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Abstract

If G is the unitary group U( V) or the symplectic group Sp( V) of a vector space V over a finite field of
characteristic p, and r is a positive integer, we determine the abelian /^-subgroups of largest order in G
whose fixed subspaces in Knave dimension at least r, with the restriction that we assume/) # 2 in the
symplectic case. In particular, we determine the abelian subgroups of largest order in a Sylow
/>-subgroup of G. Our results complement earlier work on general linear and orthogonal groups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 G 40.

Introduction

Let G be a classical group of linear transformations on a vector space V over a
finite field of characteristic p. For a fixed number r, consider the abelian
/^-subgroups of G of largest order fixing the vectors of an r-dimensional subspace
of V. These subgroups were determined in the cases when G is a general linear
group or an orthogonal group, by Goozeff (1970) and Wong (1981). In this paper
we deal with the cases when G is a unitary group or a symplectic group, where we
assume p ¥= 2 in the symplectic case.

Our methods are inductive, and are similar to those used in the orthogonal
case, with some simplifications due to the fact that the underlying sesquilinear
form is not symmetric. After some notation, terminology and preliminary remarks
in Section 1, we study the unitary case, giving the orders of the relevant abelian
/7-subgroups in Section 2, describing the subgroups themselves in Section 3, and
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finding the largest abelian subgroups of a fixed Sylow p-subgroup of G in Section
4. The corresponding results for the symplectic case are given in Section 5.

The case of the symplectic group in characteristic 2 has been studied indepen-
dently by Barry and the present author, and is dealt with in the companion paper,
Barry and Wong (1982), which follows this article.

1. Preliminaries

We take a finite field F of characteristic p, with an automorphism J such that
J2 = 1. Consider a finite-dimensional vector space V over F with an anti-Hermi-
tian form H: V X V -> F. Thus

H(v + v',w) = H(v,w) + H(v',w),

H(av, w) — aH(v, w),

H(w,v) = -H(v,w)J,

where v, v', w £ V, a G F. We use Dieudonne (1955) as a basic reference. If W, Z
are subspaces of V, W C Z, we have the following glossary.

Wx = orthogonal complement of W in V, relative to H.
w£= wx nz.
Radical of W, rad W= W^.
W is degenerate if rad W ¥= 0.
W is totally isotropic if rad W — W.
Isotropic vector: v ¥= 0, H(v, v) = 0.

The case / = 1 occurs when H is an alternating form, that is, H(v, v) = 0 for all
v. In this case, if V is nondegenerate, then V has even dimension 2m, and all
maximal totally isotropic subspaces have dimension m. The isometry group,
consisting of all linear transformations a on V such that H(av, aw) — H(v, w)
for all v, w in V, is the symplectic group Sp(F).

If / =£ 1 and V is nondegenerate, then H is uniquely determined to within
equivalence by the dimension of V, Dieudonne (1955), page 16, and all maximal
totally isotropic subspaces have dimension [̂  dim V]. The isometry group in this
case is the unitary group U(V).

We shall assume in the rest of this section and in the next three sections that we
have the unitary case that J ¥= 1 and V is nondegenerate of dimension n. The
symplectic case will be left to Section 5.

Let Fo be the fixed field of / , and set q = | Fo | , so that | F \ — q2, and aJ = aq,
a £ F. An element a of F is said to be skew if aJ = -a. Nonzero skew elements
exist, since every element of the form bJ — b is skew, and multiplication by such
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an element would convert H into an Hermitian form, which is perhaps more
commonly taken when the unitary group is defined.

LEMMA 1. Every skew element of F has the form bJ — b, for exactly q elements b
ofF.

PROOF. The map b -» bJ — b is an endomorphism tp of the additive group of F,
with kernel Fo of order q. Hence its image consists of q elements. If a is a nonzero
skew element, the set of skew elements is aF0. Thus the skew elements are
precisely the elements of the image of \p. This proves Lemma 1.

