B,
B, Bs.
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No five of the lines By, B,, Bs, B,, B¢, lie in a regulus, since
R(B,B,B3B,) = R(y36Y36746736) = %(B1B,B3Bs;)
and since
%(B,B,B;Bg,) = %(AszfaAgsAzzA‘llsAgs) => %(BB47Bs7Bs7),
contradicting the existence of a double-six like that in S, ;.
Therefore, using the lines yjk, we have the double-sixes
D: B, B, By B, Bs Bg,
Yie 7Vie Yie Yas 736 Té
and
D: By, B, By B, Bg Bs
Yis Vis ¥3s Vs Vs Is
Theorem. All six lines '] are the same.

Proof. T #T']= R(yli']) = A(B,B,B;B,), contradicting the existence-
of D. So all six I'/ are the same and will be written I'".

Theorem. All three lines y%,, y$,, yi¢ are the same.
Proof. I'7 # ¢, as I'" meets B; and y$; does not. So
V36 # V57 = R(T"y$7736) = (B1 B2 B3By),
again a contradiction. So yl, =%, = y3, and will be written I'sg;. I'seq
meets B,, B,, By, By, Bsg, Bsy, Ber.
S,4. Theorem. All seven lines T are the same.

Proof. T'7 # I'ss, and T'® % T'5,, since both pairs occur in a double-six.
So I'7 % I'S = @(I'"'T°Ts4,) = #(B,B,B;B,), a contradiction. So I'" = I'®
and similarly all seven I'! are the same.

Write I' = I'". Then I" meets B,, B,, B, B,, Bs, B, B,.

4. Description of the configuration

We now have the complete figure of 576 g-lines and 56 1-lines, where each
g-line meets seven l-lines and each l-line meets 72 g-lines. Further, the figure
can be constructed from any g-line and the seven l-lines which meet it.

A change in notation now leads to a great simplification as below:

Old A A j.k Aj-k i T A; B,
New Ag Aisjk r}ks Aj'ks risjk I's By Aig

. ; .
A, Ty, Ajyy, Ti, A;j, B;; emain the same.
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Now there are
8 lines A;

8 lines T
280 lines Al
280 lines Ty,

28 lines Aj;;
28 lines By

where the indices vary from 1 to 8 with no repetitions.

The intersections of the lines are as follows:

A meets B;;

i
Ay, meets Ay, B,
. meets A, By

I; meets A

The 576 g-lines fall naturally into 36 double-eights, one like

A, Ay Ay A, As Ag A,

r, I, Iy I, Ts T T

and (i)/z = 35 like

AS
7 I“8

A;34 A§41 A‘:;‘-12 A‘1.23 A278 AgSS A;SG A267
r;34 I“g‘&l 1—‘212 1—“1t23 1—‘278 rgss rgSG Iq§67
where the significance is quite unlike that of the double-six, but, for example,

if the construction is begun with the line Ag and the seven l-lines which meet it,
then I'y, ..., I'; are the seven Grace lines obtained and I'g is the completing

line of the configuration.

Each g-line occurs in exactly one double-eight. The eight g-lines forming
one-half of a double-eight have, as transversals, 28 of the I-lines: the eight
g-lines forming the other half have the other 28 I-lines as transversals.

Since each g-lines meets seven l-lines, there are 576 x21/6 = 2016 double-

sixes. They are as follows:

1
LX) Azs Bis Bys Bis B4
1 1 1 1
A Azss  Azss  Azse  Azzg
1
h33 B,; Asq Ass Ase Ay
1 1 1 1
I, IMasa To3s Tase  Taag

https://doi.org/10.1017/50013091500009780 Published online by Cambridge University Press

BlS

1
A238

Arg

1
l-‘238

7
8 (2) = 168

168


https://doi.org/10.1017/S0013091500009780

A CONFIGURATION OF LINES IN THREE DIMENSIONS 117

Péég% Ay, Ays Aa Bss Bs4 Bsg 8.7 (6) = 1120

5 5 5 1 1 1 3
A134 A124 A123 I—578 I—568 1—‘567

qgg Azs Az, Az Bss Bsa Bys (8)(5) = 560
3N3
Tiss Tise Tiss Atz Al ASs

Each g-line lies in 21 double-sixes and each l-line lies in 2016-6/56 = 216
double-sixes.

