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ON LEVI-LIKE PROPERTIES AND SOME OF THEIR 
APPLICATIONS IN RIESZ SPACE THEORY 

BY 

G. BUSKES AND I. LABUDA 

ABSTRACT. Let (L, A) be a locally solid Riesz space. (L, X) is said 
to have the Levi property if for every increasing X-bounded net 
(xa) c L + , sup xa exists. The Levi property, appearing in literature 
also as weak Fatou property (Luxemburg and Zaanen), condition (B) 
or monotone completeness (Russian terminology), is a classical object 
of investigation. In this paper we are interested in some variations of 
the property, their mutual relationships and applications in the 
theory of topological Riesz spaces. In the first part of the paper we 
clarify the status of two problems of Aliprantis and Burkinshaw. In 
the second part we study ideal-injective Riesz spaces. 

1. Measurable cardinals, lateral Levi properties and two problems of Aliprantis 
and Burkinshaw. 

Our aim, in this section, is to clarify the status of the following two problems, 
posed in ( [2], page 190). 

PROBLEM 1. Is every Hausdorff locally solid topology on a universally complete 
Riesz space necessarily Lebesguel 

PROBLEM 2. If a universally complete Riesz space admits a Hausdorff locally 
solid topology does it follow that it must admit a Hausdorff Lebesgue topology 
alsol 

We start by explaining our terminology. Because we consider lateral 
properties and (even "more lateral") disjoint properties, in order to be con­
sistent, we had to call disjoint some properties that appear in [2] as lateral. For 
instance, a Riesz space L is said to be disjointly complete if, for any disjoint 
family (xa) c L , sup xa exists. Thus L is universally complete if it is Dedekind 
complete (DC) and disjointly complete. Otherwise we tried to keep our 
terminology as close to [2] as possible and, in particular, all unexplained terms 
and notational conventions are used in the sense of [2]. 

Let (L, X) be a locally solid Riesz space. We say that (L, X), or X alone, has the 
Levi property, if, for all increasing X-bounded nets (xa) c L + , sup xa exists. An 
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increasing net (xa) c L + is said to be laterally increasing (notation xa -J), if 
Xp — xa A xa = 0 for all /? > a. We say that (L, X) has the lateral Levi prop­
erty if it has the Levi property with respect to laterally increasing nets, i.e., 
if sup xa exists whenever xa -J and (xa) is À-bounded. A (formal) series 
2 xn9 or a sequence (xn) itself, in a topological vector space, is often said, 
after Orlicz, to be perfectly bounded if its set of all finite partial sums is 
bounded. Following this terminology, we will say that a family {xa:a e A } in 
(L, X) is perfectly bounded if the set { 2 a e # xa:E a A, E finite} is X-bounded. 
(L, X) is said to have the disjoint Levi property if, for each disjoint family 
(xa) c L + that is perfectly bounded sup xa = (o) — 2 a xa exists. 

We will also consider the countable versions of the above properties; they will 
be called o-Levi, lateral o-Levi and disjoint o-Levi property, respectively. Given a 
laterally increasing sequence (xn) in L+, we may reduce the situation to (xn) 
that is actually disjoint. Thus, 

1.1. Lateral and disjoint o-Levi properties are equivalent. 

We recall that a sequence (xn) in L is said to be r-Cauchy if there exist 
r G L + and a sequence (en) of positive reals, en —> 0, such that 

!*«+/> - Xn\ = V f o r e a c h /> G N -

A sequence (x„) is /--convergent to x G L if |x — x j ^ cwr. An Archimedean 
Riesz space L is r-complete (or relatively uniformly complete) if any r-Cauchy 
sequence in L is r-convergent in L. Our first result may be considered as a 
topological analogue of the following theorem of Veksler and Geiler ( [12] ). 

V-G. For a Riesz space L the following are equivalent. 
(i) L is a-Dedekind complete. 

(ii) L is Archimedean, r-complete and relatively o-disjointly complete. 

REMARK. Here relatively a-disjointly complete means that if (xn) c L + is 
disjoint and order bounded then sup xn exists. We shall use the word "relatively" 
to qualify properties that hold under additional condition of order boundedness 
and reserve the terms "bounded", "boundedly" for reference to the bounded­
ness in the sense of topological vector structure. 

THEOREM 1.2. Let (L, X) be a locally solid Riesz space. The following are 
equivalent. 

(i) (L, X) has the o-Levi property. 
(ii) (L, X) is Hausdorff r-complete and has the disjoint o-Levi property. 

We will need two lemmas. The first one can be traced back to Abramovich 
(see [1] Lemma 2). Lu denotes the universal completion of L. 