Sometimes we have to consider V as a vector space over Fo, and then we
speak of F0-subspaces, F0-dimension, and so on. The words subspace,
dimension,..., without prefix, will mean subspace over F, dimension over F, and
so on. Also, we define, for x, y G V,

H0(x, y) = H(x, y) - H(y, x) = txH(x, y),

the trace of H(x, y) in Fo. Then Ho is an alternating F0-bilinear form on V. We
speak of //0-orthogonality, //0-totally isotropic subspaces, i/0-radical, and so on,
to distinguish from the corresponding concepts relative to H, which we continue
to write without prefixes.

LEMMA 2. / / W is a subspace of V, then the H0-radical of W is the same as the
radical of W. //dim W = s, dim(rad W) = h, then the maximal H0-totally isotropic
F0-subspaces of W have F0-dimension equal to s + h.

PROOF. Let x be an element of the //0-radical of W. If y £ W, then
U(aH(x, y)) = H0(x, ay) - 0, for all a & F. Since the trace map is nonzero,
H(x, y) — 0, and so x lies in the radical of W. Since the radical is clearly
contained in the //0-radical, we have the first assertion. Now choose a subspace Y
such that

W= (radfF) © Y,

so that dimfo Y = 2dim Y = 2(s - h). The maximal 7/0-totally isotropic F0-sub-
spaces T of W have the form

T= (radW) © U,

where U is a maximal #0-totally isotropic F0-subspace of Y. Since Y is nondegen-
erate relative to Ho,

dim F U — \ d i m F Y = s — h.

Since dimfo(rad W) = 2h, we have dimfo T — s + h. This proves Lemma 2.
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2. Orders

As in Wong (1981), we say an element or subgroup of the unitary group U(V)
fixes a subspace X of V if it fixes every vector in X. More generally, it fixes a
quotient X/Y of subspaces if it maps every coset x + Y on itself, x E X. For
0 < r < n, we consider the abelian/^-subgroups A ol U{V) such that ^ fixes some
subspace of dimension r, and let &{V, r) be the set of those A having the largest
possible order. We denote this order as q^"'r\ where q is the number of elements
in the fixed field FQ of J.

The following result is proved as in Wong (1981).

LEMMA 3. If A is a p-subgroup of U(V), A ¥= 1, then the vectors of V fixed by A
form a degenerate subspace. In particular, A fixes some isotropic vector.

If x is an isotropic vector, we can choose another isotropic vector y, such that
H(x, y) = 1, by Dieudonne (1955), page 20. Then x, y is called a hyperbolic pair,
and spans a nondegenerate subspace (x, y). If t £ V, then H(t, t) is a skew
element of F (since H is anti-Hermitian), and so

B(t)= {bEF\bJ -b = H(t,t)}

is a subset of F having q elements, by Lemma 1.

LEMMA 4. Suppose x, y is a hyperbolic pair in V, and Z — (x, y)± , so that
V - <x)© Z © (y). For ju e U(Z), t G Z, b e B(t), define a linear transforma-
tion o(n, t, b) on Vby

a(/x, /, b)x = x,

a(n,t,b)z = nz - H{jiz,t)x, zEZ,

a(fi, t, b)y =y + t + bx.

Then (i) a(ju, t, b) is a unitary transformation fixing x, and, conversely, every
unitary transformation of V fixing x has the form a(fx, t, b), for unique ju E U(Z),
t <=Z,bE B(t).

(ii) a(n, t, b)a(n', t', b') = o(iip', t + tit', b + b'- H(nt\ t)).
(iii) o(n, t, b) and a(n', t', b') commute if and only if fifi' = ju'/i, (ft — \)t' =

( / i ' - l)t,andH(lx't,t') = H(tit',t).
(iv) / / W is a subspace of Z and X = (x)® W, then a(/x, t, b) fixes X if and only

if H fixes W and t G W? .

https://doi.org/10.1017/S1446788700018759 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018759


[s] Finite classical groups 335

PROOF. Any unitary transformation a fixing x must leave (x)"L= (x)® Z
invariant, and so must have the form

ax — x,

az — fiz + f(z)x, z £ Z,

ay = ay + t + bx,

where ju: Z -» Z, / : Z -> /" are linear maps, t E Z, and a, b E F. Easy calculation
shows that a £ t/(K) if and only if /i £ t/(Z), / ( z ) = -H(\LZ, t), a = 1 and
6 £ 2?(f), so that a — a(ju, /, b). The multiplication formula is a straightforward
computation, and the last two assertions are obvious. This proves Lemma 4.