There is a key theorem for this configuration which deals with five, six
and seven skew lines having a transversal. Given a line b with n transversals
ay, ..., a,, the locus of points P such that the n+1 planes Pb, Pa,, ..., Pa, touch
a quadric is a cubic surface, a twisted cubic or a single point P according as n
is five, six or seven, Baker (1), p. 195. Dually, the locus of planes m such that
the n+1 points n.b, n.a,, ..., n.a, lie on a conic is a cubic envelope, a cubic
developable or a single plane according as n is five, six or seven. Passing from
five to six, six cubic surfaces all containing the twisted cubic are obtained:
passing from six to seven, seven twisted cubics are obtained all containing the
point.

For n = 7, there are other naturally associated algebraic varieties. A quartic
surface is determined by 34 conditions. For b and a,, ..., a, to lic on a quartic
surface, there are 5+7-4 = 33 conditions. So there is a pencil of such surfaces
through the eight lines. Two of these are special: firstly, one may require that
the point P obtained above lies on the surface; secondly, one may require
that & is a double line of the surface. Either condition gives a unique quartic
surface. The former surface also contains the seven twisted cubics, each of
which has six of the a; as chords. Both surfaces are described in (9).

Beginning with I'; meeting 4,,, 4,3, 444, A1s, A16, A7, SiX double-sixes
are obtained with the completing lines B,g, Big, Bsg, Bsg, Bgg, B7g. These
twelve I-lines are chords of a twisted cubic ¢5. Thus there are 56 cubics ¢}
with chords 4, B (k # i, j). From I'; and the seven lines 4;,, ..., A;s,
the seven cubics ti(i # 1) are obtained, which are concurrent at the point P, .
Thus there are eight points P; and eight points Q;, where Q,, for example, is
the meet of ¢, ..., 3.

Beginning with A},, meeting A,5, 4,4, A34, Bis, Big, Byq, six double-
sixes with completing lines 4,4, A1, A45, Bsg, Bsy, Bg; are obtained. These
twelve lines are chords of a twisted cubic #,545. Thus there are (Z) = 70 cubics
t;jy with chords 4;;, B, (m,n # i, j, k, I). This gives 126 cubics in all. From
sixes of the seven I-lines meeting A},,, the seven cubics

1 1 41
13345, 23465 123475 L2348 12, 13, L4

are obtained and these meet at @,. Similarly, from the seven l-lines meeting
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T334, the seven cubics ¢, 567, 1568, tis78s ti678s 125 13s 1}, are obtained and they
meet at P,.

Theorem. All 126 cubics t, ti;u have a point P in common.

Proof. From above, t] contains P;, Q;; t;ja contains P;, Q,. The two
cubics t;s54, and t,545 have the six chords A,s, 4,4, Asg, B2z, Bas, B3s in
common and so at most one point in common. Thus

tise7-l1ses = Py = Ps = Pg = 0, = 03 = Oy
Hence all P; and Q; are the same point, which will be called P. So all 126 cubics
have the point P in common.

Dually there are 126 cubic developables, all of which have a plane 7 in
common. 7 meets each g-line and its seven transversals in the eight points
of a conic. The eight planes joining P to a g-line and its seven transversals
touch a quadric cone with vertex P.

If a cubic surface contains five chords of a twisted cubic, then the surface
contains the curve. P lies on each of the 2016 cubic surfaces (containing the
double-sixes), each of which contains two of the 126 twisted cubics. For
example, m}, contains the l-lines 4,5, B4, B;s, B¢, By7, B1g and therefore
just the two cubics £, tj. So each cubic curve lies on 2016 x2/126 = 32
surfaces. For example, t? lies on six surfaces m?,, six surfaces nj; and twenty
surfaces piiik

If a twisted cubic has thirteen points in common with a quartic surface,
the curve lies on the surface. So, for any g-line, there exists a unique quartic
surface containing it, the seven l-lines meeting it and the seven twisted cubics
with sixes of the seven lines as chords. Thus the number of such surfaces
through one of the 126 cubic curves is 576 x 7/126 = 32.

One final figure is the number of twisted cubics which have a given l-line
as chord, viz. 126 x 12/56 = 27.

Therefore, to summarise the numerical properties of the figure, there are
the following tactical configurations:

g-lines, l-lines (576, 7; 56, 72)
cubic curves, I-lines (126, 12; 56, 27)
cubic surfaces, g-lines (2016, 6; 576, 21)
cubic surfaces, l-lines (2016, 6; 56, 216)
cubic surfaces, cubic curves (20186, 2; 126, 32)
quartic surfaces, g-lines (576, 1; 576, 1)
quartic surfaces, l-lines (576, 7; 56, 72)
quartic surfaces, cubic curves (576, 7; 126, 32)

quartic surfaces, cubic surfaces (576, 21; 2016, 6).