LEMMA 1.3. Let (L, X) be a o-Dedekind complete Hausdorff locally solid Riesz 
space having the disjoint o-Levi property. If 0 ^ xn f x G Lu and the sequence 
(xn) c L is X-bounded, then x G L. 
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PROOF. Restricting ourselves to the band generated by (xn), we may assume 
that L has a weak unit. By a known representation theorem (see [11] 26.2.8 and 
26.2.10) we may identify L with a solid vector subspace of C°°(B). Here 12 is an 
(o-extremally disconnected compact Hausdorff space and C°°(£2) denotes the 
space of continuous functions from £2 into R that can take infinite values on a 
nowhere dense set. Define 

En = cl{<o G Q:2JCW(W) > x(co) } 

(with "cl" standing for the closure in Q). We have x\E -3 x and, since x\E ^ 2xn, 
we find that 

x\F G L for all n G N 

and 

{x\E-.n e N} 

is a X-bounded set. Hence by the lateral a-Levi (<^> disjoint a-Levi) property, 
sup{xl£ :n G N} = x is in L. 

LEMMA 1.4. >4 a-universally complete Hausdorff locally solid Riesz space (L, X) 
has the o-Levi property. 

PROOF. By [2] 24.1, X is a-Lebesgue and therefore X is a-Fatou. Also since L 
is a-universally complete it cannot be further enlarged in the sense of [8] (i.e., 
(L, X) = (L~, X~) ). Hence the Lemma follows by Theorem A in [8]. 

PROOF OF THEOREM 1.2. Only the implication (ii) => (i) is not trivial. Take 
0 ^ xn f c L such that (xn) is X-bounded. As above we restrict ourselves to the 
band generated by (xn) and embed it as a solid vector subspace of C°°(£2). 
Suppose that (xn) is not order bounded in C°°(£2). Then there exists an open 
subset E of £2 such that xn\E Î oolE . Assume, to simplify notation, that 
E = fi. Take any x G C°°(fi). Then xn A x f x and, by Lemma 1.3, * G L. 
Hence L = C°°(fl) and, by Lemma 1.4, (L, X) has the a-Levi property 
contradicting the fact that (xn) is not order bounded. Hence (xn) is order 
bounded in C°°(£2). Let x0 = sup xn therein. By Lemma 1.3 again, x0 G L. 

Interestingly enough, though the uncountable analogue of V-G holds (cf. [12], 
Theorem 4), the situation with its topological counterpart is much less obvious. 
We will now show that under the assumption of the existence of 2-measurable 
cardinals there exists a universally complete Hausdorff locally convex-solid 
Riesz space without the Levi property. 

EXAMPLE 1.5. Let I b e a set and let v be a non-trivial {0, l}-valued (count-
ably additive) measure on &(X). Then 

& = {E c X: v(E) = 1} 
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is a non principal ( n J ^ = <f>) ultrafilter on X that is closed under countable 
intersections. Let Y be the set of all non-empty finite sequences of elements of 
X. If / G Y and u G X we denote by r*w the element of 7 which we get by 
putting u behind /. A (Hausdorff) topology on Y is defined by declaring a set G 
in Y to be open if and only if, for all / G G, 

{u G X: t*u G G} G J*T 

This topology is extremally disconnected. Indeed, if G is open and / G G, we 
reason as follows. If/ G G then {u G X:/*W G G} contains {u G X:/*W G G} 
and the latter set is in ^ so the former is also in J^ If t G G \ G then G\{7} is 
not closed, i.e., H : = {/} U {Y\G} is not open, so there exists s0 G H such 
that {u G X:^w G Y \G} S ^ However, {u G X:S*W G Y \G} G ^ for 
5 in Y\G and thus s0 - /, and {u G X:/*W G Y\G} S J*T As .Fis an ultrafilter, 
{u G X:/*w G G} must be in J^ Thus we conclude that indeed G is an open set. 
For y in Y, write 

If, = {/ G Y: f = y or / extends >>} 

where "/ extends y" means that for n = 1 ,2 , . . . , length (y), we have /(«) = y(n) 
and other terms of / are arbitrary. The sets U are obviously open. We show that 
they are clopen. Suppose that t £ U 9 i.e., t does not extend y. There are two 
possibilities: 

(1) t(n) ^ y(n) for some n ^ length (y) 
(2) length (7) < length (y), but / "agrees" with y on the initial part of y. 