LEMMA 5. In the situation of Lemma 4, let A be an abelian subgroup of U(V)
fixing x. Let T = {t E Z\a(\, t, b) & A, some b), let S be the subspace of Z
spanned by T, and let So be the F0-subspace of Z spanned by T. Set s = dimF5",
s0 = dimf So, h = dimF(rad S). Then

(i) Ifa(n, t, b) £ A, then n fixes S, and t is H0-orthogonal to So.
(ii) So is H0-totally isotropic.
(hi) h < min(5, n — 2 — s), s0 < s + h.

PROOF. If o(n,t, b), o(\, t\ b') E A, then, since A is abelian, (/x — \)t' — 0, by
Lemma 4(iii). Hence jti fixes T, and so ju fixes S. Also, //(?', /) = H(fxt', t) —
H(t, t'), so that H0(t, t') — 0. Hence t is //0-orthogonal to 50. In particular, T is
Wg-orthogonal to So, and so 50 is //0-totally isotropic. This proves (i) and (ii).

Since rad S C S and rad S C S? , we have h < J and h < n - 2 - s. By
Lemma 2, s0 < 5 + /z. This proves Lemma 5.

We now find an upper bound for/(«, r), where we may assume n > r> 1, by
Lemma 3.

LEMMA 6. Let n > r> 1, and set

g(n, r, s) = 1 + min(2j, n — 2) + / ( « - 2,max(r - 1, s)).

Then f(n, r) < max{g(«, r, 5) | 0 < s < n — /• — 1}.

PROOF. We iakeA in &(V, r), and may assumed ¥= 1. By Lemma 3, we choose
a degenerate /--dimensional subspace X fixed by .4, and take a nonzero vector x in
rad X Take y and Z as in Lemma 4, and define the transformations a(/x, r, 6).
Set W = X D Z, so that X= (x)® W.

The map a(/x, ?, ft) -»ju is a homomorphism of A onto an abelian /^-subgroup
Ax of C/(Z), whose kernel M consists of all a(\, t, b) which lie in A. Let T, S, So,
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s, s0, h be defined as in Lemma 5. By Lemmas 4 and 5,AX fixes both W and S, so

that

where d - max(r - 1, s). Also, M C (a(l, t,b)\t £ S0,b G B(t)}, so that

\M\<qx+"><qx+'+h<qx+',

where e = min(2.s, n — 2), by Lemma 5. Hence,

Since S C W% by Lemma 4, it follows that 0 < .s =s M — r — 1. This proves
Lemma 6.

Let S(F) be the set of all subspaces X of V such that X D X1- or A" C A'x , that
is, A" is a totally isotropic subspace or the orthogonal complement of a totally
isotropic subspace. Let Sr(K) be the set of all r-dimensional subspaces in S(K).
We have the following simple result.

LEMMA 7. Let r, s be nonnegative integers, r + s^n, d = max(r, s), and

X G Sd(K). Then there exist subspaces W, S of X, such that W £ §r(K), S G %S{V),

and W is orthogonal to S.

PROOF. By symmetry, we may assume r s* s. Then, since X G
dim(rad A") — min(r, n — r) > s. We take W to be X, and 5 to be any s-dimen-
sional subspace of rad X. This proves Lemma 7.