In the case of the last tactical configuration, for each quartic surface there
are 21 cubic surfaces, which meet it in a degenerate curve of order 12 consisting
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of a g-line, five l-lines and two twisted cubics; for each cubic surface, there are
6 quartic surfaces meeting it in such a curve.

If, in the construction of the configuration, A4, is taken to be a chord of the
unique twisted cubic ¢ with 4,, ..., A¢ as chords, then all 126 twisted cubics
t, 4, are the same, viz. ¢, and all 56 l-lines 4;;, B;; are chords of . Also,
there is no special point P.

ij»

5. Groups of the configuration

From five skew lines with a transversal, the 27 lines of a cubic surface
are obtained: they form 36 double-sixes. The substitutions which preserve
the configuration are as follows: any two lines of one half of a double-six
may be interchanged; the two halves of a double-six may be interchanged;
any double-six may be transformed into any other. Thus the group, Gs,
of substitutions of the twenty-seven lines has order 6!x2x36 = 51,840 and
is well-known.

From six skew lines with a transversal, the 44 lines of Grace’s extension
are derived. They form 32 double-sixes with halves as follows:

6 like d; c; ¢35 ¢, ¢5 c¢

6 like ¢, dy dy d, ds dg

20 like ¢; ¢, ¢3 dy ds dg.

The generators of the group, G, of the configuration are
(cic)dd)), (cd)ceidp), i,j=1,...,6;

i.e. these generate all permutations of the lines of any half of a double-six and
all interchanges of any two halves. So Gg has order 32 x 6! = 23,040.

Let M and N be the following subgroups of Gg: M = {{(c;c;)(dd))}>
and N = {{(cid)(c;d))}>. M is isomorphic to Sg. N is abelian and has order
32; so N is an elementary abelian group of order 32 and isomorphic to

CoxCyxCyxC,xC,,

where C, is cyclic of order 2. Further N is a normal subgroup of G;. Therefore
G¢ = MN and is a split extension (or semi-direct product) of N by M.

The order of the group, G, of the configuration that has been derived from
seven skew lines with a transversal is best seen from the double-eights. Any
two lines in the same row of one may be interchanged; the two rows of a
double-eight may be interchanged; and any double-eight may be changed
into any other. So the order of G is

8!x2x36 = 2,903,040.

The groups Gs, G¢, G, are related to the semi-simple Lie algebras Eg, Dy, E;,
Bourbaki (2), pp. 256-266, and to the reflexion groups whose fundamental
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regions are the spherical simplexes E4, Bg, E;, Coxeter (5), ch. 11. The
corresponding Dynkin graphs are

e—0—0—0—0, 0—0—90—0—0, 06—0—0—0—0—0 .

Gs and G are subgroups of G, of indices 56 and 126 respectively.
" The group G, has an element y of order two, where

Y= H (4; B; j)(Akrk)(Afmnrfmn N

i, j, kI, m,m, p

i.e. y interchanges A4;; and B;;, A, and I, A}, and I}, for all values of the
indices.

There exists a polarity which interchanges the lines ¢; and b; (i = 1, ..., 6)
of a double-six. Further, there exists a polarity which interchanges the lines
« and B, ¢; and d;, «;, and B, (i, j, k = 1, ..., 6) of Grace’s extension of the

double-six. So it seems natural to postulate the following.

J?

Conjecture. There exists a polarity which induces y and interchanges the
point P and the plane .

The group G, has a subgroup of index two which is isomorphic to the
group of the 28 bitangents of a non-singular plane quartic curve, (4). In
fact, it will be shown that the configuration obtained has—modulo the involu-
tion y—corresponding geometrical properties to those of the 28 bitangents.
Thus the group of the bitangents is isomorphic to G,/{y).

6. The correspondence between the configuration and the bitangents of a non-
singular plane quartic curve

Firstly, it is necessary to give a brief review of the properties of the 28
bitangents of a non-singular plane quartic curve Q; cf. Salmon (12), p. 223.