In case (1), {u G X:/*W G Y\Uy) = X G ^ 
In case (2), if length (/) < length (y) - 1, then again {u G X:t*u G Y\££} = 

X G ^ If length (/) = length (y) - 1 then, setting u0 = y (length (y))9 

{u G X:t*u G Y\Uy} = X\{w0}, which is a member of ^ since & is non 
principal. We thus conclude that the complement of U is open. Let now C(Y) 
be the Riesz space of all real-valued continuous functions on Y. Then, as Y is 
extremally disconnected, C(Y) is Dedekind complete. As J^ is closed under 
countable intersections, Gô-sets are open in Y. It follows that C(Y) is 
a-disjointly complete. As C(Y) has a weak unit it is universally complete ( [2] 
23.24). Equip C( Y) with the topology X of pointwise convergence. We will show 
that (C(Y), X) does not have the Levi property. To this end consider the 
following set in C(Y): 

B = { l e n g t h ^ l ^ e Y} 

The pointwise supremum of B exists (and equals length(j^0) at y0) but is 
unbounded on any open set in Y Thus the finite suprema of elements in B 
form an increasing net which is À-bounded but does not have a supremum 
in C(Y). 
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We now return to Problems 1 and 2 mentioned at the beginning of this 
section. 

It is known that if a proof of the non-existence of a 2-measurable cardinal in 
ZFC exists, then Problem 1 has the positive solution. On the other hand, the 
positive answer to Problem 1 easily implies the non-existence of 2-measurable 
cardinals. One describes such a situation by saying that the positive answer to 
Problem 1 is equiconsistent with the non-existence of measurable cardinals (see 
[6] for more details). We now show that 

1.6. Problems 1 and 2 are equiconsistent. 

As a positive answer to Problem 1 implies trivially a positive answer to 
Problem 2, we only have to show that a proof (in ZFC) of a positive answer 
to Problem 2 implies a positive answer to Problem 1. Suppose that such a proof 
can be given. Now, a Hausdorff Lebesgue locally solid topology À on a 
universally complete space L has the Levi property ( [2] Theorem 24.2). Further, 
if T is another Hausdorff locally solid topology on L then T is finer than X ( [2] 
Theorem 24.4). It follows that r has the Levi property. Hence every Hausdorff 
locally solid topology T on L has the Levi property in contradiction with 
Example 1.5. Thus, we have a proof of the non-existence of 2-measurable 
cardinals. Then, according to what is said above only Lebesgue topologies exist 
on L. 

REMARKS 1.7. (a) The space C(Y) that appears in Example 1.5 has been 
constructed by Fremlin in [6] (and also appeared in [3] ). 

(b) Every disjointly complete Riesz space L is laterally complete in the sense 
that if (xa) c L + is increasing laterally then xa f x e L. Indeed, we can 
define 

xa(œ) for some a such that xa(u) ¥= 0 

0 if there is no such a. 

Thus every Hausdorff locally solid universally complete Riesz space has the 
lateral Levi property in a trivial way and Example 1.5 tells us that there is no 
hope to obtain, in general, that 

DC 4- lateral Levi =» Levi 

Nonetheless the above implication holds under some (mild) additional as­
sumptions. Let us recall that a locally solid Riesz space (L, r) is pseudo-Fatou if 
0 ^ xa Î, (xa) T-Cauchy implies sup xa exists. It is known (cf. [9] 3.17) that if (L, 
T) is pseudo-Fatou and L is universally complete then r is Lebesgue Levi. A 
similar conclusion holds if T is metrizable ( [2] Theorem 24.7). Applying these 
two facts, a variation of the argument used above to prove Theorem 1.2 also 
shows the following statement. 

x(o)) = 
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Let (L, T) be a Hausdorff locally solid universally complete Riesz space. Suppose 
that (L, T) is either metrizable or pseudo-Fatou and has the lateral Levi property. 
Then (L, T) has the Levi property. 

(c) In Lemma 1.4 the fact that the topology is a-Fatou has been used. The 
following example shows that some assumption of that sort is needed in order to 
locate the sup of an increasing sequence (xn) in L". 

EXAMPLE 1.8. Let S be the set of all non-empty finite sequences of natural 
numbers. For s e S define X(s) = length (s). If s, t G S define s ^ / if X(s) =i 
X(t) and s(i) = t(i) for i = 1, . . . , X(s). For s <E S such that X(s) = n and / G N 
we define s * i = (s(\), . . . , s(n), i). Put 

L = (JC e l°°(S):hm x(s * i) = -x(s) for all s G S]. 
I /'—>oo 2 J 

One can show that for every t <E S: 

t(\\\(s)-\(t) 

e\s) = 2/ if / ^ J 

10 in other cases 

defines an element el of L. Furthermore L is a Banach space under the 
supremum norm || H^. 