LEMMA 8 (Recursion Formula)./(«,0) = / ( « , 1 ) , / (« ,« ) = 0. / / 1 < r < n, then

f(n, r) — m a x { g ( « , r, s)\0 ^ s < n — r — 1 } ,

where g(n, r, s) = 1 + min(2.s, n — 2) + / (« — 2, max(r — 1,5)). 77iere
) such that A fixes X.

PROOF. Clearly f(n, n) = 0, while f(n,0) — f(n, 1) by Lemma 3, and the last
assertion holds for r = / i ,0,1. In particular, the result holds for n «£ 1. We
suppose n s* 2, and use induction. Suppose 1 < /• < n and 0 < i < « — r— 1. We
can choose an isotropic vector x in V, by Dieudonne (1955), page 16, and choose
y, Z as in Lemma 4. Let d — max(r — 1, s). By induction, there exist a subspace
Y G Srf(Z) and an abelian/^-subgroup /I, of C/(Z) of order ql(n~2'd) fixing 7. By
Lemma 7, 7 has subspaces W, S which are orthogonal to each other, such that
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W G S,_,(Z), S G §,(Z). Since dim(rad S) = min(i, n - 2 - J ) , 5 has an Ho-
totally isotropic F0-subspace So of F0-dimension s0 = s + min(s, n — 2 — s) =
min(2i, n — 2). Then

A = { a ( / x , / , i ) | j u G ^ 1 , ? G 5 0 , f c

is a set of q^n-r<s> elements of U(V), fixing the subspace X = (x>© W, which lies
in Sr(V). Since /li fixes So, it is easy to check that A is closed under multiplica-
tion, so that A is a/>-subgroup of U(V). Since At is abelian, v4, fixes So, and 50 is
//0-totally isotropic, Lemma 4 shows that A is abelian. Hence,/(«, r) > g(n, r, s).
Application of Lemma 6 completes the proof of Lemma 8.

The equality in the Recursion Formula implies that the inequalities for \AX\
and | M \ in the proof of Lemma 6 are in fact equalities. Thus

At G ( £ ( Z , m a x ( r - l , s ) ) ,

M= {o(l,t,b)\teS0,bEB(t)},

so — s + h, h = min(i, n — 2 — s).

Hence 5 G S,(Z), and 50 is a maximal Ho-totally isotropic F0-subspace of S.

THEOREM 1. Let U(V) be a finite unitary group, where V is an n-dimensional
vector space over a field of q1 elements having characteristic p, and let qf(n>r^ be the
largest order of an abelian p-subgroup of U(V) fixing an r-dimensional subspace of
V.

(a) Ifr > \n, thenf(n, r) = (n - rf.
(b) If n is even and r < \n, thenf(n, r) = \n2.
(c) Ifn is odd, n > 3 and r < {n, thenf(n, r) = \{n - I)2 + 1; andf(\,0) = 0.

PROOF. The result holds for n < 1 or r = n. We may suppose n > 2, 1 < / • < » ,
and use induction on n.

First suppose r>^n. If 0 < s < n — r — 1, then s < r — 1 and 2s < n — 2.
Thus, g(n, r, s) = I + 2s + f(n — 2, r — 1). In the expression for/(«, r ) given in
the Recursion Formula, the maximum value of g(n, r, s) occurs at s — n — r — 1,
and/(«, r) = 2n — 2r — \ + f(n — 2, r — 1). By inductive hypothesis,

f(n-2,r-l) = (n-r-l)2.

Hence,f(n, r) = (n — r)2.
Now let r < \n. If s < \(n - 2), then /(« - 2, max(r - 1, s)) is a constant

function of s, by inductive hypothesis, and so

g(n,r, s) - 1 + 2s+f(n - 2 , m a x ( r - l,s))
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is a strictly increasing function of s in this range. If j(n — 2) <•?=£« — r — 1,
then s > r — 1, and so