Let the bitangents be denoted by T;; (i, 7 =1, ..., 8, i<j). Then, given
any pair of bitangents, five other pairs are uniquely determined so that any
two of the six pairs have their eight points of contact with Q on a conic. Such
a set of 12 lines is called a Steiner set. There are 63 Steiner sets—28 like
{Ty:» Ty;|1i =3, .., 8} and 35 like

{T12: T3a5 T13, Taa; Tias T23; Tsgs Tags Tses Tess Tsg Teq)-

There exist sets of seven bitangents, called Aronhold sets, such that no three
of the seven have their six points of contact on aconic. There are 288 Aronhold
sets—8 like {T; |i = 2, ..., 8} and 280 like {Ty,, Ty3, T14> T1s> T67> T6s> T8}

There are 36 ways in which the 28 bitangents can be arranged (each appear-
ing twice) as the elements of an 8 x 8 symmetric matrix excluding the main
diagonal such that each row and column is an Aronhold set. This is a Hesse
arrangement. It is, in fact, the basis for the notation T;; for the bitangents.
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Thus the 288 Aronhold sets fall naturally by eights into the 36 Hesse arrange-
ments.

Any five bitangents of an Aronhold set determine a sixth such that their
twelve points of contact lie on a cubic curve: the six lines also touch a conic.
There are 1008 of these hexads—168 like {53, Ty4, Ty5s Ty, T175 Tyg}, 560 like
{T12, Ty, T1a> Tsgs Tsy, Tsg} and 280 like {T', T3, T3, Tass Tug, T'se}-

Finally, given seven general lines in the plane, there exists a unique quartic
curve having these lines as bitangents. The remaining 21 bitangents can be
constructed linearly from the initial seven.

The correspondence between the bitangents of Q and our configuration is
then as follows.

Number Plane object Space object

36 Hesse arrangement of Double-eight of g-lines
the 28 bitangents

63 Steiner set of 12 lines Pair of twisted cubics each with 12 chords
288 Aronhold set of 7 lines Pair of g-lines each with 7 transversal

I-lines
1008 Cubic curve and set of Pair of cubic surfaces each containing
6 lines 6 1-lines

The pairs of space objects which are the same modulo y are as follows:

t/  with chords A, B, (k #1, j)

cubics )
t; with chords Ay, By, (k#1i,J)
. tijq With chords A4;;, B, (m,n#1i,j, k, )
cubics
tmnpg With chords A,,, Bi; (i,j # m, n, p, q)
. A; with transversals B;; (j # i)
g-lines
I'; with transversals A;; (j #10)
. A%, with transversals Ay, B, (m #i,j, k, 1)
g-lines ]
I} with transversals  A;,, By, (m #1i,j, k, 1)
] mj,  containing l-lines Ay, By (I #1i,j, k)
cubic surfaces {
ny containing I-lines Ay, By, (I #1, j, k)

pik . containing l-lines  A4;;, B,

mmn

cubic surfaces {
P’ containing l-lines  A,,, B;;

g% containing l-lines A4;;

Imn

cubic surfaces {
qij¢  containing l-lines A, B;;.

E.M.S.—H
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It seems possible that the correspondence could be made more precise.
If the 56 l-lines are projected from P on to «, the 56 lines PInx are obtained,
which touch 576 conics in sets of seven. Dually, the 56 points of intersection
Inz lie in sevens on 576 conics. It seems doubtful that these 56 points could
be the points of contact of 28 bitangents of a quartic curve, since they do not
lie suitably in eights on conics.

7. Conclusion

The complete configuration of 632 lines derived from seven skew lines with
a transversal has been obtained. Although we know that the seven Grace lines
Ty, ..., I'; do not in general have a transversal, § 1, it has not been shown
without using a computed example. If one supposed that the seven Grace
lines did have a transversal, then the eight g-lines of any row of a double-eight
would have a transversal. It is therefore possible that, to understand the
above configuration completely, it is necessary to investigate the configuration
obtainable from eight skew lines with a transversal. For this case, however,
there does not seem to be an associated irreducible variety, as was the case for
five, six and seven lines.

From Longuet-Higgins’s examples (11), it seems highly probable that the
seven Grace lines always belong to a linear complex. This has two con-
sequences. Firstly, it means that the eight g-lines of any row of a double-eight
belong to a linear complex, thus giving 72 linear complexes in all. Secondly,
by a theorem of Todd (13), p. 63, it means that any seven g-lines belonging to
one half of a double-eight lie on a quartic surface, thus associating another
set of 576 quartic surfaces with our figure.
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