Define fx = e{X\ f2 = e{X) V e{2) V e{h2) V e{2^\ . . . , generally 

/ ; = sup{e': A(/) ë « and t(k) ^ « for all k ^ X(/) }. 

The sequence (fn) is increasing and Halloo = *• We wm" prove that {^:n G N} 
is not order bounded in Lu. According to Theorem 23.22 in [2] we have to show 
that {fn:n G N} is not a dominable subset of L. Suppose it is. Take any 
u G L + \ { 0 } . There exist v G L + \ { 0 } and k G N such that (An - ^ ) + ^ v for 
all « e N. In particular for all t G S such that v(t) ¥= 0 we find ku(t) — 1 ^ 
v(/). Because v > 0, there exists /0 G S such that v(/0) > 0. Because 

lim u(t0 * i) = -w('o) a n d l i m v('o * 0 = ~v('o)> 
/—>oo 2 /—>oo 2 

we can find z G N such that 

2 
w(f0 * i ) ^ - n ( f 0 ) 

and v(70 * /') ¥= 0. 
Define ^ = t0 * /'. Choose inductively tn G S such that 

2 
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tn+x extends tn and v(tn) ¥= 0 for all n e N. For all n e N, we find ku(tn) — 1 ^ 
v(fw) > 0. However 

M'») = (-) «Co) 

and hence for large n we have ku(tn) — 1 < 0 which is a contradiction. 

We remark that the space L has been constructed by Groenewegen in [7] for 
other purposes. 

2. Ideal-injective Riesz spaces. 

For a Riesz space L, the order-bound topology is the topology generated by all 
Riesz seminorms on L. The order-bound topology of L will be denoted by ft(L). 
We consider Archimedean Riesz spaces only. L is called ideal-injective if for 
every Riesz space K, every ideal / c K and every fi(K) \r — fi(L) continuous 
Riesz homomorphism / —> L there exists a Riesz homomorphic extension 
K-> L. 

PROPOSITION 2.1. If (L, /?(L) ) has the Levi property then L is ideal-
injective. 

PROOF. Let K be a Riesz space, / c K an ideal and <?:/ —> L a /?(X) 1/ — /?(£) 
continuous Riesz homomorphism. Take g e K+. Observe that ^4g = {y(f)'.f G 
[0, g] Pi / } is an increasing /?(L)-bounded net in L. By the Levi property, sup Ag 

exists in L. Using the fact that / is an ideal in K, we obtain that the map 
g i—> sup A is positively homogeneous additive and preserves finite suprema on 
K . It therefore can be extended to a Riesz homomorphism K—>L. 

We need the following notion from [4]. For an ideal / c K, a map <p:I —> L 
is said to be c(/, K, L)-continuous if for any sequence (fn) in I which is 
r-convergent to 0 in K, (<p(fn) ) r-converges to 0 in L. 

PROPOSITION 2.2. Every c(I, K, L)-continuous Riesz homomorphism I —> L 
{where I a K is an ideal) is (i{K) |7 — P(L) continuous. 

PROOF. We denote by Kh the ideal generated by h e K+ in K. Suppose 
<p\I —» L is a c(7, K, L)-continuous Riesz homomorphism. Then y\Kh Pi / is 
fî(Kh n I) — /}(L) continuous for every h e K^. Denoting by ph the uniform 
norm generated by h on Kh, we would like to know whether <p\K n / is also 
PA I A' n/ ~~ P(L) continuous for every /* G AT+. TO this end, let h e A:+ and take 
any Riesz seminorm p on L. Suppose that p ° <p\K n / is not ph\K n / — /?(R) 
continuous. Then for each « e N w e can find/^ ^ Kh C\ I such that P/,(X) = 1 
and 77 ° <p(fn) = «2. Because ( (\/n)fn) h-converges to 0, we know that 

-P0<p(fn)'-n G N> 
n J 
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is bounded, which gives the desired contradiction. Therefore, <p:7 —> L is 
continuous from the inductive limit lim ph\Khnr to (L, /?(L) ). We are done as 
soon as we can prove that the topology of lim ph\K n / is weaker than P(K) |7. 
As lim ph\K n / is a locally convex-solid space (see for instance 4.16 page 108 of 
[10]), its topology is generated by a collection of seminorms. Let p be any 
of these seminorms. By definition of inductive limit, for all h e K , p\K n / is 
continuous relative to ph\K n / . Define for e e K, 

p(e) = sup{p(f): f e / and 0 ^ / ^ \e\ } < oo. 