g(n,r,s) = 1 + « - 2 + / ( n - 2, s) = w - 1 + (« - 2 - s)2 ,

a strictly decreasing function of i in this range. Thus the maximum value of
g(n, r, s) occurs at most at the values s = [|(« — 3)], [{(n — 1)]. A check of
values shows that, if n is even, then g(n, r, {(n — 4)) = \n2 — 2, g(n, r, {{n — 2))
= \n2, so that the maximum occurs only at s = {(n — 2), and/(«, r) = ^«2. If n
is odd, then g(n, r, {(n — 3)) = g(n, r, ^(n — 1)) = \(n — I)2 + 1, so the maxi-
mum occurs at s = {{n — 3), ^(« — 1), and f(n, r) = ^(« — I)2 + 1. (If n — 3,
only the case j = ^ ( « — 1) occurs.) This proves Theorem 1.

3. Groups

We let A{X) denote the subgroup of all elements of U(V) fixing a subspace X
of V. More generally, if Z is a nondegenerate subspace of V containing X, we let
AZ{X) denote the subgroup of U(Z) fixing X. Also, if X is a totally isotropic
subspace of V and £ is an F0-subspace of the space of all linear transformations of
X±/X into X, we write A(X, X±/X; £) for the set of all elements a of U(V)
which fix both X and Xx /X, and for which the map of X1- /X into A' induced by
a — 1 lies in £. It is easily checked that this is a subgroup of U(V). We recall also
that Sr(F) denotes the set of all /--dimensional subspaces of V which are either
totally isotropic or orthogonal complements of totally isotropic subspaces.

THEOREM 2. Let U(V) be the unitary group of an n-dimensional vector space V
over a finite field of characteristic p, and let &(V, r) be the set of all abelian
p-subgroups of largest order in U(V) fixing an r-dimensional subspace of V.

(a) Ifr 5* {n, then <3,(V, r) = {A(X) | X £ Sr(*O}-
(b) Ifn is even and r < \n, then &(V, r) = &{V, {n).
(c) Ifn is odd, n > 3, and r < \n, then &(V, r) consists of all A(X, X±/X; £),

where X is a totally isotropic subspace of dimension \{n — 1) in V, and £ is an
F0-subspace of F0-dimension 1 in the space of all linear transformations of X^/X
into X.

PROOF. The result is true for n < 1 or r — n. We may assume n > 2 and
1 < r < n, and use induction on n.

First suppose r 5* \n. If X G Sr(K), so that X D X± , we choose a nonzero
vector x in X1-, and take.y, Z as in Lemma 4. If W = X D Z, then W 6 §,._ ,(Z),
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and

A(X)= {o(n,t,b)\pEAz(W),te W^,bEB(t)}.

By inductive hypothesis, AZ{W) G 6B(Z, r ~ 1). As in the proof of Lemma 8,
A(X) is an abelian /7-subgroup of U(V), and a calculation of its order | A(X) | =
Mz(^ ) l l W£\q shows thai A(X) G &(V, r).

Conversely, suppose A G &(V, r), take a degenerate /--dimensional subspace X
fixed by A, choose a nonzero vector x in rad X, and set up the situation of the
proof of Lemma 6. By the proof of Theorem \,s = n — r — 1 < j(n — 2). By the
remark following the proof of Lemma 8, S G S,(Z). Thus, S is totally isotropic.
Since W C Sz and dim W = r - 1, we have W = S^ , so that W D W^. Hence
XD X-*-, so that * G Sr(F). Since ^ C /l(A') and y4(X) G (2(F, r), we have
v4 = /!(A1). This completes the proof in case (a).

Now suppose n is even and r < \n. By Theorem 1, &(V, r) D <3,(V, {n).
Suppose A G &(V, r), and set up the situation of Lemma 6. By the proof of
Theorem 1, s = j(n — 2). Since S E §>S(Z), S is a maximal totally isotropic
subspace of Z, and So = S is a maximal i/0-totally isotropic F0-subspace of Z. If
a(j^, /, b) G /I, then ju fixes S, and ? is 7/0-orthogonal to So, so that t G 50 = S.
Hence A fixes (*)© S, which has dimension j« , so that A G 6E(F, j«) . This
completes the proof in case (b).

Suppose n is odd, n > 3, and r < ^n. Let A 'bea totally isotropic subspace of
dimension \{n — 1) in F, and £ an F0-subspace of F0-dimension 1 in the space of
all linear transformations of X±/X into X. Choose a nonzero element T in £ and a
nonzero vector x in T( A"-1/^). Take J% Z as in Lemma 4, W = X D Z. H z & Xx ,
denote its image in X±/X by z. If a = a(ju, ?, fo) lies in A(X, Xx/X; £), then
f G W% , ju fixes Wz (since a fixes ^ / ( x ) ) , and, for each z G W? , there exists
c G Fo such that -H(z, t)x — cr(z). Conversely, if /x, t satisfy these conditions,
then a(fi, t, b) lies in A(X, X±/X; £) (since W$ covers X±/X). Choose w E W£
such that T(W) = x. Since 3c spans X±/X, we see that

A(X,X±/X; £)

= {a(M, r, *) | M G ^ z ( » z )• ' e ^ , tf(w, 0 6 F 0 , J G fi(/)}.

The map t -> H{ w, t) is an /^-linear map of Wz -> F with kernel W7. The inverse
image of FQ under this map is an F0-subspace So of /^-dimension n — 2 in Wz •
Since the totally isotropic space W has /^-codimension 1 in So, So is //0-totally
isotropic. Now,

^ ( ^ , Xx/X; £ ) = {a(/ i , / , b) | ju G Az(Wz-), t<ES0,bE B(t)},

where we know AZ{WZ ) G eE(Z, ^(« — 1)) by case (a). As in the proof of Lemma
8, A(X, X±/X; £) is an abelian /7-subgroup of U(V), fixing X, and a calculation
of its order shows that A(X, X±/X; £) G &(V, r).
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We note incidentally that every element of £ is induced by a — 1 for some a in
A(X, Xx/X; £), since t -> H(w, t) is a surjective map of So on Fo.

Now suppose that A £ &(V, r), and again set up the situation of Lemma 6.
First suppose s = {{n — 1). Since S G S5(Z), S D S? . Since 50 is a maximal
7/0-totally isotropic F0-subspace of S, we have S D So D S? , and 50 is its own
//0-orthogonal complement in Z. Thus, if a = a(/x, ?, /?) G ,4, then f G 50. In
particular, /x fixes S D S ^ and / £ S, so that a fixes A" = (x )© S;1, a totally
isotropic subspace of dimension \(n — 1), and also fixes X1-/X. Choose z G So,
z 2 ^ . Since w -> //(w, z) is a nonzero linear map of 5 on F, there exists » £ S
such that H(w, z) = 1. Since the image of z spans the F0-space S0/Sz , we see
that H(w, t) G Fo, for all t G 50. Let £ be the F0-space of linear transformations
of Xx/X into X spanned by the transformation r such that T(VV) — x, where w is
the image of w in X1-/X. If a = a(ju, ?, fc) G A, then

( a - l)z = -H(z,t)x, z G 5,

so that the linear transformation of A'^/A' into X induced by a — 1 is equal to
-H(w, t)j, which lies in £. Thus A C ^ ( A1, A"1/*; £), and so

Finally, by the proof of Theorem 1, we have the case s = {{n — 3), n> 5. Then
5 is totally isotropic, So = S. Since A^ G &(Z, j(n - 3)) and f(n - 2, ^{n - 1))
< / ( « — 2,j(n — 3)), 5 Js the subspace of all vectors of Z fixed by At. By
inductive hypothesis, Al consists of all JU G U(Z) which fix S and S£/S, for
which the linear transformation of S^/S induced by JU — 1 lies in a fixed F0-space
£, of linear transformations of F0-dimension 1. Let w G S ^ w ^ S , O ^ T E E , ,

M = r(iv), where w is the image of w in S^/S. If ft G /I,, then (/n — l)w = C(/I)M,

where c(n) G Fo. If a = a(jn, /, fo) G A, then ju G yl, and t E S? , since 5^ is the
//0-orthogonal complement of 50. Hence a fixes X — (*)© S and also Ar X/X
Also,

(a - \)w = (n - \)w - H(fiw, t)x - c(n)u - H(w, t)x,

since ju fixes 5 ^ / 5 and t E S? .
As remarked before, every element of £, is induced from some element of Ax.