Then /? is a Riesz seminorm on K and hence is /?(X)-continuous. Thus p is 
/?(AT) ^-continuous. 

We recall a definition from [10]. A Riesz space L is said to have the Peressini 
property (in [10] and [4]: the boundedness property) if it satisfies either of the 
following two equivalent conditions. 

(i) A set B in L + is order bounded whenever (ocnxn) order converges to 0 for 
every sequence (xn) in B and an j 0 in R. 

(ii) A set B in L + is order bounded whenever ( a / n ) r-converges to 0 for every 
sequence (xn) in i? and an I 0 in R. 

The disjoint Peressini property is obtained by replacing "a set B" in the above by 
"a disjoint set 5 " . The following is now a consequence of Theorem 4.4 in [4]|. 

COROLLARY 2.3. Every ideal-injective space has the disjoint Peressini property 
and is relatively disjointly complete. 

We are now going to observe a similar phenomenon as in Section 1 : to what 
extent the sufficient condition in Proposition 2.1 is necessary depends on the 
relation between the Levi property and the disjoint Levi property. More 
precisely, we have the following theorem. 

THEOREM 2.4. Let L be a Riesz space. Consider the following statements 
(i) L is ideal-injective 

(ii) L has the disjoint Levi property. 
If L is r-complete we have (ii) => (i). If L is fi(L)-sequentially complete we have 

(i) ^ ai). 

PROOF. Suppose L is r-complete. We show (ii) =̂> (i). Suppose L has the 
disjoint Levi property and /, K are Riesz spaces such that / is an ideal in K. 
Suppose furthermore that <p:I —> L is a fi(K) \T — /?(L) continuous Riesz 
homomorphism. We show the existence of a Riesz homomorphic extension K-^> L. 
Let C°°(fi), where £2 is an extremally disconnected compact Hausdorff space, be 
the universal completion of L. Choose, by Zorn's lemma, a maximal disjoint set 
{1^:^ e S} contained in the ideal generated by <p(7) in C°°(£2). Let A be the 
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support in fi of the latter ideal. It easily follows that U 5GjS Us is a dense subset 
of A. For every s ^ S choose hs G / + such that \ u ^ <p(hs). 

Let / G # + . For x G fi we define /yO) G [0, oo] by 

lf(x) = sup{<p(g)(x):g G [0 , / ] n / } . 

For every ^ e 5 w e have 

lf(x) = sup{<p(/A nhs)(x):n G N} for all JC G &r. 

For every s G S(<p(f A «/z5) ) is an increasing /?(L)-bounded sequence. By 
Lemma 1.4 (here we use r-completeness of L), we have 

C°°-sup{<p(/ A /IAJI/I G N} = L-sup{<p(/A / IAJ :» G N} G L + . 

Define i^ = L-sup{<p(/ A nhs):n G N} and B = {x G fi:3S G S such that 
i^(x) < oo and x G L^}. B is an open dense subset of 4̂ and ^ is continuous at 
every point of B. Thus we can find / * G C°°(fi) such that f*\B = 1/\B a n d / * 
vanishes on the complement of the closure of A. In fact 

/ * = C°°-sup{,,(g):g e [0 , / ] n / } . 

We will now sketch the proof of the fact that / * G L. TO this end, consider 
families of clopen subsets {Vt} of fi such that: 

(\)Vtr\ vt, = $ if t # f. 
(2) For each t there exists ht G I n [0, / ] with 1K ^ <p(A,). 
(3) For each / there exists « G N such that 

f\=<p(fAnht)\Vi. 

Choose by Zorn's lemma a maximal family {Vt\t G T}. By maximality we 
have 

(4) U / G r ^ is a dense subset of A. 

Define^ = f*lv. By (3) above and Lemma 3.2 of [4] it follows that ft G L. By 
ft(K) |7 — fi(L) continuity of <p, it follows that the set 

{finite sums of distinct^} 

is /?(L)-bounded. By the disjoint Levi property, L-sup{^:/ G T} = /** exists. 
Since / ** = / * we can use Lemma 3.2 of [4] again to show that / * G L. It is 
easy to extend the map /*—»/* ( / G K^~) to a Riesz homomorphism K —> L. 

Conversely assume that L is /?(L)-sequentially complete. We show (i) =» (ii). 
Because L is ideal-injective, it follows from Corollary 2.3 that L is relatively 
disjointly complete and has the disjoint Peressini property. By a variation of 
23Nfin [5] the /?(L)-sequential completeness implies that L has the disjoint Levi 
property. 
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