Hence there exists \i' G Ai such that C(JU') = 1. There exist t', V such that
a' = a(n', t', b') G A. We have t = aw(mod S), t' = aV(mod S), for some a, a'
G F. Then, (/i - 1)/' = (/t - l)a'w = a'c(\i)u, (/x' - l)f = ac(fi')u = a«. Hence
a'c(n)u = au, by Lemma 4, so that a = a'c(n). Now //(w, ?) = H(w, aw) —
aJH(w, w) = c(fi)k, where A; = (a')JH(w, w). Thus, (a — \)w — c(n)(u — kx),
and we see that A C A( X, X1- /X; £), where £ is the F0-space of linear transfor-
mations of A'x/Ar into X spanned by the map that takes w to u — kx. Hence
A = A( X, X±/X; £). This completes the proof of Theorem 2.
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All the groups occurring in Theorem 2 are elementary abelian, except that, in
odd dimension and characteristic 2, the groups A( X, X^/X; £) have exponent 4.
In this case, it can be shown that the elementary abelian 2-subgroups of largest
order in U(V) are the groups in &(V, \{n + 1)).

4. Sylow groups

As in Wong (1981), a Sylow/^-subgroup P of U(V) can be described in terms of
a sequence of totally isotropic subspaces of V,

0=W0CW]CW2C---CWm,

such that dim Wt = i, where m = [jn]. Then P consists of those elements of U(V)
which fix all WJW^, (1 < / < m) and W^/Wm (in case n is odd), and we write

P = P{W0,Wl,...,Wm).

We now determine the abelian subgroups of largest order in P.

LEMMA 9. Let X be a totally isotropic subspace in V, and Y a subspace of V which
is invariant under A(X^). Then either Y D X or Y C Xs-.

PROOF. Suppose Y <£ X±, and let y E Y, y $ X. Let x e X. There exists a
nonzero element a of F such that aH(x, y) £ Fo. Then

H(y,y) = H(ax+y,ax+y),

and so there is an isometry of X± ®(y) on X± ®(ax + y), which is the identity
on Xx and maps y on ax + y. By Witt's theorem (Dieudonne (1955), page 21),
this map extends to an element of A(X±). Sincey £ Y and Y is invariant under
A(X±), we see that ax + y E Y, and s o x £ 7 . Thus, X C Y. This proves Lemma
9.

THEOREM 3. Let P = P(WQ, Wt,..., Wm) be a Sylow p-subgroup of the unitary
group U(V) of a vector space V of dimension n — 1m or 2m + 1 (m > 1) over a
finite field F of q2 elements having characteristic p. Let &(P) be the set of all
abelian subgroups of largest order in P, and let Fo be the subfield of q elements in F.

(a) If n = 2m, then &(P) consists of the single group A(Wm).
(b) Ifn = 2m + 1, then &(P) consists of all groups A(Wm, W^/Wm\ £), where £

is an F0-subspace of F0-dimension 1 in the space of all linear maps of W^/Wm into
Wm. There are (q2m - \)/{q - 1) such groups.
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PROOF. Suppose A G@,(P). By Theorem 2, A has the form

A(X) or A(X,X±/X;£),

where X is totally isotropic of dimension m. In any case, A D A( X±), and so Wm

is invariant under A(X±). If Wm C A"x , then X + Wm is totally isotropic, and so
X C Wm, since Jfm is a maximal totally isotropic subspace of V. By Lemma 9, we
have X C Wm in any case, and so X = Wm.

Conversely, every group A{Wm) or A{Wm,W^/Wm; £) clearly lies in

In case (b), the vector space of all linear maps of W^/Wm into Wm has
dimension m over F, and so there are (q2m — \)/(q — 1) possible choices for the
F0-subspace £ of F0-dimension 1. This proves Theorem 3.

The determination of &(P) for the unitary case has also been carried out in the
Ph.D. thesis of Michael Barry (1977), using the Chevalley commutator relations.

It is easy to check which of the groups in &(P) are normal in P. We give the
result without proof.

THEOREM 4. In Theorem 3, let &N(P) denote the set of groups in &{P) which are
normal in P.

(a) Ifn is even, then &N(P) - &(P).
(b) / / n is odd and n > 3, then &N(P) consists of the q + 1 groups of the form

A(lVm, W^ /Wm; £), where £ is an F0-subspace of F0-dimension 1 in the space of all
linear transformations of W^/Wm into Wv

5. Symplecticcase,/) T6 2

Now suppose J = 1, p ¥" 2, so that H is an alternating form, and let | F \ = q.
Assume V is nondegenerate so that V has even dimension 2m, and let q^m-r>
denote the largest order of an abelian /^-subgroup of Sp(K) fixing an /--dimen-
sional subspace of V.

We give only a sketch of part of the argument in this case, since the method is
just a simpler version of that used for the unitary case. Lemmas 3 and 4 hold for
Sp(F) in place of U{V), where now B(t) — F for all /. If A is an abelian
/^-subgroup of Sp(F) fixing an r-dimensional subspace X, and x is a nonzero
vector in rad X, then S can be defined as in Lemma 5, and 5 = dim S satisfies
0 < s <2m — r — 1. The analogue of Ho is 2H, which is nondegenerate because
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p ¥= 2, and we see that 5 is totally isotropic, so that s =£ m — 1. The analogue of
Lemma 8, for 1 «s /• < 2m, is that

f(m, r) = max{g(m, r, s) | 0 < s < min(2w — r — 1, m — 1)},

where g(m, r,s) = I + s + f(m — 1, max(/- — 1, s)). Induction on m leads to the
following result.

THEOREM 5. Let Sp(K) be the symplectic group of a 2m-dimensional vector space
V over a field F of q elements having odd characteristic p, and let qf-m-r) be the
largest order of an abelian p-subgroup of Sp(V) fixing an r-dimensional subspace of
V.

(a) Ifr > m, thenf{m, r) = {{2m - r)(2m - r + \).
(b)Ifr<m, thenf(m,r) - {m(m + 1).

As before, we denote by Sr(K) the set of all r-dimensional subspaces X of V
such that X C X^ or X D XL , and we write A( X) for the subgroup of Sp(K) of
all elements fixing X. The following result is proved in the same way as Theorem
2(a), (b).

THEOREM 6. Let Sp(K) be the symplectic group of a 2m-dimensional vector space
V over a finite field of odd characteristic p, and let &(V, r) be the set of all abelian
p-subgroups of Sp(V) of largest order fixing an r-dimensional subspace of V.

(a)Ifr>m,then(2.(V,r) = [A(X) \ X G Sr(K)}.
(b) Ifr<m, then &(V, r) = &(V, m).

All the groups occuring in Theorem 6 are elementary abelian.
A Sylow /^-subgroup P of Sp(F) is determined by a sequence of totally

isotropic subspaces

o = w0 c wx c w2 c • • • c wm,

such that dim W, = i; P is the group P(W0, Wu..., Wm) of all elements of Sp(K)
fixing all WJW^, (1 < / < m). The following result is proved in the same way as
Theorem 3(a).

THEOREM 7. Let P = P{WQ, Wu..., Wm) be a Sylow p-subgroup of the symplectic
group Sp(K) of a 2m-dimensional vector space V over a finite field of odd
characteristic p. Then, A(Wm) is the unique abelian subgroup of largest order in P.

The last result was also proved by Barry (1979) by using the Chevalley
commutator relations.
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